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Abstract. We define "locally isotropic" spaces, as spaces in which there exists, in 
the tangent space at each point P, a subgroup A (P) (of dimension at least 1) of the 
Lorentz group L~+, leaving the Riemann tensor and its 2 first eovariant derivatives 
invariant; the subgroups A(P) are assumed to be conjugate in L~. These spaces admit 

group of local isometries G. l.f I~ denotes the subgroup of G leaving P fixed, then 
dA (P) ~ Ip. All spaces of petrov type D, admitting local isotropy are determined. 

1. Introduction 

A 4 dimensional Lorentzian manifold V4 is a differentiable and orien- 
table manifold on which is everywhere defined a regular metric of hyper- 
bolic normal type. One generally assumes also tha t  a coherent t ime 
orientation exists; this is equivalent to the existence of a continuous 
nowhere vanishing time like vecter-field; we make this assumption here. 
In  general relativity it  is customary to consider local coordinate trans- 
formations which are defined by  functions of class C ~, piece~se  C 4 [1]. 
We shall need here slightly stronger assumptions: the second derivatives 
of the Riemann tensor must  be continuous at  least piecewise. 

V~ is said to admit  an isotropy group at the point P if: 1) there 
exists a locally compact effective transformation group G of isometrics 
of Va operating differentiably on Va. 

2) There exists a subgroup I v of G which leaves the point P fixed. 
I p  is called the isotropy group at  P.  A manifold is said to have local 
isotropy if in each point P it  admits an isotropy group I v ;  the Ip's are 
conjugate subgroups of G. 

The transformations of I p  induce linear transformations in the tan- 
gent space Tp at  P.  The set of these linear transformations is a subgroup 
Aq(P) of L+ ~ of dimension q => 1; the A~(P)'s are conjugate subgroups 
of z$. 

I t  has been shown that,  in a C ~° locally isotropie V~, Aq(P) leaves 
the Riemann tensor and all its covariant derivatives invariant [2, 3, 4]. 
Two problems thus arise: 

I) to determine all locally isotropic V4; 

* On leave of absence of the Southwest Center for Advanced Studies Dallas. 
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2) to see if the existence of Aq(P) in each point does not imply the 
existence of an isotropy group I~  and thus of an isometry group. 

In  view of the differentiabflity requirements of general relativity, we 
shall redefine local isotropy in terms of certain subgroups of L+*. I f  V4 
is a lorentzian manifold of class C 2, C s piecewise, it is said to be locally 
isotropic if : 

(1') There exists in each tangent space Tp a subgroup Aq(P) of 
dimension q ~ 1 leaving the Riemann tensor and its 2 first covariant 
derivatives invariant;  all the Aq(P) 's  are conjugate subgroups of L+*. 

I t  is immediately clear tha t  the Petrov type of such a V4 must  be 
D, N or O. We shall consider here only the type D. I f  one assumes tha t  
the Petrov type is constant on V4, it is easy to show tha t  the Aq (P) 's  
are automatically conjugate subgroups of L+*. 

We plan to show tha t  the 2 definitions of local isotropy are equivalent 
and to determine all locally isotropic V 4. The proof of equivalence is in 
fact done by explicit construction of the metric. 

I t  is highly probable tha t  the assumption (1') is a little too restrictive 
and tha t  the invariance of the Riemann tensor and only its first eovariant 
derivative would be sufficient to derive the equivalence; we have in fact 
proven this generalised result in all but  one exceptional ease. We would 
have very much liked to stick to the usual C 2, C 4 differentiability require- 
ments;  this we could not achieve. 

Let  us note tha t  G. ELLIS [3] has proved, in the case of spaces 
describing a perfect fluid, tha t  the existence of A q (P) implies the existence 
of Ia(P ). 

2. Description of Results 

The group Aq(P) can be of dimension 2 or of dimension 1. I f  the 
dimension is 2, the group A 2 is the product of a space like rotation by  
a t ime like rotation (4-screw) [5]. I f  the group is of dimension 1, the 
ratio of the rate of space like rotation to the rate of t ime like rotation 
is constant. I t  can furthermore be shown that ,  when this ratio is not 0 
or infinite, the space admits necessarily a group of isotropy A2. There 
are thus only 2 eases : space like rotations (B1) , or t ime like rotations (Cx). 

The manifolds admitt ing an A 2 were determined by B~TOTTI and 
Ro~r~soN [6, 7]. The metric can be written: 

du dv d~ d~* (2.1) 
ds2--  (1 - auv) 2 (1 - fl~*)~ 

where a and fl are real constants. The group G of isometries is the direct 
product of 2 "rota t ion"  groups. The Lie algebra of G can be written as: 

I X .  x2 ]  = x ~  [x~, x~ ]  = - ~ z ~  [x~, x D  = - x 2  

IX4, Xs] X6 IX6, X4] = X 5 [X 5, Xo] = - fiX4 (2.2) 
[X~, X~] = 0 a = 1, 2, 3; ~ = 4, 5, 6. 
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The manifolds admitt ing the isotropy group B 1 are of 5 different 
types. Let  us denote (t t) the 2-plane passing through the origin and 
parallel to the orbits of B 1 in the tangent space. I f  this family of 2 planes 
is integrable the metric can be written as: 

d~ d~* 
d8~ = 2p~(x' Y) d x d y -  2A2(x' Y) ( 1 / ; T  ~*)~ " (2.3) 

This metric has also been indicated by  many  authors. Various subcases 
must  be considered. They are distinguished by the sign of the square 
o~ the gradient of A. 

A ~ A  v ~ O. (2.4) 

I f  A x .  A v < 0 one can choose A as a space like variable x, and t as 
a t ime like variable, the gradient of which is orthogonal to grad A and 
belongs to the (x, y) plane. The metric can then be written as: 

= _ _ dSd~* 
K 2 • 

/ 

We have written A in the form (1 + ~x) where 2 can take the values 
0,1 to include the limiting case where A = Cte. 

I f  A~.  A~ > 0 one can choose A as a t ime like variable x and t as 
a space like "orthogonal" variable and ~eite the metric as 

ds 2 o~Z(x,t) dx  2 -  fl2(x,t) d t ~ -  (2x + 1) 3 dCd¢* = ( /;  )~ (~.3b) 
1 - -4- ~ ;* 

where ~ is 1 or 0; the limiting case ~ = 0 belongs to the class of metrics 
(2.3a). 

I f  Ax" A~ = 0 one can, by  a scale transformation, reduce (2.3) to: 

d~ d~* 
d s 2 =  2p~(x ' y )  d x d y -  2 ( l  + 2x)~ ( 1 -  K ~2 • (2.3 e) 

-~ ~ ~*! 

The limiting case Z = 0 is the one we had already encountered twice. 
These 3 metrics admit  the same group of isometries G, which is a "rota- 
t ion" group with Lie algebra: 

K 
[ X .  X~] = x 3  [X~, Xa] = - -a -x~  [Xa, x~]  = x ~ .  (2.5) 

The two remaining Bl-type metrics correspond to the case where the 
(t t) family of 2-planes is not integrable. They both admit  a 4-parametric 
group of motions, the orbits of which are 3-dimensional submanifolds. 
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If these orbits are time-like the metric is: 

ds ~ =-~  /~(u) dt K + - -  

1 - -  -~- ~ *  1 - -  ~ *  (2 .6 )  

du ~ d~d~* 
/~(u) q2(u) (1--~-K ~ , ) 2  " 

The group of isometries G is the direct product of a "rotat ion" group 
and the one-parametric group. The Lie algebra is: 

[Xl' X2] = X8 [X2' i s ]  = - 4 - X l  [X8' Xi] = X2 (2.7) 

[X~,Xa]=O i = 1 , 2 , 3 ,  

When the orbits are space like one has: 

i - ~ *  1 - $~* (2.8) 

d~ d~* 
--q2(u) ( 1 _  4-K ~ , ) 2  " 

The group of isometries G is again the diree~ product of a "rotation" 
group and the one parametric group. Its Lie algebra is given by (2.7). 
The metrics (2.6, 8) are particular cases of the metrics given by D. B. 
C)mT]~i~ [8]; (2.6) is a special case of the b+ metrics and (2.8) of the b_. 

There are 2 different types of Ct-manifolds. Let us denote by (k, m) 
the 2-plane passing through the origin and parallel to the orbits of C i 
in the Cangent space. If this family of 2-planes is integrable one obtains 
the metrics : 

du dv 
ds 2 = (1 + )~x) 2 (1 -- K 2 --4-uv) J ¢¢2(x, t) dt ~ -- fl2(x, t) dx 2 (2.9) 

where ), is 1 or 0. There exists a 3-parametric isometry group G which 
is again a "rotation" group with Lie algebra: 

K 
IX.  X~] = X 8 [Xa, X~] = - X~ [X~, X~] = - T X~. (2.10) 

When the (k, m) family is non integrabte one finds: 

du dv 
ds~-= ! t~(x) (1-  K uv)2 

~-  (2.11) 

IS(x) [dt q~vdu O~udv ]~ dx ~ 
- -  " K + K / ~ ( x )  " 4 I ----4-uv I - - ~ - u v  
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The group G of isometries is the direct product of a "rotat ion" group 
and the one parametric group; its Lie algebra is given by  (2.7). The 
metric (2.11) is a particular case of the Carter 's metrics [8]; they 
correspond to his c case. 

3. Sketch of the Proof of Equivalence Between the Definitions 
of Local Isotropy 

To prove this equivalence we shall show how the definition (1') of 
local isotropy allows us effectively to build the metrics listed in § 2. 
We shall limit ourselves to the metrics (2.1, 3, 6) as the other cases can 
be done in much the same way. 

I n  each point P of V4 we choose in the dual T* of the tangent space 
a eobase 0~(~ = 1, 2, 3, 4) such tha t  the metric is: 

d s  2 = 2(0104-  0203 ) . (3.1) 

The forms 01 and 04 are real; 03 = (02) *. The orientation is fixed by:  

01^ 02 i 03^ 04 = i .  (3.2) 
(~) 

I f  h A are the components of the 0~'s in a local coordinate system, h x the 
(~) 

components of the base vectors of T~ canonically associated with 0 ~, the 
t ime orientation is fixed by:  

h a > 0 .  (3.3) 
(1) 

We choose in the space of the self dual 2-forms E~ a a base Z t (i = 1, 2, 3) 
given by:  

Z = 03A 04 Z 2 = 0 x^ 02 
1 04 (3.4) Z 8 : ~ -  (01 A - -  0 2 ^ 0 3) . 

The connexion form is defined as usual by:  

d Z  i = - eijkc;k ^ ZJ . (3.5) 

Indices are raised and lowered by  means of the metric y of E~. The 
explicit relation between the components ( ~  of the connexion form and 
the rotation coefficients y ~  = -  he;.h~-h ~ are given in [9]. The cur- 

(~) (~) (~) 
vature  form: 

X~ = d ~  - ~ ~ a~ ^ ~ (3.6) 

can be expressed in terms of the Z 's  and the Z * ' s :  

~ = \(C~J - --~R 7~J)+ Z~ + E ~  Z J *  . (3.7) 
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The symmetric matr ix  Ckj is the self dual Weyl tensor; R is the scalar 
curvature and the hermitian matr ix  E ~  corresponds to the trace free 
Rieci tensor. Bianchi identities can be written as: 

dZk = _1 ~8~ (2~ ^ ~ ~s A X~) (3.8) 
- - 2  k - -  • 

To express most  conveniently in this formalism the assumption (1') 
of invariance of the covariant derivatives of the Riemann tensor it  is 
useful to introduce a new kind of covariant derivative which we will 
denote * (also 10, 11, 12). * is an operation, defined on objects with 

(;) m oo , 
indices] having the following properties: 

(1) linearity 
. pP  

(3) the Leibnitz rule 
(4 )  z ~  * = 0 

(5) I t  coincides with eovariant differentiation on 0 q' " 

One can check very easily tha t  the * derivative of a "vector"  v~ is: 

1 (3.9) 
- -  2 v ~ ; ~ Z ~ .  

As the Petrov class of V~ is D we can choose our cobase 0 ~ in such 
a way tha t :  

c .  = 7@~? + ~ J  + 4 ~ ) .  (3.10) 

The vectors h, h coincide with the 2 eigen-vectors of the Weyl tensor. 
(i) (4) 

Let us assume tha t  there exists a 2 dimensional subgroup A ~ of L+ ¢ 
leaving the Riemann tensor invariant  [this is clearly the highest q 
admissible]. One has then: 

{Ei~ 2 ( ~ + e )  a ~ -  ~ i ~  
= 2 ( c  - e )  ( 3 . 1 1 )  

where c and e are arbi trary functions. 

I f  A ~ leaves the first eovariant derivative of the Riemann tensor 
invariant,  one finds: 

{ R,~ = 7,~ = (c ÷ e),~ = 0 (3.12a) 

~ = ~ = 0 .  (3.12b) 

The conditions (3.12b) are in fact the expression of the invarianee of 
C13T~ and C~a* ~ respectively; the conditions (3.12a) can be deduced from 
(3.12 b) and Bianehi identities. 
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The metric equations [13] can be integrated to prove the existence 
of a coordinate  sys t em (x, y, ~, ~*) such t h a t :  

01 = r d x  

04= s d y .  

One can obviously choose te t rads  such t h a t  r - ~  s, ~ = a*. I n  these 
te t rads  the  conditions (3.11, 12) imply  t h a t :  

r = r(x, y) ~ = ¢¢(~, ~*) 

and  fur thermore  the  2 surfaces (x, y), (~, ~*) have  cons tan t  curvature .  
Thus  the  metr ic  d~ dy d~ d~* 

d89 = (I - c~xy) 2 (i - fl~*)~ (3.13) 

which has  been given in (2.1). I t  is to  be noted  t h a t  in this case only the  
invariance of the first covariant derivative was used and an assumption 
of differentiabil~ty C 2, C ~ p i e c e ~ e  would have  been sufficient. The  group 
A ~ operates  in the  t angen t  space b y :  

0i-+ e~0i; 03-+ e~q0~; 04-+ e-~0~.  (3.14) 

I f  we assume the  existence of a 1-dimensional subgroup B 1 of L+  ¢ 
leaving the  R iemann  tensor  invar ian t  one finds: 

/ E  i = 1 T a ~ d ~ + 2 ( c + e )  8 ~i(3~ 
g ~  ~ + (3.15) (R = 2(~ - e ) .  

The invariance of the  first covar ian t  der iva t ive  of the  R i emann  Censor 
implies t h a t :  

R~ = Ra = 7~ = ~'a = (c + e)~ = (c + e)3 = 0 (a) 

a n  = ¢13 = ~14 = 0 (b) 

(3.16) 
~_ g , = = (¢33 + ~33) (d) 

a 

The  crucial relat ions (3.16, b, c) come again f rom the  invar iance of 
C * and  C~a:*,. Bianchi  identit ies reduce to  the 4 equat ions:  1 3 ; ~  

c @ e  1 a ~ a  ±~--~a  + ~ * ~ -  ~*~)+--~-~ (a)' 

I 
- - - 6 - R  a -- 2~]4 -{- (C -~ e)4 ---- -- 3~(71~ ~- (C -t- e) (73* 1 -- It(723 (b) 

(3.17) 
1 ~ a c + e  

1 
- -%-R~ - 2y~ + (~ + e)~ = 3~(7~a - (c + e) a*~ + a a ~  (d) 
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We have now to consider separately 3 cases: 

1) ~1 s - o1*a = ass - a~2 ~- 0; tha t  is the 2 vectors h and h are parallel 
(:) (4) 

to gradients. I t  is then dea r  tha t  there exists a coordinate system and 
a family of te t rads such tha t :  

[ 01 = p d x  
02= qd~ (3.1s) 
0 ~ --- p d y .  

The conditions ~11 = asa = 0 imply tha t  p -- p(x, y). From the vanishing 
of the C~3, Cs~ components of the Weyl tensor one deduces tha t :  

q = A(x ,  y) B($, ~*). (3.19) 

Finally combining linearly (3.16a) one shows tha t  the metric B2d~ d~* 
has constant curvature. Thus the metric: 

d~ d~* 
ds~-~ 2 1 9 S ( x ' y ) d x d y -  2AS(x 'Y)  ( 1 -  -~-K ~ , ) 2  • (3.20) 

I t  is worth noticing tha t  once again we used only the invariance of the 
f i s t  covariant derivative of the Riemann tensor and tha t  we did need 
the continuity of only the first covariant derivative of the Riemann 
tensor. 

2) (~s - a*3 = 0; ~ a  - 6~. # 0. ~ one now assumes the existence 
and continuity of the second derivatives of the Riemann tensor one can 
compute commutat ion relations between the conditions (3.163). This 
gives the alternative: 

a) a ~ 3 - a * ~ = 0  or b) R a = ~ = ( c + e ) ~ = 0 .  (8.21) 

The first par t  of the alternative brings us back to case 1). In  the second 
par t  b) we deduce from (3.17b) tha t :  

- 3y6¢12 -{- (o -{- e) (Yls - g°'22 = 0 ,  

The imaginary par t  of this relation is: 

3(~* - ~) a~s = g (a~  - ~*~). (3.22) 

The explicit expression of Clu allows us to compute (y - ~*) and thus 
obtain a value ~or g: 

3 
g = -~ a1~ .  (3.23) 

From the expression of g we get, in a te t rad for which a s a + 33*4 = 0: 

al~/a = - a~u. (3.24) 

The vanishing of Cxa and the ral / ty of ~1~ allows us to compute the 
commutat ion relation 312 [93] which again gives the alternative as a - a~2 
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= 0 or 0,12/4 = 0. The  second hai l  contradicts  (3.24) as 0,12 m a y  not  
vanish.  Thus  this second case is reduced to the  first. To  obta in  (3.21) we 
used second covar ian t  der ivat ives  of the  R i e m a n n  tensor  bu t  no t  their  
invar iance under  B 1. 

3) (0,13 - 0,~8) (0,3a - (772) + 0. Le t  us consider cer tain t e t r ad  t rans-  
format ions  leaving (3.10, 15, 16) invar ian t :  

0 1 - + e ' 0 1  02-> 03 0 4 - ~ e - ~ 0 4  . 

There  always exists a funct ion p such t h a t :  

0,12 - 0,~z = e(0,~a - ae*2) e 2 = 1 . (3.25) 

Commut ing  the  relat ions (3.16a) one gets:  

e R  1 + R~ = e~ l  ÷ ~ = e (c + e)l + (c + e)a = 0 (3.26) 

which shows t h a t  these components  of the  curva ture  depend of only  one 
variable.  

The  real i ty  of E I~  gives: 

1 2 1 
(0"12 - -  (7153)4 = %2- (0"12 - -  0,~32) + 4 -  (0,3~ + ff~4) (0,12 - -  0"~3) " (3.27) 

On the  other  hand  if one computes  C31 - C* 1 one gets:  

(3.28) 1 1 
+ ~ (0,33(7% - (7"~0,~ 3) - ¥ ( ~  + ~ '4)  ( ~  - 0,~2) • 

Subst i tu t ing  (3.27) in (3.28) b y  v i r tue  of (3.25) one finds a value of 
7 -  7"  in t e rms  of the  ¢ ~ .  A similar calculation using the  rea l i ty  of 
E~-  and  the  imaginary  pa r t  of C 12 gives another  expression for (y - y*). 
The  equal i ty  between these 2 expressions implies t ha t :  

0,~1+ * = (781 e((734 + a*~) • (3.29) 

The second covar iant  der ivat ives  of Ci~ are given by :  

The  conditions expressing their  invar ianee in B 1 imply  t ha t :  

I al  3/3 = 1 0,13 ((rS~ + (r*2) (3.30) 
1 0, ,  

[(722/a = - ~-0,23(0,33 + ~3) 

and give the  values of certain second der ivat ives  of ~ in t e rms  of the  0,~. 
The  vanishing of C~a and  C2a gives us:  

0,13/3 = "4" (71 3(0,33 "-~ (732) (3.31) 
1 , 

[(723/,a - -  T0"23((732 + (732) • 
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Commuting the equations (3.30) and (3.31) we obtain: 

_~ 1 s 1 
Y - T -  ~g = T a I ~ * 2 - W 6 1 2 2 - T  (a~1+~*1)a~ (a) 

(3.82) 
1 , s s 

~, - -~ -  - s a  = T ~ x a  a~3 - ~ @ ~  - T (~31 + ~ ' 1 )  6 ~ a .  (b)  

The difference of these 2 equations is: 

1 , 
s(a - g) = y (6~23~2 - 6*a 6~3) 

(3.33) 
s 1 6* 

(6122-- 6223) -- 2-(631-~ 31) (612-- 8623)" 

The imaginary par t  of this equation and (3.25) show that :  

61~ = 86~ (3.34) 
and thus also: 

a = g .  (3.35) 

Comparing (3.30, 31, 34) one gets: 

632 + 6~'2 = 0 .  (3.36) 

The crucial coefficients 612 and 6 ~  are thus functions of only one 
variable. The metric equations show tha t :  

01 + ~0 ~ = d u  (3.37) 

and the various quantities are functions of u alone. One mus~ separate 
the 2 eases corresponding to a space like or a t ime like variable u. I t  is 
then possible by  a straightforward, although somewhat lengthy integra- 
tion, to obtain the 2 metrics: 

K 1~ (u-----)- -- qg. (u) K 2 
4 1 -- T ~ *  1 -- T St* 

(3.38) 
and 

d 8  2 _ - -  du~ p(u)  d r +  i C ,  . . . .  d~ d~* . 
/2(u) 4 1 - - ~ - ~ *  q2(u) (1 -- ~ * )  2 

(3.39) 

These B 1 metrics all admit  a group of isometrics G and an isotropy 
group A 1. In  the tangent  space the transformations have the form 

0 1 - + 0 1  0 2 - + e ~ q 0 2  0 4 - ~ 0 4  . ( 3 . 4 0 )  

In  the case C ~, a similar construction can be made. The explicit form of 
the metrics show tha t  the definition (1') of isotropy always implies the 
existence of a group of isometrics G which is multiply transitive on its 
orbits. 
5 Commun.math.Phys., Vo1.11 
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I t  is maybe  worth remarldng tha t  in the non integrable case an 
al ternative derivation of the metric can be done, which does no t  use the  
invarianee of the  second covariant  derivative of the Riemann  tensor in 
B~. This approach however  seems to  fail in one exceptional case. 

4. ]Properties o~ the Locally Isotropic Spaces 

a) Metric (2.1) 

du dv d~ d~* 
d s ~ =  (1 - ~uv) 2 (1 - fl~*)~ " (4.1) 

The change of variables leaving this form of the metric invar iant  are:  

u A  1~2.3 

v -~ ,~1 ~1 

b) v -+ )~ v + 1~1 (4.2) 

This space contains a non  singular constan~ electromagnetic field: 

_ f d~Ad~ ~ A d ~ *  1 

The cosmological constan~ is: 

A = 2 ( ~ -  fl). (4.4) 

The components  of the Killing vectors are: 

x ~  = [u, o, 0, - v] (a) 

X~ [ 1-~u~ 1 -- ~v~] = ~ , o,  o , - - y - -  (b) 

Xa=[ 1-F~u~ 1+~ ~v=] 
2 , o , o ,  - (e) (~.5) 

x 4  = [0, i ~, - i~* ,  o] (d) 

X5 = [0, 2(~ - / ~ ) ,  2(1 - ~ * ~ ) ,  O] (e) 

X~ = [0, - 2i(1 +/~¢~), 2i(1 +/~$*~), 0 ] .  (f) 

The pair of surfaces u = v = c re, and ~ = v~ are orbits of the  isometry 
group G~; the  second fundamenta l  forms of these surfaces vanish iden- 
tically. It, is wor th  noticing t h a t  the  Riemann  Christoffel tensor of (4.1) 
is eovar iant ly  constan~ and  t h a t  (4.1) is thus  a symmetr ic  space. 
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b )  M e t r i c  ( 2 . 3 a )  

= _ _ d e *  

K ¢~.)e 
ds~ ~ ( x , t )  dt ~ o~(x,t) d z  ~ ( 2 x + l )  ~ q  a¢ 

- - T  
The admissible coordinate t ransformations are:  

(4.6) 

t -+ ~ (t) (4.7) 
and  (4.2e). 

The components  of the curvature  tensor are: 

27 - ~ - - -  2~2(1 + `%x) in • (a) 

s r  + -5- = - ~  t - ~  ] , - ~  t ~ - J , -  ~-~ r L,-~ - ~,~] 
)2 K (b) 

a2[1 + `%x] ~ [1 + ;tx] 2 

- -  ,% 2 c~, 
2 E l f - -  2~2(1 + 2x) [ln(~fl)]~ + ~fl(1 + l x )  ~ (c) (4.8) 

- %̀ %̀ ~' ( d )  2 E ~  -- 2a2( 1 + `%x) [inafi]~ - aft(1 + `%x) 

~2 K (e) 
-~- az(1 + `%x) 2 -~ (1 q- `%x) 2 " 

The components  of the  Killing vectors are given by  (4.5d, e, f). The 
orbits of the group o~ isometrics are given by :  

x = x 0 ,  t = t o . 

The surface x = t = 6re iS an orbi t  of the  i sometry  group G; its 2 second 
fundamenta l  forms are:  

~ a b  -- a t a b + (4.9) 
/Q(~) 
t a b = O "  

I f  one assumes (4.6) to  be a solution of the field equations:  

one finds in the ease / = 1 [x + 1 -+ x] 

1 m - -  K x  
f l~ = - -  ( 4 . 1 0 )  

The ease i = 0 is impossible. 
I f  one considers the equations:  

R + A  
R ~  - 2 g ~  = 0 

5" 



68 M. C ~  and L. D]~YaIs~: 

one finds in the case t = 0 Ix + 1 -+ x] 

1 m --  K x  A x  ~ 
~ = ~ - • + - $ -  ( 4 . 1 1 )  

Cosmological models with perfect fluid and vanishing cosmological con- 
s tunt  are solutions of 

E I ~ E ~ -  ~ = E ~ - .  (4.12) 

Up to  now we have been able to  determine only part icular  solutions of 
(4.12). Cosmological models with dust  are characterized by  (4.12) and 

2E3~ + R = 0 .  (4.12') 

Spaces (4.6) admit t ing  a non singular electromagnetic field solution of 
the source free Maxwell equations arc determined [X = 1 ; x ÷ 1 -+ x] by :  

1 m a a *  (4.13) 
f i ~ = ~ = - K +  x 2x ~ " 

The electromagnetic field is 
+ (~ 

F = ~-~Z 8 . (4.14) 

There are no spaces of this type  containing a null electromagnetic field. 

I f  ~ = a (x), fl = fl (x) the space admits  a 4-parametric i sometry  group 
which is the direct product  of the " ro ta t ion"  group by  a one parametr ic  
group;  if ~ = ~(t), /? = f l ( t)  [which then can be made  equal to  1] and 
% = 0 one also has a 4-parametric isometry group. 

A five parametr ic  isometry group occurs for the metr ic :  

d x  ~ 
d s  2 = x ~B d t  2 x ~ x ~ d ~  dE* (4.15) 

where B is a constant .  I f  B = 1 this space is a solution of: 

R ÷ A  
R~[j 2 g ~  = 0 

with R = - 5, y = - 1/3. There are no models with dust,  perfect fluid 
or electromagnetic field and no empty  space. The components  of the 
Killing vectors of (4.15) are:  

"X 1 =  [ x , -  $ , -  $*,  - B t ]  

X 2 = [0, - 21~, 2i~*,  0] 

X~ = [O, - 2, - 2, O] 

X4 = [0, - 2i, 2i, O] 

X 5 = [0, 0, 0, 1 ] .  

(4.16) 
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The group of isometrics is solvable; its Lie algebra is: 

I X .  = o [ x .  = I X .  x , ]  = x .  IX .  = BX5 
[X~, X3] = 2 X  4 [X2, X4] = - 2X3 [X 2, Xs] = 0  (4.17) 
[X3, X~] = [X~, Xs] = [X~, X3] = O. 

The metrics (2.3a) have been studied by  PL~BA~SKI and STACHEL [14]. 

c) Metric (2.3b) 

d~ d~* 

\ ] 

As previously the admissible coordinate transformations are: 

t -> ~v (t) (4.19) 
and (4.2c). 

The components of the curvature tensor are those given in (4.8) with 
a change of sign in (4.8a) and in the first four terms of (4.8b and c). 
The components of the Killing vectors are unchanged. Also unmodified 
are the second fundamental  forms of the orbits x = t = c% In  empty  
space ( R ~  = 0) one has: 

fl~ 1 ~ (4.20) = - ~ = K + ~ - .  

I f  there is a cosmological constant 

1 m Ax ~ (4.21) 

The equabions for a perfect fluid or dust are again (4.12) or (4.12 and 12'). 
There is no possibility of having a null electromagnetic field. For  

a non singular electromagnetic field one finds: 

f12=  = K + - x -  + 2--~ 
l ~  a (4.22) 

= ~ - ~ Z  8 . 

There are as in (2.3a) two possible cases of having a 4-parametric iso- 
met ry  group, and one case of a 5-parametric isometry group. When there 
is a G 5 the metric is: 

d x  ~ 
d s ~ = - - ~  - - x ~B dt  2 - x~d~ d~* . (4.23) 

The group structure is the one defined by  (4.17). 

d) Metric (2.3c) 

ds  ~ = 2p2(x, y) dx  dy  - 2(1 + ~x) 2 
dC d¢* 

(4.24) 
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The admissible coordinato transformations are: 

y -~ ~ (y) (4.25) 

and (4.2 c). The components of the curvature tensor are: 

R 
~, - - 6 - = o  

E~i  = 0 

E~-  - p3(1 + Ix) (4.26) 

47-~ 

K 4 ( p ~ )  
E~v - (1 + Xx)~ + ~ ~- ~" 

There exists a 4-parametric isometry group which is the direct product 
of the "rotat ion" group by  a one parametric group. The orbits of the 
group are the null surfaces x = x 0. 

There are no empty  spaces. I f  one adds a cosmological constant one 
finds the Bertotti-Robinson metric. There are no perfect fluid nor dust 
models. Non singular electromagnetic fields give again rise to BEI~TOTTI- 
ROBI-~SO~. Singular electromagnetic fields do not exist. 

e) Metric (2.6) 

ds ~ /2(u) (dt + iC 1 ~d~*-~*d~ t2 du~ 

The allowable transformations are: 

The components of the curvature tensor are: 

/~ (q,, c,,.~ 
E~I = E,2~- = -~- q q4 ] 

K 

K 41:C~ q'~ 12q- + 2q'il" 
1 2 ~ / = - - ~ - - 1 1 " +  q, q' / ,2+  ~ q 

_~ 6iC1/]" 6iC~q'] 2 
q2 q~ 

K pC~ q'~ /~ 2q"/~ 4q'il" 
~ = - 7 - / I " +  q, q0 - I  '2 q q 

(4.2s) 

(4.29) 
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The components of the ](illiug vectors are: 

x l  = [o, i~, - i~ , ,  o] 

(4.3o) 
x 3  = [ o , ½ ( 1  K 

x,= [o, o, o, 1] .  

The orbits of the group are the time like surfaces u = u o. Their second 
fundamental form is: 

The eigen directions of Q lie in the 2-plane (~, ~*) and there is one other 
eigen direction orthogonal to this plane. 

The empty spaces are the Taub-Nut spaces [15]: 

q/S(u) = u s + O~ 

2KC1 ~ (4.32) 
S ( u ) = _ K + u ~ + 0 ~  ~ u ~ + 0 ~  " 

In  the presence of a cosmological constant one has: 

Iq2(u) = u s + C12 (4.33) 

2KC'~1 mu  A u  2C21 u + • 
[ iS(u)  - K + u~ + C~ ~ u~ + O~ ~ u ~ + C~ 3 " 

The dust models have been found by ELLIS, G. F .R.  [4]. There are three 
cases corresponding respectively to A < 0, A > 0, and A = 0. One has: 

A > 0  1) ] s = k ~ ' ; q ~ =  2~k~K ; A -  20~k~K~ 

2) ] 2 = k z ; q 2 =  2K + a e t t u + b e - v u ; A =  t t~k~ 
y~ k ~ 2 

K~ 
abkS~ ~ = - j V  - C~k ~ (4.34) 

K s A = 0  / s =  k~; q ~ =  - - - ~ u  + 2C~u 

A < 0 1~ = 1~.; q~ = 2 K  ,u~k~ - -~--~ + a c o s y u  + b s inl~u;  A = 2 

2 (aS + b~) = 2C~ k~" + 2K~ 

In  the ease A = 0, it  is no~ d i~cnl t  to show ~hat the only solutions are 
the ones given by  (4.34). A. H. TAUB pointed to us that,  in the limit of 
a vanishing density, the space becomes fiat; one does not  recover the 
metrics (4.32). 
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In the case of a perfect fluid one ends up with one differential equation 
[v  = 1~]: 

1 ,, 2C~ q' ~ q'~ 
- -~ -v  + ( - - - ~ - ~  q q ) v + ~ = 0 "  (4.35) 

There is no possibility of having a null electromagnetic field. In the non 
singular case however one has: 

[ q ~ ( u )  = u ~ + C'~ 
/2(u ) = _ 2 K ~  m u  aa* (4.36) 

- .K + ~ + us + c'-; 2 (u s + C~) " 

This metric is equivalent to one of the Carter's metrics [8]. There are 
two metrics of the type (2.6) which admit a 5-parametric group of iso- 
metrics which is the direct product of the group (2.7) by ~ one parametric 
group 

- - -  K ~, -- d u  ~ -  (4.37) 
1 - T ~  ~ I _ K ~ , 2  

and: 
u s du s 2u 

ds~ = T (S t  + i ( ~ d ~ *  - ~*d~)) 2 ou~ fl d~ d~* . (4.38) 

The first of these metrics has been found by I. 0ZSVATE [16]. If:  

2a  2 > K K a  2 > 2 A  - K a  2 + 2 A  + 4 a  2 > 0 

this metric contains a pcrfect fluid, a non singular electromagnetic field 
and the cosmological constant. 

f )  Me t r i c  (2 .8)  

(4.39) 

The admissible change of varia.bles are the translations along t and the 
transformations of the ~ variable given by (4.28). The components of the 
curvature are: 

4I~0~ 2 q,s K q " l  s 2q' / t "  
1 2 ~ = 1 I "  + 1  "~ q, + I 7  qs ~ q 

p q" C~ 

3/sC~ ]u q'~ K 
2 E ~ =  / ] "  + /'2 + q4 - ~ - +  q-~-. 

( 4 . 4 0 )  
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The 4 Killing vectors have components given by (4.30). The orbits of the 
group arc the surfaces u = %. Their second fundamental form is given by: 

~,] . ( 4 . 4 1 )  

The eigcn directions are the t direction and the directions o~ the ~ *  
plane. Various solutions analoguous t~ the ones corresponding to the 
metric (2.6) can be exhibited: 

a) Empty  space: 

I q~ (u) = u s + C~ 

2KC~ mu (4.42) 
[ l  s(~) = K -  ~ + c~ + ~s + c~ • 

This anti-Nut space was given in [17]. 
b) With A term: 

Iq2 (u) = u~ + C~ 
2KC~ mu A u  [ ~  _~] (4.43) 

[[2(u) g u s ÷ C~ + u s ÷ C~ u s ÷ C~ ÷ 2C~u - . 

e) There does not exist a model with singular electromagnetic field. 
d) Non singular electromagnetic field 

q 2 = u ~" + C~ 

2 K C~ m u ]~ 
+2= K -.u~ + c------~ ~- u ~ ÷ c~ + 2(u s + C~) (4.44) 

= ( I ( U  2 -t- C12) - I  e-2iarctgu/c~Za; f f f f *  ~-- ]c a • 

e) There are 2 models which admit a 5-dimensional group of motions : 

1 (  ~ d : * - , * c l ~ t 2  d :d~*  

This metric was determined by OZSVAT~ [1.6]. Also: 
du s 

(dt  + i (¢d¢* - ¢*d¢)) ~ ~ d t  d¢* (4.46) d s 2 - -  ~ u  s 4 - " 

The group structure is the same as the one mentioned earlier. 

!7) Metric (2.9)  
du dv 

d s ~ =  q~(x) (1 - K 2 T u v ]  / a2(t, x) d t  ~ - fl~(t, x) d x  2 

k 
The admissible coordinate transformations are: 

t - ,  ~ (t) x -~ ~o (x) 

and the homographic transformations on (u, v). 

(4.47) 
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The components  of the  curva ture  tensor  are: 

87 + R _ K 1 1 

2 G ~ = 7  + ~  ~ + 7  ~ ~ + \ ~ /  + ~ !  - 
(4.48) 

27 R 1 ( q ~ )  1 (q~)2  1 q. c¢~ 

There  exists a 3-parametr ic  group of isometries.  The  components  of the  
Killing vectors  are: 

)] 1 (1 + K 2\ 1 / 
X 2 [0, O,-ff \ - - g ' u ) , - - ~ t l +  (4.49) 

1 K 2\ 1 / 

The orbits  of the group are the surfaces x = Cte, t = Cte. Their  2 second 
fundamenta l  forms are [q -+ 1 + 2x] 

GG) 
8 (4.50) 

[zQ(~) = 0 .  

Certain par t icular  metr ics  of this family  are wor th  ment ioning:  

a) E m p t y  spaces:  q = x 
1 m 

e2 = _~_ = K + ~ - .  (4 .51)  

b) Wi th  A te rm:  q = x 
= 1 _ - - K  m + A  O~ 2 8-- i- + y -~-.  (4.52) 

c) There are no dust  model,  no model  wi th  perfect  fluid, no model  
wi th  a null e lectromagnet ic  field. 

d) Non  singular electromagnet ic  field: q = x 

1 m aa*  
a* = ~ - =  K +  + - -  

-x- 2x2 (4.53) 

_F = ~ - ¢ Z  3 . 

e) There is a 4-parametr ic  group of isometries if ~ and  fl are func- 
t ions of x only or if q is a constant  and  a and fl are functions of t only. 

f) There  is a metr ic  admi t t ing  a 5 dimensional  group of isometries:  

d x  ~ 
d s  2 = x ~ d u  d v  - x ~B d t  ~ - x---v-. (4.54) 
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h )  M e t r i c  ( 2 . 1 1 )  

~ v  - ~ \ 2  
dudv /'(X) drY_C1 12-K~ T "  ] d ' ~ = q ~ ( x )  (1 K u v ) 2  4 

The admissible coordinate transformations are given by: 

u + 4 K - l f l e  a 
~ u  + e ~ 

v 4- 4 K - 1 ~  e - a  
v -+ fly + e-~ 

¢¢u-4:1 
t - ~  t + to+  4K-1Gl ln  f l y +  I " 

The components of the curvature tensor are: 

~E~ ~-(- q" + ot~ 
= 2 \  q q~]  

K l"l 'q~ 8~I' 2E3~ = 7 +  + / , 2 _ / ~ _ _  ÷ q~ 

K l"/ c~t, "~ " " R = - ~ -  - I'~+ T -  /. - - -  4II' q 2l~ qq 

K 1,,1 4C~/___~ 2 _ : q : + q ~r=V- - I " +  q, I - U + ~ I I '  / " -  

The 4 ~ l ~ g  vectors have components 

'X1 = [0, 0, u, - v] 

X ~ =  [ 0 , -  01 u+v2 

v 8 = [ ro, 01 - u + v 
2 

X 4 = [0, 1, 0, 0] .  

d x  ~ 
/~(x) 

1(1  K ~ K 
' 2  - - Y  T 

1 K 2 
2 (  - 1  

• (4.55) 

(4.56) 

(4.57) 

(4.5s) 

The orbits are the surfaces x = x o. Their second fundamental form is: 

_ qqx d u  d v  / '  [ u_dv ~ v d u  ]~ 
/ (1 K 2 - - - - [ d r +  C 1 . (4.59) -TU~ ) ~ ~ _ K  j 

We have considered the following particular cases [17]: 
a) Empty spaces: 

[/ 5 = x2 + 012 
2KC~1 mx (4.60) 

b) With A ~ r m :  

q2 = x2 + O~ 

/~ = K x' + C~ ~- x~ + C~ -~ x' + C~ \ 3 . (4.61) 
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c) There  are no perfect  fluid model ,  no dus t  model ,  no model  con- 
ra in ing  a nul l  e lec t romagnet ic  field. 

d) Non  s ingular  e lec t romagnet ic  field: 

q2 = x ~ + C~ 

2K C~ mx (~* (4.62) 
/~ = K x~ + C~ + x~ + C~ + 2(x~ + c~) 
+ 

F = (~(x ~ + C~) -~ e 2 i ~ g ~ / c ~ Z  s . 

e) T h e r e  are  2 models  hav ing  a 5 -paramet r ic  i some t ry  group:  
y~ 

d82 = 2y d u d v  - ( d r -  v d u  + u dv) dY2 fl~y~ (4.63) 

uv) - c/~ + -_- - d ~ .  (4 .64 )  
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