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Abstract. We define “locally isotropic” spaces, as spaces in which there exists, in
the tangent space at each point P, a subgroup 4 (P} (of dimension at least 1) of the
Lorentz group L], leaving the Riemann tensor and its 2 first covariant derivatives
invariant; the subgroups A(P) are assumed to be conjugate in I }. These spaces admit
a group of local isometries G If I denotes the subgroup of @ leaving P fixed, then
d A (P) = Ip. All spaces of petrov type D, admitting local isotropy are determined.

1. Infroduction

A 4 dimensional Lorentzian manifold V, is a differentiable and orien-
table manifold on which is everywhere defined a regular metric of hyper-
bolic normal type. One generally assumes also that a coherent time
orientation exists; this is equivalent to the existence of a continuous
nowhere vanishing time like vector-field; we make this assumption here.
In general relativity it is customary to consider local coordinate trans-
formations which are defined by functions of class €2, piecewise C* [11.
We shall need here slightly stronger assumptions: the second derivatives
of the Riemann tensor must be continuous at least piecewise.

V, is said to admit an isotropy group at the point P if: 1) there
exists a locally compact effective transformation group @& of isometries
of V, operating differentiably on ¥V,.

2) There exists a subgroup Ip of ¢ which leaves the point P fixed.
Ip is called the isotropy group at P. A manifold is said to have local
isotropy if in each point P it admits an isotropy group Ip; the Ip’s are
conjugate subgroups of G.

The transformations of 7p induce linear transformations in the tan-
gent space Tp at P. The set of these linear transformations is a subgroup
A?(P) of L} of dimension ¢ = 1; the A9(P)’s are conjugate subgroups
of LI.

It has been shown that, in a C* locally isotropic V,, A7(P) leaves
the Riemann tensor and all its covariant derivatives invariant [2, 3, 4].
Two problems thus arise:

1} to determine all locally isotropic V,;

* On leave of absence of the Southwest Center for Advanced Studies Dallas.
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2) to see if the existence of 47(P) in each point does not imply the
existence of an isotropy group Ip and thus of an isometry group.

In view of the differentiability requirements of general relativity, we
shall redefine local isotropy in terms of certain subgroups of L{.If ¥,
is a lorentzian manifold of class €2, C% piecewise, it is said to be locally
isotropic if:

(1') There exists in each tangent space T'p a subgroup A4(P) of
dimension ¢ = 1 leaving the Riemann tensor and its 2 first covariant
derivatives invariant; all the A?(P)’s are conjugate subgroups of L1.

It is immediately clear that the Petrov type of such a V, must be
D, N or 0. We shall consider here only the type D. If one assumes that
the Petrov type is constant on V,, it is easy to show that the 47(P)’s
are automatically conjugate subgroups of L!.

We plan to show that the 2 definitions of local isotropy are equivalent
and to determine all locally isotropic V,. The proof of equivalence is in
fact done by explicit construction of the metric.

It is highly probable that the assumption (1’) is a little too restrictive
and that the invariance of the Riemann tensor and only its first covariant
derivative would be sufficient to derive the equivalence; we have in fact
proven this generalised result in all but one exceptional case. We would
have very much liked to stick to the usual C?, C* differentiability require-
ments; this we could not achieve.

Let us note that G. Erris [3] has proved, in the case of spaces
describing a perfect fluid, that the existence of A2(P) implies the existence
of I (P).

2. Description of Results

The group A7(P) can be of dimension 2 or of dimension 1. If the
dimension is 2, the group 42 is the product of a space like rotation by
a time like rotation (4-screw) [5]. If the group is of dimension 1, the
ratio of the rate of space like rotation to the rate of time like rotation
is constant. It can furthermore be shown that, when this ratio is not 0
or infinite, the space admits necessarily a group of isotropy 4,. There
are thus only 2 cases: space like rotations (B,), or time like rotations (C,).

The manifolds admitting an 42 were determined by BErrorTI and
Ropinsox [6, 7]. The metric can be written:

_ dwdv _ dgarr

(= awe)r (1 pLL*p
where o and § are real constants. The group G of isometries is the direct
product of 2 “rotation’ groups. The Lie algebra of @ can be written as:

[Xy, X,]=X, [Xy Xp]=—aX; (X5 Xi]=— X,
[X4, Xs] = Xe [Xss X4] = Xs [X5: Xs] = ﬂX4 (2-2)
[X,,X,]=0 a=1,2,3; x=4,5,6.

ds?

(2.1)
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The manifolds admitting the isotropy group B! are of 5 different
types. Let us denote (£7) the 2-plane passing through the origin and
parallel to the orbits of B! in the tangent space. If this family of 2 planes
is integrable the metric can be written as:

acdz*
K 2
(=)
This metric has also been indicated by many authors. Various subcases

must be considered. They are distinguished by the sign of the square
of the gradient of 4.

ds? =29z, y)dae dy — 24%(x, y) (2.3)

A4,4,=0. (2.4)

If 4,-4, <0 one can choose 4 as a space like variable z, and ¢ as
a time like variable, the gradient of which is orthogonal to grad 4 and
belongs to the (z, y) plane. The metric can then be written as:

ds® = f2(x, 8) d* — o (x, ) da® — (Az + 1)

We have written 4 in the form (1 4+ Az) where 4 can take the values
0,1 to include the limiting case where 4 = Cte.

If 4, 4,> 0 one can choose 4 as a time like variable » and ¢ as
a space like “orthogonal” variable and write the metric as
acdc*
F74 2
=

where 4 is 1 or 0; the limiting case 4 = O belongs to the class of metrics
(2.3a).
If 4,-A,= 0 one can, by a scale transformation, reduce (2.3} to:

dgac*
(e

The limiting case 1= 0 is the one we had already encountered twice.
These 3 metrics admit the same group of isometries , which is a “rota-
tion” gronp with Lie algebra:

ds? = o®(x, t) da® — B2(x, 8) At — (Az + 1)2 (2.3b)

ds? = 29%(z, y) dedy — 2(1 + Az)? (2.3¢)

K
{Xls Xz] = Xs £X2’ Xs] = ’4_X1 [Xa, Xl} == Xz . (2-5)

The two remaining Bl-type metrics correspond to the case where the
(t ) family of 2-planes is not integrable. They both admit a 4-parametric
group of motions, the orbits of which are 3-dimensional submanifolds.
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If these orbits are time-like the metric is:

ds? = %;_ fz(u) lidt _ 10y {*dl + 1C, L dL* }2

K K
- o 1-g 2.6)

LA gy AL
Pl K 2"
(-

The group of isometries ¢ is the direct product of a “rotation” group
and the one-parametric group. The Lie algebra is:

K
{[Xp X]=X, EoX]--2X [X,X]=X,

[X, X,]=0 i=1,2,8.

(2.7)

When the orbits are space like one has:

d82=7%%—-—-%f2(u) [dt— iol?dé' + iC'IZjKdC* 2
L=t 1= (28
dcdr*
~flz(u)—l——K——*—g.
(t-5ew)

The group of isometries @ is again the direet product of a “rotation”
group and the one parametric group. Its Lie algebra is given by (2.7).
The metrics (2.6, 8) are particular eases of the metrics given by D. B.
CARTER [8]; (2.6) is a special case of the b, metrics and (2.8) of the b_.

There are 2 different types of C'-manifolds. Let us denote by (k, m)
the 2-plane passing through the origin and parallel to the orbits of C?
in the tangent space. If this family of 2-planes is integrable one obtains
the metrics:

dst= (1 + Az — 220" 2o, ) A — frlz, f) daP  (2.9)

where 1 is 1 or 0. There exists a 3-parametric isometry group @ which
is again a ‘rotation’ group with Lie algebra:

K
£X1: Xz] = Xa {Xa’ Xﬂ = Xz [Xz’ X:x} = - TXI . (2-10)

When the (&, m) family is non integrable one finds:
du dv

(l - '14E ’“’)2 (2.11)

(@) [dt—— Civdu i Cyudv r~ da?
1

ds? = ¢*(x)

4

——uv 1—£uv
4 4



60 M. Canex and L. DerRIsE:

The group G of isometries is the direct product of a ‘“‘rotation” group
and the one parametric group; its Lie algebra is given by (2.7). The
metric {2.11) is a particular case of the Carter’s metrics [8]; they
correspond to his ¢ case.

3. Sketch of the Proof of Equivalence Between the Definitions
of Loeal Isotropy

To prove this equivalence we shall show how the definition (1') of
local isotropy allows us effectively to build the metrics listed in §2.
We shall limit ourselves to the metrics (2.1, 3, 8) as the other cases can
be done in much the same way.

In each point P of ¥, we choose in the dual T of the tangent space
a cobase 0%(ax = 1, 2, 3, 4) such that the metric is:

ds? = 2(016% — 620%) . (3.1)

The forms 0' and 64 are real; 0% = (62)*. The orientation is fixed by:
PLAGRAGEA QY =1, (3.2)
If(;;l are the components of the 6%s in a local coordinate system, #* the

components of the base vectors of T, canonically associated with é"‘), the
time orientation is fixed by:
P>0. (3.3)
(€]
We choose in the space of the self dual 2-forms E a base Z¢ (i = 1, 2, 3)
given by:

AR/ INE Z2 = L A 0?
25— o (0 A6~ 0% A 69) . (3-4)
The connexion form is defined as usual by:
Azt = — gfo N 27 . (3.5)

Indices are raised and lowered by means of the metric y of E3. The
explicit relation between the components o), of the connexion form and

the rotation coefficients y,5, = — hy;h2h° are given in [9]. The cur-
(o) (M
vature form:
1
274: CgGk '—'2_8?} O A Oy (36}

can be expressed in terms of the Z’s and the Z*’s:

R ] A
Z, = (ok,. - yk,) 7+ By 2% . 3.7)
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The symmetric matrix Cy; is the self dual Weyl tensor; R is the scalar
curvature and the hermitian matrix H,; corresponds to the trace free
Ricei tensor. Bianchi identities can be written as:

A4, = — —;— (T A0y — oA ZY) (3.8)

To express most conveniently in this formalism the assuraption (1)
of invariance of the covariant derivatives of the Riemann tensor it is
useful to introduce a new kind of covariant derivative which we will
denote } (also 10, 11, 12). ! is an operation, defined on objects with

(ﬁ,) (3’) indices [p contravariant latin indices, ..., ¢’ covariant greek

indices] having the following properties:
(1) linearity
+ (P (P P\ ( P
@5 (q) (q’) ~ (q) (q’ + 1)
(3) the Leibnitz rule
(4) Zigt, —
(6) It coincides with covariant differentiation on (g) (Z,) .
One can check very easily that the * derivative of a “vector” v, is:

'Ui?,, = Vg, p ?)jﬂ'zv
1 (3.9}

=—2—vaﬂ;vzgc£ .

As the Petrov class of V, is D we can choose our cobase §* in such
a way that:
Cis =y (01 0F + 67 0] + 40357) . (3.10)
The vectors h, h coincide with the 2 eigen-vectors of the Weyl tensor.
[CVNC)
Let us assume that there exists a 2 dimensional subgroup A2 of L1
leaving the Riemann tensor invariant [this is clearly the highest ¢
admissible]. One has then:

E;=2(+e) 5%6?
B =2(c—e)

where ¢ and e are arbitrary funetions.

(3.11)

If A? leaves the first covariant derivative of the Riemann tensor
invariant, one finds:

R, =y, =(c+e),,=0 (3.12a)
01y =0y = 0. (3.12b)

The conditions (3.12b) are in fact the expression of the invariance of
041, and C,,*, respectively; the conditions (3.12a) can be deduced from
(3.12Db) and Bianchi identities.
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The metric equations [13] can be integrated to prove the existence
of a coordinate system (x, ¥, £, {*) such that:

O =rdz
0% = adl
0 = sdy .

One can obviously choose tetrads such that r=s, o= o* In these
tetrads the conditions (3.11, 12) imply that:

r:-r(x, ?/) OC=OC(:, C*)
and furthermore the 2 surfaces (z, ), ({, {*) have constant curvature.
Thus the metric *

L TR R (3.13)

(I —azyp (1 — B
which has been given in (2.1). It is to be noted that in this case only the
invariance of the first covariant derivative was used and an assumption
of differentiability C?,(* piecewise would have been sufficient. The group
A? operates in the tangent space by:
0L e2Ql; 02> e902; (04— ¢ 20%. (3.14)
If we assume the existence of a 1-dimensional subgroup B! of L}
leaving the Riemann tensor invariant one finds:
B =g6tof + ad}o? + 2(c + ) 6367
B =2(c—e).

(3.15)

The invariance of the first covariant derivative of the Riemann tensor
implies that:

By=RBy=y,=yp3=(c+e)y=(c+e)=0 (a)
013 =013=10,=0 (b)
Og1=0gg =03 =0 (e) (3.16)
gz = '92“ (032 + 0%2)  g3= (0'33 + o¥3) (d)
@y = — ‘%‘ (032 + 0%s)  @3=— E (035 + 0%3) (e)

The crucial relations (3.16, b, ¢) come again from the invariance of
013*,, and Oy, %, Bianchi identities reduce to the 4 equations:

3y c+e
'""“R T Vet = ‘712+2(0'31+031“0’22)+ 5012 (2)

"‘@“R4”‘274+(6+6)4=_370'12+(0+3)0§1”9023 (b)

1 3 a c- e

, N (3.17)
B 1 — =5 03+ 5 (034 + 054 — ofs) + —5— 045 (0)

1
—5 B —2y1+ (c+ e)y = 3yos; — (¢ + €) ofy + a0y, (d)



Local Isotropy 63

We have now fo consider separately 3 cases:

1) 6y — 0F3 = 0y — 0¥y = 0;that is the 2 vectors h and h are parallel
6] “4)
to gradients. It is then clear that there exists a coordinate system and

a family of tetrads such that:

0t = pdx
2= qd{ (3.18)
64t = pdy .

The conditions ¢y, = 05, = 0 imply that p = p(z, y). From the vanishing
of the €, ,, Cy5 components of the Weyl tensor one deduces that:

q=Ax,y) B 0*). (3.19)
Finally combining linearly (3.16a) one shows that the metric B*d{ d*

has constant curvature. Thus the metric:

45t = 208(z, ) da dy — 242(z, ) — 25

(1 _ éﬁ_ : C*)z : (3.20)

It is worth noticing that once again we used only the invariance of the
first covariant derivative of the Riemann tensor and that we did need
the continuity of only the first covariant derivative of the Riemann
tensor.

2) 0y — 05 = 0; 093 — 053 == 0. If one now assumes the existence
and continuity of the second derivatives of the Riemann tensor one can
compute comamutation relations between the conditions (3.16a). This
gives the alternative:

a) Oy~ 08y=0 or b) Ri=y,={(c+e),=0. (3.21)

The first part of the alternative brings us back to case 1). In the second
part b) we deduce from (3,17b) that:

—3y015+ (6 +€) 03— g0 =0.
The imaginary part of this relation is:
3(y* — ) 015 = g(0g5 — 053) - (3.22)

The explicit expression of (y, allows us to compute (y — »*) and thus
obtain a value for g:

3
g=730%s. (8.23)
From the expression of g we get, in a tetrad for which g5, + of, = 0:
0'12/4 = 0'%2 . (324:)

The vanishing of C,, and the rality of oy, allows us to compute the
commutation relation oy (5] Which again gives the alternative oy — o
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=0 or 6;4,=0. The second half contradicts (3.24) as 0;, may not
vanish. Thus this second case is reduced to the first. To obtain (3.21) we
used second covariant derivatives of the Riemann tensor but not their
invariance under B

3) (095 — 0%3) (043 — 035) #+ 0. Let us consider certain tetrad trans-
formations leaving (3.10, 15, 16) invariant:

oGt 0202 GF> PPt
There always exists a function p such that:
O1a— Of3 = e(035 — 035) e2=1. (8.25)
Commuting the relations (3.16a) one gets:
R+ Ry— ey +ya=elot e+ (et e)y=0  (3.26)

which shows that these components of the curvature depend of only one
variable.
The reality of & _; gives:

1 1
(012 — 0T3)s = 3 (6% — off) + 5 (O30 + 0%4) (012 — ofs) - (3.27)
On the other hand if one computes Cy; — CF; one gets:

Y = y* = — (023 — 032)y
1 « . 1 . . (3.28)
+ 5 (623015 — 0%5015) — 1 (034 1 054) (023 — 033) -
Substituting (3.27) in (3.28) by virtue of (3.25) one finds a value of
y — y* in terms of the oy,. A similar calculation using the reality of
B _; and the imaginary part of C, gives another expression for (y — y#).
The equality between these 2 expressions implies that:

gy + 0§y = (0, + 0¥y . (3.29)
The second covariant derivatives of C; are given by:
Cistos = Oisteto = Osite 0le = Cisle 0fo + Cisle Vio -

The conditions expressing their invariance in B imply that:

1 *
0'12/2='Zf°'12(0'32+ 0%2) (3.30)

1
Ogajs = = 7 023(0s5 + 0%3)

and give the values of certain second derivatives of y in terms of the ¢y,
The vanishing of €y, and C,4 gives us:

1
0'12/3=1“0'12(0'32+ %9) (3.31)

1
Opa/z = — T O23(032 + o¥s) -
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Commuting the equations (3.30) and (3.31) we obtain:

R 1 £ 1
'}’_T"39='2‘0120=2kz_?0%2”§'(0'31+0§1) oz (a)

P 1 . . (3.32)
Y=g~ &8 =50130s — 5 083 — 5 (0s1 + 051) 0a5 - (b)
The difference of these 2 equations is:
1
gla — g) = 5(0'12532 — 013 033)
. 1 {3.33)
— 5 (085 — 083) — 5 (031 + 0F1) (012 — €023) -
The imaginary part of this equation and (3.25) show that:
0-12 = 8623 (3-34:)
and thus also:
a=g. (3.35)
Comparing (3.30, 31, 34) one gets:
Oga+ 0% = 0. (3.36)

The crucial coefficients oy, and ¢, are thus functions of only one
variable. The metric equations show that:

0L+ et = du (3.37)

and the various quantities are functions of u alone. One must separate
the 2 cases corresponding to a space like or a time like variable u. It is
then possible by a straightforward, although somewhat lengthy integra-
tion, to obtain the 2 metrics:

) .o LACE—0*C 72 du? acdr*
det="""1idt+4iC — - P u) s
& 1 4 Flu) K 2
[ l—z“*} (1-%¢)
(3.38)
and
du? fA{w) .y CdTF —C*L P2 dtdr*
ds? = — dt + i0)-———="2 " — () s .
2(w) 4 1 K K 2
[ 1- e ] (1-Fee)

(3.39)

These B! metrics all admit a group of isometries G and an isotropy
group 4. In the tangent space the transformations have the form

01— 01 62>efef2 G504, (3.40)
In the case (!, a similar construction can be made. The explicit form of
the metrics show that the definition (1') of isotropy always implies the
existence of a group of isometries @ which is multiply transitive on its

orbits.
5 Commun.math, Phys,, Vol. 11



66 M. Camex and L. DEFRISE:

It is maybe worth remarking that in the non integrable case an
alternative derivation of the metric can be done, which does not use the
invariance of the second covariant derivative of the Riemann tensor in
B;. This approach however seems to fail in one exceptional case.

4. Properties of the Locally Isotropic Spaces
a) Metric (2.1)

du dv didac*
8 =T away T~ pLeoy @h

The change of variables leaving this form of the metric invariant are:

wd Doty

A+ Ay

Ay AF

a) uU—

v+
U hu T A

L4 upiete

b) (4.2)

This space contains a non singular eonstant electromagnetic field:

+ g [ du Adv af Adi*
F— =2+ B) o [ 1 s — 0= peews)

The cosmological constant is:

A=2(x—p). (4.4)
The components of the Killing vectors are:

(4.3)

X, = [4,0,0, — v] (a)
X2 = [1 “"'2“'“2 » 0,0, L _20”;2] (b)
X, — [.... 1 +2om2 0,0, 1 —{—255'1)2] (0) @s)
X, =[0,4Z, —il*, 0] (d)
X5=10,2(1 — g%, 2(1 — p{*%),0] (e)
Xg=[0,— 2i(1 + ${?),2¢(1 + ${*9),0]. ®

The pair of surfaces % = v = ¢*, and { = ¢*® are orbits of the isometry
group Gy; the second fundamental forms of these surfaces vanish iden-
tically. It is worth noticing that the Riemann Christoffel tensor of (4.1)
is covariantly constant and that (4.1) is thus a symmetric space.
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b) Metric (2.3a)
dcdc*

ds? = [2(w, t) d® — o¥(z, 1) da® — (Az + 1)} —F——5 (4.6)
(-5w)
The admissible coordinate transformations are:
t—> () (4.7)
and (4.2¢).
The components of the curvature tensor are:
B A B
27 % T 3@ T i) {InZL (@)
E_1lal 17871 _ 1
8'}) +‘§——_B'[7;C/§7]t P [05,3]9: B [ﬁ%_“tz} b
_» K (b)
@1+ Iz [+ iz
—2 A &
2E ;= 2R T A7) [l ()] + ‘;m‘j (¢) (4.8)
— A A o
o =g Py . @
1/« 1/{ B, 1
2y =5 (a2 () - )
22 X ()

R Ry POy ey 7

The components of the Killing vectors are given by (4.5d, e, f). The
orbits of the group of isometries are given by:

=%, E=1.

The surface & = ¢ = ¢* is an orbit of the isometry group G; its 2 second
fundamental forms are:

0% = - L&+ 88

(4.9)
08 =o.
If one assumes (4.6) to be a solution of the field equations:
Ra‘g = 0
one finds in the case A =1 [z -+ 1 — 2]
1 m— K
By = (4.10)

The case 4 = 0 is impossible.
If one considers the equations:

R+4
Bop——5—0u5=0

5'
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one finds in the case A =0 [z 4+ 1 — ]

1 m— Kz Az
'62=.&E= p -+ 3 - (4.11)

Cosmological models with perfect fluid and vanishing cosmological con-
stant are solutions of

B By= By 4.12)
Up to now we have been able to determine only particular solutions of
(4.12). Cosmological models with dust are characterized by (4.12) and
2B+ E=0. (4.12%)

Spaces (4.6) admitting a non singular electromagnetic field solution of
the source free Maxwell equations are determined [A = 1; 2 + 1 - «] by:

TR SN L (4.13)

The electromagnetic field is

+
=78 (4.14)
There are no spaces of this type containing a null electromagnetic field.

If o« = a(x), § = [ {x) the space admits a 4-parametric isometry group
which is the direct product of the “rotation’ group by a one parametric
group; i &= a(l), f = f(¢) [which then can be made equal to 1] and
A = 0 one also has a 4-parametric isometry group.

A five parametric isometry group occurs for the metric:

dst=aBde - T parape (4.15)

where B is a constant. If B = 1 this space is a solution of:

B4 4
Bop——5—0up=0

with E = — 5, y = — 1/3. There are no models with dust, perfect fluid
or electromagnetic field and no empty space. The components of the
Killing vectors of (4.15) are:

X, =[x, — {, — (% — Bi]

X, = [0, — 2if, 2i¢*, 0]

X,=1[0,—2,— 2,0] (4.16)
X, = [0, — 24, 24, 0]

X,=1[0,0,0,1].
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The group of isometries is solvable; its Lie algebra is:

[Xl! Xa] =0 {Xv Xs] = X3 {Xz, Xﬂ = X4 [Xz; Xs] = BXs
{Xz; Xs] = 2X4 [Xz’ X:;] = 2X3 [Xm Xs] =0 (4-17)
{X:sn Xﬂ = [X4: ij = {X5> X:;] =0.

The metrics (2.3a) have been studied by PrEBANsET and StacHEL [14].

¢} Metric (2.3b)
a;dc*

ds* = o (z, t) da® — fP(w, ) dPF — (Ao + 1) —F——5 - (4.18)
=
As previously the admissible coordinate transformations are:
t—> @) (4.19)

and (4.2¢).
The components of the curvature tensor are those given in (4.8) with
a change of sign in (4.8a) and in the first four terms of (4.8b and c).
The components of the Killing vectors are unchanged. Also unmodified
are the second fundamental forms of the orbits # = = ¢'*. In empty
space (R, ; = 0) one has:
1
==K+, (4.20)
If there is a cosmological constant
m _ Aaf
= 3

p? = % =K+ (4.21)

The equations for a perfect fluid or dust are again (4.12) or (4.12 and 12').
There is no possibility of having a null electromagnetic field. For
a non singular electromagnetic field one finds:

z 2w 4.22)

There are as in (2.3a) two possible cases of having a 4-parametric iso-
metry group, and one case of a 5-parametric isometry group. When there
is a G the metrie is;

da?

ds? = —— — 2B A — 2?d{ dl*. 4.23)
The group structure is the one defined by (4.17).

d) Metric (2.3¢)

A8 = 202 (e, ) dw dy — 2(1 + Ja)t—2e08"

(T—-%T) (4.24)
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The admissible coordinate transformations are:

y— o) (4-25)
and (4.2¢). The components of the curvature tensor are:
R Pred
-5 =
E=0
- - 4)»2%
27 = (1 T A2) (4.26)
E___E . 4(»
R S E = )
B K 4 {p,
By =+ (o)

There exists a 4-parametric isometry group which is the direct product
of the “rotation” group by a one parametric group. The orbits of the
group are the null surfaces z = x,.

There are no empty spaces. If one adds a cosmological constant one
finds the Bertotti-Robinson metric. There are no perfect fluid nor dust
models. Non singular electromagnetic fields give again rise to BERTOTTI-
RoBINsoN. Singular electromagnetic fields do not exist.

e) Metric (2.6)

2 Ly LATE—C*AEN\? du? acd
asr = L8 (44 40, P4 — s — (0 ) —2 I o)
1- e (1= e

The allowable transformations are:

¢ {4+ 4K1geif
Toae? 4.28
410, , GL-hetb (4.28)
Lt 44y -+ IDW .

The components of the curvature tensor are:

, _P(g 4
BBy = (5= F)
K " 31208 qlz ’
2Egg~;_,;-ff e
4 O 3 D A7 2 S ’
. GzC‘Iff’ 6@(]1q I
¢
K (PR G e 207 4TI
R=— 7 - ff + 7 7 f f q q .
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The components of the Killing vectors are:
Xl = [0: ié: - ?:é'*’ 0:}
1 K —1 K ¢
%= o5 (1+58), S+ 50, T+ )

X,=[og(1-Fa) s (1-Fo), e - o]
X, = [0,0,0,1].

The orbits of the group are the time like surfaces % = u,. Their second
fundamental form is:

_ 2 .
p_~~f'[dt+ i, L4 WC] $200 dndlr ey

1- X Fo-fen)

The eigen directions of & lie in the 2-plane (£, {*) and there is one other
eigen direction orthogonal to this plane.
The empty spaces are the Taub-Nut spaces [15]:

¢*(u) = + C}
2KC} 4.32
fPlu)=— K-+ W+ O3 +uzﬁugﬁ . (#.92)

(4.30)

In the presence of a cosmological constant one has:

7 (u) = w? + OF (4.33)
2KC% w O}
) = — K -+ u2+é% + u2+02 + u2+02 (20%u+—-——-——).

w

The dust models have been found by Ervris, G.F.R. [4]. There are three
cases corresponding respectively to A4 <0, A>0, and A= 0. One has:

2) f2=k2;q2=££+ae#“+ be—ﬁu;AzE;z—
bR = s — O (4.34)
A=0 fzzk2§qzn~~gu2+201u
A<0 fzm]ﬁ-qz:__zfliz—i—acosyu—{—bsinyu;/lz_ﬂ;kﬂ

(a2 + b%) = 20242 + Zfi .
In the case /1 = 0, it is not difficult to show that the only solutions are
the ones given by (4.34). A. H. TauB pointed to us that, in the limit of
a vanishing density, the space becomes flat; one does not recover the
metrics (4.32).
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In the case of a perfect fluid one ends up with one differential equation

[v =731

1 " 20‘) I 27
—go (- + L qg) +-~—-o (4.35)

There is no possibility of having a null electromagnetic field. In the non
singular case however one has:

) = v+ O}

2KC% mu ao* (4-36)
Py =-Ktaragtora swro

This metric is equivalent to one of the Carter’s metrics [8]. There are
two metrics of the type (2.6) which admit a 5-parametric group of iso-
metries which is the direct product of the group (2.7) by a one parametric

group

dst = far 4 2T RN e AEHT 4
S o (1 -5 te7)
and:
2 X 2 2
dst = 5 (@ + iCAL* - DA — gis — AL dLF . (438)

The first of these metrics has been found by 1. Ozsvara [16]. If:
202>K Ko?2>24 —Ko?+24+4a>>0

this metric contains a perfect fluid, a non singular electromagnetic field
and the cosmological constant.

1) Metric (2.8)
dut 1 , Ldg* — [*dLN2 daac*
ds? = -7 —— f2(u) (dt+z—»~——~——--—) — g*(u)
Flu) 4 K K oox)?
et (=)
(4.39)

The admissible change of variables arve the translations along ¢ and the
transformations of the { variable given by (4.28). The components of the
curvature are:

ny pa  APOE Q _E _ar 24
’ 2 .. 2.4 . ot S SV . .
1y =fr+pr- LA pl L LT 20
5 (1)
+ 6:0; =5 Z\F
" . 2 (2 ’g K 24 2 dg' tf
R=ff +f2-%;i+f25’q-;~?+—g&—f~+~%& (4.40)
P _a
2B, = 20 =5 (=)
" , 3 02 e K
2By ="+ 1"+~ f : fzz—z“f*—gzr-
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The 4 Killing vectors have components given by (4.30). The orbits of the
group are the surfaces 4 = u,. Their second fundamental form is given by:

— %
Q=%fu[dt+i0f-——~———cdc*1{z*d€ r+2 q}?" »——-—-———dCI?C -
ECI R

The eigen directions are the ¢ direction and the directions of the {*
plane. Various solutions analoguous to the ones corresponding to the
metric (2.6) can be exhibited:
a) Empty space:
()~ + CF
. 2KC} mu (4.42)
fu) = K - u? - CF + ur - CF *
This anti-Nut space was given in [17].
b) With A term:
¢*(u) = u* + OF
2KC? mu  Au
u2+0%+u2+0§ u* + O
¢) There does not exist a model with singular electromagnetic field.
d) Non singular electromagnetic field

4.41)

rlu) = K

[ 4 2030 - 2] .5

£ =2+ G
2KC3 mu i?
P=E-Grotere " 3wrm (4.44)

+ .
F o= a(u2 . 0%)—1 e—2iarctgu/Cy Z3; co* = k2.

e) There are 2 models which admit a 5-dimensional group of motions:

ds2=du2—7}~(dt+i é‘dC*I—{-C*dC)Z__ e . (445)
1—TC§* “2(1—'4756*)

This metric was determined by Ozsvarr [16]. Also:
du? u? . 2u
ds? = — (¢t +i(dex - c*dé))z—Tdcdc*. (4.46)

Pt
The group structure is the same as the one mentioned earlier.

g) Metric (2.9)
WAV a2y A — Bt z)dat. (447

The admissible coordinate transformations are:

dst = ¢2(z)

t>gt) 2>y
and the homographic transformations on (u, v).
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The components of the curvature tensor are:

o+ == (o) =7 (G~ (B) - (G

y
2=t (o) + 5 (Gl () + (35)

i)
.y

~(a
~ (i

i ¢, B 1 {q % 1 05: (4.48)
2E1§:_7€?F"’2‘F(qﬂ) (EB‘) tT Y
=g (5), 3 (5

There exists a 3-parametric group of isometries. The components of the
Killing vectors are:

X, =10,0,u, — v]
Xy= [0, O,—;—(l+~§-u2) s —%(14—%1}2)] (4.49)
Xf{mm%(—1+§mﬂ,—%(Lr%mﬂ.

The orbits of the group are the surfaces x = Cte, { = Cte. Their 2 second
fundamental forms are [¢ - 1 + Ax]

QW =2 (5304 + 5384)

(4.50)
0@ =0.
Certain particular metrics of this family are worth mentioning:
a) Empty spaces: ¢ =2
ﬁ:%=K+%. (4.51)
b) With A term: ¢ ==
0 == = K+ + (4.52)

’32
¢) There are no dust model, no model with perfect fluid, no model
with a null electromagnetic field.
d) Non singular electromagnetic field: ¢ ==

__K+ +2x"’

+‘T (4.53)

= ?Z3 .
) There is a 4-parametric group of isometries if & and g are func-
tions of = only or if ¢ is a constant and « and § are functions of £ only.
f) There is a metric admitting a 5 dimensional group of isometries:

dx?

ds? =a2dudv — 2B ds? — pral

(4.54)
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h) Meiric (2.11)

dud 2 dv — vdu \%2  da?
ds? = ¢*(x) (1 qu )z—ff) (dtw%‘ 017/, ? Ky u) —fz(ﬂ;)

. (4.55)
- Tuq) 1~ -Z—u’t)
The admissible coordinate transformations are given by:
u - 4K—lﬁez
T e b
v+ 4K-1o g2
Bv -+ et
1
bttty - 4]{—101111%-2%.

The components of the curvature tensor are:

15,55+

2 ¢ ¢
K rr 4 ’e 3022
2By =g+ 1"+ 12 Pl q:’

B=Zo-pf-ree S plo gy Loapl e

K 402
12?___ n]c fpg+ ,f

v (4.56)

-t eyp Ly pl
(1 il)

+6iC,f ( —L).

The 4 Killing vectors have components

X, = [0, 0, %, — v]

X,=[0,- 25", 5

2
PO (WACE IS N IS SN YR )
X,=10,1,0,0].

The orbits are the surfaces x = x,. Their second fundamental form is:

99 dudv f’ uwdv ~ vdu 12
1 v)

I—Tuv

We have considered the following particular cases [17]:
a) Empty spaces:

qz = % + 02
2KC? max (4.60)
=K — @+ CF + 2+ (% °
b) With 4 term:
gz — xﬁ + 02
2KC' A 4
PeK-groterat i 3t 20— 1), (@8l



76 M. CamEx and L. Derrise: Local Isotropy

¢} There are no perfect fluid model, no dust model, no model con-
taining a null electromagnetic field.
d) Non singular electromagnetic field:

¢* = 2" + Of
2KC2 mz oo¥
P=k-mratara e (4.62)
i o o‘(xz -+ 0%)‘1 g2iaretgz/Cy 78
e) There are 2 models having a 5-parametric isometry group:
ds? = 2V qudy — Y (dt — vdu+ udv) — L (4.63)
=T 4 Byt .
and: 1 dudo udy — vdu \2
d82=;§-"‘~—‘K—”—"‘§“‘ di“\L-—-““K—‘ —dx*. (4.64)
(l -——Z«uv) 2(1 -—Zuv)
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