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Abstract. The thermodynamic limit of a quantum spin system is considered. I t  
is demonstrated that for a large class of interactions and a, wide range of the thermo- 
dynamic parameters the equilibrium state of the system is describable by an 
extremal Z~'-invariant state (a single phase state) over a C* ~lgebra of local ob- 
servables. I t  is further shmvn that the equilibrium state may be obtained as the 
solution of a variational problem involving the mean entropy. These results extend 
results previously obtained for classical spin systems by GALLAVOTTI, 1V[I~CL]~- 
SOLE and RU]~LLE. 

1. Introduction 

I n  recent articles [t, 2, 3] the s~atistical mechanics of classical spin 
systems has been considered and it has been shown that,  for a large class 
of interactions and values of the thermodynamic parameters,  the state 
of equilibrium can be described by  an extremal (single phase) Z ~ invariant  
state over a C* algebra 91 of local observables. Further  it was demon- 
strated tha t  the equilibrium state may  be obtained as the solution of a 
variational problem involving the mean entropy of the Z v invariant  
states over 91. The purpose of the present article is to derive similar 
results for a quantum spin system; our methods are those of [2] and [3]. 

2. Notation 

Consider particles on a lattice Z ~ and assume tha t  the occupation 
number  n i of every lattice point xi is restricted to take the values 
0, 1 , . . . ,  N where 37 < ÷ c~. We call such a system a spin system; this 

1 
terminology originates from the fact tha t  ~ ( 2 n i -  N) may be viewed 

as the value of a spin component. 
To describe a quantum spin system we associate with each point 

xi ~ Z ~ a Hitbert  space 2/¢~x~ of dimension N + 1 and with the finite set 
® 

A = {x 1 . . . . .  x,} we associate the direct product space ~fA = / - /  ogZz,. 
:viE A 

Further  we define the algebra of (strictly) local observables 91 (A) cor- 
responding to A to be given by  the algebra ~ (5/°A) of all bounded 
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operators acting on ~A- Now if A~ cA2 an operator A i ~ 9A(A~) may be 
identified with an operator A 2 C ~I(A2) by setting A 2 = A 1 ® I & / A 2  where 
I A is the identity operator on 5(f A and Ai/A 2 denotes the complement of 
Ai in A2. This identification induces a norm preserving mapping 9.1 (A1) -~ 
-~ 9I(A2) of the abstract C* algebras and the isotony relationship 
~(A1)cOA(A2) for AxEAv  Due to this isoteny relationship, the set 
theoretic union of all 9A(A) with A finite is a normed *algebra and we 
define the completion of this algebra to be the abstract C* algebra 9.1 
of (quasi) local observables. We note that  the group Z ~ of space transta. 
tions is a subgroup of the automorphism group of 9.1 and we denote the 
action of this group by A ~ 9A(A) --,. 7:~A ~ 9I(A + x), x C Z ~. Further, the 
subalgebras 91 (A) satisfy the commutation relations 1 

[N(A1),~(A2)]=O if A lr~A2=O 

and 91 is asymptotically Abelian, i.e., 

II[A,z~B]II i~l=----~0, A , B ~ N ,  x C Z  ~. 

We assume that  the particles on the lattice interact through many 
body "potentials" ¢(k} (xs . . . . .  xe_~) ~ 9A({x 0 . . . .  , xe_~}). We consider 
an interaction ¢ to be a sequence ¢ = (6(~))~ ~_ ~ of k body "potentials" 
which we assume to have the properties 

I. ¢(~)(x o . . . . .  x~_i) is Hermitian 

I I .  ¢(~) (xo + x . . . . .  x~_~ + x) = ~ ¢ ( ~ ) ( x 0  . . . . .  x~_ ~), x ~ z ~ 

and 

III .  
1 

II¢ll = Z k~ 
k ~ l  

4:O 

X * °  I/¢(~)(0, x~ . . . .  , x~-~)II < + 
Xi~ . . .  ~ Xk-1 EZ v 

where the sum ~ extends over all sequences of distinct points of Z" 
different from 0. The interactions ¢ form a real Banach space ~ with 
respect to this norm. We denote by ~0 the dense subset ~o E ~ of finite 
range interactions, i.e., those ¢ = (¢(~))k~1 for which 

¢(~) (0, x~ . . . . .  x~-l) = 0 

unless {x 1 . . . .  , xk-i} < A for some finite A. 
Next, for each ¢ E ~ ,  let us define A¢ E 91 by 

k > l  xx . . . .  xk_~EZV 

(A¢ is the "interaction energy" at the origin). The mapping ¢-+ A¢ is 

For simplicity we have omitted consideration of spin systems with anti- 
commutation relations (Fermi lattice gases, see [4]) but we remark tIlat even such 
systems can be described in terms of observables with commutation relations. For 
such a description one would, however, choose 9.1 (A)to be a subalgebra of ~3 (d4fA). 
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norm decreasing from ~ to 92 and the set {rxA4; x ~Z ", ¢ C~o} is dense 
in 91; if ¢ C ~o then A¢ is strictly local. These facts will be of significance 
later. 

We will start by considering a system of particles on the finite set A 
and the energy operator U¢ (A) on 9~FA corresponding to the interaction 
¢ will be given by 

1 E *  1). U (A) = Z . . . ,  

k <: l xo . . . . .  ZIc-I E A 

We will be interested in studying functions ZA(¢), Fa(¢) and PA(¢) 
which we define as follows; 

ZA (¢) = Tr,~ a (e-u¢ (A)) 

FA(¢) = logZA(¢) and PA(¢)= V(A)'~l l~A(¢) 
where V(A) denotes the number of points of A. 

3. Thermodynamic Limit 

a) The Thermodynamic Free Energy 
Our immediate aim is to show how the methods of [2, 3] may be 

used to define the thermodynamic free energy of a quantum spin system. 
We begin by recalling that  if A and B are n × n Itermitian matrices then 
the following inequalities are valid [see for example [5], Eqs. (1), (2) 
and (19)] 

!logTr(e-a) - logTr(e-B)[ =< IIA - B[I (1) 

and f o r 0 g  ~ g  1 
logTr (e-~A- (1-~') B) ~ )~iogTr(e -A) ÷ (1 - )~)logTr(e-B). (2) 

These inequalities immediately yield 
Lemma I. a. I /A1 and A~ are disjoint the/unction A -~ F A (¢) satisfies 

! F A I u A  a ( ¢ ) - - F A x ( C ) -  FA2(¢) ] g []U6(A1 ~ A 2 ) -  U¢(AI)-  U¢(A2)H • 

b. The /unction ¢-~ PA(~) i8 convex and continuous on ~ ;  /or 
~ , ~ C ~ a n d l  >= ),.~ 0 

PA(),~ + (1 - ~)~) __< )~PA(¢) + (1 - ),) PA(W) 
and,/urther 

!PA(¢) -- PA(V/)] ~ [1¢ -- Wil" (3) 
Proo/. The first statement of the Lemma follows from (1) if we 

choose A = U¢(A t ~J A2) and B = U¢(A1) -t- U¢(A~) and note that, as 
A1 and A~ are disjoint 

Tr~A * ~j A2 (e-- U¢(A~)- /7¢(A~)) = Tr~¢~ (e- U¢(AD) Tr~A, (e-- U¢(AD) . 

The convexity of PA (¢) follows directly from (2) if we choose A = U¢ (/1), 
B = U~(A) whilst (3) is a consequence of (1) and the inequality 

IIUd(A)- Uv(A)II = IIU¢_~(A)t] ~ V(A)tI¢- ~H. 
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From this Lemma, we may conclude the following: 
Theorem L I / ¢  C ~ then the limit 

P(¢) =All In v V~) A - > c o  

exists, where A tends to infinity in the sense o[ Van Hove (see [1]). The 
/unction ¢ ~ P(¢) is convex and continuous on the Banaeh space 2 and 

I P ( ¢ )  - _-< -  tl. 

The proof of this theorem is obtained by combining the arguments 
of [2] and [5] ; we refer to these papers for details. The first stage in the 
proof is to conclude the existence of P(~) for ~ ~ ~0; this is discussed 
in [5] for the case of A being a paralMepiped with sides tending to 
infinity. The extension of the arguments of [5] to the more general type 
of limit is easy. The second stage (see [2]) is to note that  if the sequence 
~z ~ ~0 tends to ~, i.e., if llSn - $[1 ~ 0 then PA(~,z) tends to PA(~) 
uniformly in A as a result of (3). This is sufficient to establish the 
existence of the limit P(~). The convexity and eontinuigy of ~-~ P(~) 
follow immediately from the Lemma. 

The connection between this theorem and the thermodynamics of the 
spin system is given by introducing the inverse temperature fi and de- 
fining ~A (fi, ~b) through 

: 

Then ~A(fl, ~) is interpretable as the partition function of the set A and 
the above theorem establishes the existence of the thermodynamic free 
energy 

p(fi, ¢) = f l - lp ( f l~ )=  fl-~ lira 1 ~- A-~co =~-(A)- log ~A (fi, ~b). 

Other parameters than fl, such as ghe components of an external magnetic 
field, may also be introduced through the interaction ~. Bounds on 
p (fl, ~) may be easily obtained from (3). 

b) The Equilibrium State 

Let A' be a subsystem of a spin system confined to A. For A ~ O2(A') 
define e¢,A(A) by 

I 
~¢'A(A)- ZA(+) TrwA(e-~7¢(A)A)" 

The expectation values 9¢, A (A) give information concerning the physical 
properties of the subsystem A'. If the size of A is increased then physi- 
cally the effects of the boundary of A should in many circumstances 
become negligible in A';  mathematically this would be reflected by the 
~¢,A tending to a limit ~+ as A-~ ~ .  The resulting limit function ~¢ 
would then determine a state over 9A. We next consider the existence of 
such a limit state. 
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Notice that  if @¢ exists it will be a Z ~ invariant state due to the 
assumed invariance of ¢. This indicates another procedure for examining 
the limit. I f  ~ ~ ~0 then A~ is strictly local and. @¢(A~) would give the 
"energy" at the origin due to the interaction ~0. However, due to the 
invarianee this "energy" would also be equal to the "average energy" 
due to ~. Thus it  would be expected that  @¢ (A~) should also exists as the 
limit of the expectation value of the "average energy" V(A) -1 U~(A). 
We therefore consider the expectation values, ~¢,A(~O), of the average 
energies defined by 

(U~(A)]__ 1 1 Tr~rA(e_V¢(A)U~(A) ) 
O~¢,A(~O) = @¢,A \ V(A) ] V(A) ZA(¢ ) 

The above heuristic discussion is partia]Iy justified by showing that  
as A-+ c~ the sequence ~¢,A(~V) converges to a limit ~¢(~0). Finally, in 
Section 5, we will prove the existence of a state ~¢ over 92 which is such 
that  @¢ (A~) = c% (yJ). 

The following theorem is due to GALLAVOTTI and MIrACLE-SoLE. 
Theorem IL Let T C ~ be the set o / ¢  such that the graph o / P  (¢) has a 

unique tangent plane at ¢, i.e., there exists a unique ~¢ in the dual ~*  o/ 
such that/or all ~f c 

P (¢ + ~o) > P (¢) - ~¢ (~p) 

then/or ¢ C T and ~f ~ 

~¢(~o) = lira ~¢,A(~0) = lira 1 1 (e_U¢(A)U~(A)) 
A ~  A ~  V(A) ZA(¢) Try'cA 

where the limit A -* c~ is in the sense o] Van Hove. 
The proof of the theorem is identical to that  of [2] once one notes 

that  for filrite A the function ¢-> PA(¢) has a unique tangent plane 
namely ~¢, A- We omit the details. 

As ¢-+ P(~)  is a convex function one may obtain rather good 
characterizations of the set T for which the above limits exist (see [2]). 
For example one may deduce that  for a dense set of interactions ¢ C 

~¢(~0) = lira ep¢,A(yJ) 
A - - >  oe 

for almost all ft. We have postponed to Section 5 the completion of the 
argument of the existence of the equilibrium state @¢. We will also show 
that  when @¢ can be defined as a limit of the type considered in the 
theorem then @¢ describes physically a single thermodynamic phase. 
Thus the exceptional points for which the limits do not exist correspond 
in the physical interpretation to the points for which the coexistence of 
phases is possible. Thus for a large class of interactions the state of 
equilibrium is a single phase situation for almost all temperatures. 

Note that although we have aimed at introducing a Z'  invariant 
state to describe equilibrium this does not  rule out the possibility of 
spontaneous symmetry breakdown. 
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4, Mean Entropy 

a) Definition 

Our next aim is to describe how one may associate an entropy per 
site, or mean entropy, to each Z ~ invariant state of the quantum spin 
system. Discussions of the mean entropy in quantum statistical mechanics 
are given in [4] and [6]. 

Each state ~ over the algebra 0/is  locally describable by a density 
matrix QA E ~(A), i.e., 

e(A) = TrZA(eAA) ,  A ~ I ( A ) .  

The family {OA} of density matrices has the properties 

I Tr~  A (~A) = 1 
and 

I I  Tr~A I(QAI~A~)=~A~ if, A I ~ A  s = 0 .  

Introducing an entropy S o (A) by 

S o (A) = - Tr~A (~A log QA) 

we may conclude [4] that  

0 <_ S~(A) <= V(A) ]og(N + l) (4) 

(A~ ~ A2) ~ S~ (A1) + S~(As) if A~ A As = O. (5) 

Now let us consider invariant states. We will need to consider not 
only Z ~ invariant states but also certain periodic states, i.e., states 
invariant under a subgroup of Z ~. We do not need to study the most 
general periodic state but, for each integer n, we define the set Kn by 

Kn = {~ C E; o(A) = O(zn~A), A ~ [ ,  a ~Z'}  

(E is the set of all states over ~l.) The invariance property implies that  
for each ~ ~ Kn there exist unitaries 5~ which relate the density matrices 
via 

I I I  ~A+na = Uo(na)QAUe(na)-l, a E Z ' .  

If f o r a = ( a ~  . . . . .  a , ) ~ Z  ~,a 1 > 0  . . . . .  a ~ > O w e l e t  

A(na)  = {x CZ"; 0 <= X i < n a i ,  g = 1 . . . .  v }  

then we may prove the following: 

Theorem III. The mean entropy Sn (Q), 

_ _  S(A(na)) S~(~) = lim S(A(na)) 
a ..... a->~ V(A(na)) a ..... % V(A(ua)) ' 

exists and the /unction ~-+ Sn(~) is a/fine, upper semi.continuous, with 
respect to the W* topology, on K~; Sn(~) ~ [0, log(N + 1)]. Further we 
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have  

l i m  Sq(A(na)  + b) _ l i m  S ° ( A ( n a )  ~ Z ~ 
a . . . . .  %--+ce V ( A ( n a ) )  a,~...%--~ V ( A ( n a ) )  ' b 

A proof of all but  the last statement of the theorem is given in [4]. 
Let  us consider the last statement. Without loss of generality we may 
assume 0 < b~ < n and then, writing e = (1 . . . .  , I) CZ ~, we have from 
(4) and (5) 

n(a -- e) S~(A(na) + b) < So(A(n(a - e)) + ne) + V(A~ ) log(N + 1) 

a n d  

So(A(na) + b) >= So(A(n(a + e))) - V ( A ~  + ~)) log(N + 1) 

where we have used A~ to denote the complement of A (a) in A(b). 
Dividing these inequalities by V(A(na)) and taking the appropriate 
limit yields the desired results. 

Next  let us remark that  we may associate with each state ~ E K~ an 
averaged state ~ C K1 by the definition 

1 ~~ 
O-----~ Z '  rz9 (6) 

xEA(ne) 
where 

(Zx5) (A) = 5(z~A). 

The above theorem immediately implies the following 

Corollary. The entropies S 1 (5) and S~(5) are equal. 
Proof. We have 

~ n  xEA(ne) xEA(ne) 

where we have used the affine property of Sn, and the last statement of 
the theorem namely S n ( ~ )  = Sn(~), x E ZL 

This result wilt be used in the next  Section. 

b) Variational Property 
The results of the foregoing Sections now allow us to reproduce the 

results obtained in [3] for classical spin systems 

Theorem IV. I1 ¢ ~ ~ then we have 

P(¢)  - sup [S~(9) - 0(A¢)]. 
~oEK~ 

Proof. The proof is similar to tha t  in [3] and proceeds in two steps. 
First we show that  for Q 6 K1 

p (¢) ~ s~ (5) - ~ (&)  (7) 
11 Commun. math. Phys., Vol. 6 
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and secondly we exhibit a 9 E K1 with the property that  

P (¢)  < Sl(9) - -  e(A¢) + e .  

Given e > 0 we may choose A sufficiently large that  

1 "~ A 1 U~(A)  
~ x ~ A  Ta~ ¢ V(A) < ,S 

and hence 
0 (A~) 1 V(A) Tr(OAU¢ (A)) < e. 

But  

Thus 

1 
S1(0) ~ - V(A----~-Tr(gA lOgOA) • 

(s) 

and 
® 

5A~= HSA: for A ~ =  U AX (10) aEA aEA 

where A is any finite subset of Z ~. These density matrices are sufficient to 
define the state ~ ~ K n. If we then construct an invariant state 0 ~ K1 by 
the procedure (6) the corollary t~ Theorem I I I  tells us tha t  

s~(9) = &(O). 

1 
s i ( e )  - 9(A~) - ~ < - v(A~-~ Tr(qA 1OgeA + QAUAA)). 

Now if ~0/ is a complete orthonormM set of eigenfunctions of ~A with 
corresponding eigenvMues 0i (0 g 0 / g  1, ~ 5i =~ 1) then 

i 

t ~ ,  e-- (v'l, U¢ (A) ~Pt) 
$t (0) - 9 (A¢) - e < ~ ~ e~ log 

< ( V ~  log ~ e -(v*, V¢(A)v0 (9) 

=< p ( ¢ )  

where the first step is a consequence of the convexity of the logarithm 
and the second step is an application of a theorem due to PEIEI~LS, 
namely 

e-(~,  ~rc(A)~0 ~ T r ( e -  Uc(A)). 
i 

(For a rigorous demonstration, due to JesT, of this theorem, see ~7].) 
Taking the limit A -+ co in (9) gives (7). 

Next we construct a state ~ C K~ by gi~mg the following prescription 
for the family of density matrices (SA}. The sets A~ = A(ne) + na with 
a E Z~ form a partition ~n of Z ~. Define 

1 U¢(A a) 
~A a -  ZA~(~) ) e--  
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However, as ~ has the product structure (10) we find immediately 

1 
$1(@) -~ Sn(@) = V(A(ne)) Tr (gA(ne) 10g 0A(.~)) 

1 (11) 
- V(A(~)) Tr(~A(.~) U+(A(~))) + P~(.o) (¢) .  

:But, noting that  
1 

@(At)-- V(A(ne)) O( ~ T~A¢) 
x E A (ne) 

it  is easily seen that  for each ~ > 0 one can choose n large enough that  
both 

1 s 
Io(A¢ ) V(A(ne)) O(Vi~(A(ne))) I < 2 (12) 

and 

e (13) ]P(¢) - PA(~)(¢)] < 2 " 

Combining (11), (12) and (13) yields (8) and concludes the proof of the 
theorem. 

The above theorem may now be used to complete the discussion of 
the equilibrium state which was begun in Section 3 b. 

5. The Equil ibrium State 

We have shown that  

P (¢)  = sup IS, (@) - @ (A¢)]. (14) 
eCK, 

Assuming that  the supremum is attained for ~ = @¢ ~ K, then we 
immediately have that  for ~p ~ 

P ( ¢  + ~) _-> sl(~+) - o+(A++~) = P(¢)  - o+(A~,). 

Thus, since ~p -~ A~ is linear and continuous, the function ~ -> e¢ (A~) is 
a tangent plane to the graph of P (-) at ¢. Now ff we can deduce that  
different states which yield the supremum in (14) also give distinct 
tangent planes we may deduce that  for ¢ [ T the supremum is reached 
at. exactly one point @¢ C/gl and, due to the affine character of the 
function @ -~ S 1 (9) - @ (At), this state must be an extremal point of K 1. 
This final deduction is, however, immediately given by replacing { (K) 
in the proof given by  I~V~:LLE [3] (eL Theorem IV) for the classical case, 
by 0A. Ru~I, ZE's proof does not depend on the Abelian character of { (K). 
Further,  as 9A is asymptotically Abelian, an extremal invariant state can 
be shown to correspond to a single thermodynamic phase using results 
obtained earlier [8, 9]. 
11" 
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Formal ly ,  we m a y  summarize  the above s ta tements  together with 
those of Section 3 b as follows : 

Theorem V. I /  ~ E T the /unctio~ ~-->$1(~)-  ~(A¢) reaches its 
maximum at exactly one point Q¢ ~ K 1 and, /urther, i/ ~¢ is the tangent 
plane to P(.)  at ¢ then/or all ~ ~ 2 

~¢(A,~) = %(W) = lim 1 1 Tr:~z(e_%(A)Uv(A) ) . 
A ~  V(A) ZA(¢) 

~'inally, /or 6 E T, the "equilibrium state" Q¢ is an extremal point o~ K x 
and hence describers a single thermodynamic phase. 
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