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Abstract. Some two dimensional billiards are Bernoulli flows. 

O. Introduction 

"Billiards" will mean a point particle moving on a table with smooth 
convex obstacles and bouncing elastically against them. Upon collision 
with the boundary the particle is either elastically reflected (reflecting 
billiards) or disappears to reappear at the opposite side (periodic 
billiards). 

The qualitative theory of the above motion leads, in a natural way, 
to consider the flow St on the particle's phase space endowed with the 
Liouville measure. 

Some simple questions can be answered if it is known that the flow 
S~ is ergodic. 

Recently Sinai has given a proof that St is not only ergodic but, 
also, a K-flow. In this paper, making use of the results and techniques 
of Refs. [1-3], we prove that St is a Bernoulli flow. 

We mention, however, that the knowledge that S t is a K-flow or a 
B-flow is not sufficient to answer many questions of direct physical in- 
terest: consider, for instance, the average (with respect to the Liouvitle 
measure) of the cosine of the angle between the particle's velocity at 
time zero and its velocity at time t. How fast does it go to zero when t 
tends to infinity? [4]. 

The fact that it goes to zero is implied by the K-property (actually 
mixing would suffice): the B-property does not teach more about this 
problem and it seems that much work has still to be done to obtain other 
relevant information [4]. 

The reader will be assumed familiar with the definitions and the 
ideas of the paper in Ref. [3] which is necessary to understand without 
pain the thread behind the lemmas of Section 4. 



84 G, Ga l l avo t t i  and  D. S. Orns te in  

The basic notations are in Section 1. 
The construction in Sections 2 and 3 are due to Sinai [ 1]: so Sections 2 

and 3 could, in principle, be extracted from his paper or fi'om [2]. 
We work with approximate foliations of contraction and dilatation 

rather than using the exact ones and this is the reason why Section 4 
appears mere complicated than the part of Ref. [3] which deals with 
the same problem. 

§ 1. Basic Notations 

Q will be a 2-dimensional torus which will be represented as the 
2-dim. plane R 2 in which the points q = (~,/7), q '=  (~', ]7') are identified 
if there exist integers m, n such that ~ - ~' = m, ]~ - ]~' = n. 

Let C1, C2 . . . . .  C~ be s disjoint open, convex, connected sets in R 2 
with closures which are "pairwise disjoint on the torus Q": i.e., C~ is 
disjoint from all the non-trivial integral translates of Cj Vi, j =  1, 2 . . . .  s, 
(if A is a set in R 2 an integral translate zm,,A is the set 

%..,A = {qlq G Ra, q=(c~ + n, fi + m),(c~,fl)e A} ,  

where n, m are integers). 

The set 0 = ~) {.9 z,.mCj will be called the "set of obsta- 
j = l  n = - o o  m = - o o  

cles". 
We assume that OCi, i =  0, 1,..., s, are Ca-smooth and have non-zero 

curvature at every point. 
The billiards flow is defined on the set of pairs (q,O),qGQ\O, 

0 ___ 0 __< 2r:: an element x e Q\O will be thought of as an "arrow" through 
q forming an angle 0 with the 1-axis of R 2. Through every point q ~ Q\O 
draw an oriented straight line parallel to the arrow (q, 0); when this 
line hits an obstacle reflect it on the obstacle and continue it by drawing 
a straight line in the new direction, and so on: this construction leads 
to an oriented broken line rq.o. The curvilinear abscissa on rq, o will be 
measured starting from q. Define St(q, O) = (q', 0') where q' is the point 
which, along to,0, has an abscissa t and O' is the angle of rq, o with the 1-axis 
at q'. In case of ambiguities in the choice of 0', we shall choose it so that 
the arrow (q', 0') points inwards with respect to the obstacle. 

The flow S z conserves the normalized Lebesgue measure #(dqdO) 
dqdO 

= on V. Therefore, the triple (V, St, #) is a dynamical 
normalization 

system. 
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There is another dynamical system which can be associated with the 
billiards flow. 

Let M be the set of points (q, 0) s V with q e [J 0Ci and 0 such that 
i~_l 

the angle (p between the outer normal and the oriented direction 0 is 
rc 37c 

between ~-  and --2-: i.e., M is the set of the "colliding arrows" in V. 

A point (q, 0)e M will be identified by the three numbers (i, r, (p): 
the first being the name i, i =  t . . . .  , s, of the obstacle 0C~ to which q 
belongs, the second is the abscissa of q on ~C~ counted clockwise, and 
the third is the angle between the direction 0 and the outer normal to 0C~: 
Therefore, the space M can be thought of as a union of s disjoint pieces 
M1, ... M~ with M i homeomorphic in a natural way to the cylinder 

M/= (r, ~0) ____ cp __< ~-- ,  0 < r_<_ I~ , where li = length of c~Ci and 

(0, q ,)-  (l, ~o). 
If x e M, define z(x) to be the first negative time such that S~(x)x e M 

and let T x  be the point in M such that S_ ~(x)(Tx)=-x. 
It can be shown that the mapping T: M--~M conserves the measure 

v(drd qo) = - cos (0 dr dq~ . 
normalizat ion'  therefore, (M, v, T) is a dynamical system 

which will be called the natural "section" of the flow (V, #, St). 

The following theorem holds: [-1, 2], 
Theorem (Sinai): (V, #, St) is a K-flow and (M, v, T) is a K-system. 

Here we prove 

Theorem. (V, li, St) is a B-flow and (M, v, T)  is a B-system. 

In Sections 2, 3 we present a self-contained construction of expanding 
and contracting foliations for the system (M, v, T) and a proof of their 
local absolute continuity. The reader familiar with Sinai's work will 
not find any new ideas here. There is a technical difference with respect 
to Sinai's approach which is reflected in the fact that we never study the 
absolute continuity properties of the expanding or contracting fibers but 
we always deal with only approximate fibers. 

In Section 4 we show how the results of Sections 2, 3 together with 
Sinai's theorem imply that (M, v, T) is a B-shift. In Section 4 we also 
sketch the proof for (V, ~, St); the techniques used here are, of course, 
essentially the same as the ones in the Ref. [3]. 

In Section 5 we give a few concluding remarks concerning non- 
periodic billiards and open problems. 
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§ 2. The Expanding and Contracting Fibers 

Observe that the mappings Tand T-  1 are not smooth. The singularity 
set S r for T consists in the union of 

f a M  = x Ix = (r(x), q)(x)) ~ Mi, i = 1,..., s, (p(x) = ~- or --~-- 

and T - I g M .  The singularity set Sr-~ for T -* is, similarly, 
Sr_~ = c3Mu T(cqM). 

It is easy to see that Sr consists in several connected, pairwise 
disjoint pieces, each of which is the union of a finite or denumerable 
family of smooth lines. 

2 -~R 

L / /  / 1 

' i "i ./S/I 
_ z_ER 0 ~rER ~ R  

2 2 

In the picture we consider the case of a single circular obstacle with 
radius R close to ½; Sr is the union of eight pieces and only parts of two 
of them are in the picture. Parts of the other six pieces can be obtained 
by translations of the ones drawn along the cylinder. In this case each 
family contains a denumerable number of smooth curves which accumu- 
late at the eight marked points. The signs + identify the sides of the 
singularity lines on which T is continuous. In general, there will always 
be only finitely many accumulation points for the singularity lines and 
the function z(x) will be unbounded in the neighborhood of such points 
(if any). 

A similar picture holds for T-1 (now the singularity lines will be 
decreasing rather than increasing). 

t .  Definition. If x ~ M, we put dr(x ) = distance of x from St;  dr-  1(x) 
= distance ofx  from St-1. I fx  ~ M~, we denote k(r(x)) the modulus of the 
curvature of the obstacle aC~ at r(x). 

Because of the discontinuities of T and T-1 we cannot expect to 
prove the existence of expanding and contracting foliations in a topo- 
logical sense. One can only hope that they exist in a measure-theoretical 
sense. 
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We shall construct  a "natura l"  approximat ion  procedure  for the 
contract ing or  dilating fibers. 

2. Definition. A curve 7 in Mi, i = t , . . . ,  s, will be a mono tone  function 
' < r < " A curve 7 in Mi will also be called a curve q~ = (p(r) defined for r~ = = r r 

in M and it will be identified with its equat ion ~o = ~o(r). 
3. Definition. If ~ is a curve in Mi we put  

p(~)  = - S c o s  q,(r)  d r  
7 

and we shall call P(7) = p-length of 7- 
4. Definition. I f x o e M  i for some i =  1 . . . . .  s and dr(xo)>O, dr-l(Xo)>O, 

we define the O-th order  contract ing fiber p~°)(Xo)and the O-th order  
expanding fiber p(O)(xo) through xo as the curves with respective equations:  

dq~ = k(r) , q~(r(xo)) = q~(xo), for p~°)(Xo) 
dr 

d___~_~ = _ k(r),  q)(r(xo)) = (P(Xo), for p~°)(xo) 
dr 

where the above differential equat ions are meant  to define the functions 
q~(r) in an interval [r', r"] a round  r(Xo) which is maximal  in the sense 

. .  3re zc 
tha t  the values of  qo(r') and ~o(r") are eltlaer ~ or  ~- .  

Clearly, p~°)(Xo) is, in the "a r row"  picture, the set of arrows colliding 
with gCi and parallel to the arrow xo; ')~°)(Xo) is a set of arrows colliding 
with Ci and aimed in such a way as to come out of the collision parallel. 

5. Definition. Let q > l, and let k be a non-negat ive integer. Define 

l M~ k)+ = x l x  ~ M; -COS(p(r-hx), dr(r-hx),  dr - l ( r -nx)  > q(1 + h 2) ' 

• h = 0 ,  t, ..., k} 

t .._qM (k)- = x lx ~ M, - cos ~0 ( r  + hx), dr(rhx), d r-1 (Thx) > q(1 + h 2) 

• h = 0 ,  t , . . . , k }  

M?= MU, M =M; riM.-, 
k = O  

This definition allows, in a natural  way, to represent the sets M~ k)+- as 
unions of complements  of (k + 1) sets M+h, (h = 0, t , . . . ,  k) : a more  
detailed study of the singularity lines of T, together  with the V-measure 
preserving proper ty  of T, allows to conclude that the V-measure of 
M+h does not  exceed b(logh)/(1 + h 2) for some b > 0 .  Therefore the 
Borel-Cantelli  lemma implies: 
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6. Lemma. v = lim v(Mq)= t. 
q q ~ c ¢  

The construction and the properties of the contracting and expanding 
fibers are explained in the following series of lemmas. Their proof will, 
however, be postponed until the end of the section. We shall use the 

following further notation: 1 min k(r(x)), t - -  = - max k(r(x)), 
R +  :~za R -  x ~  

Zo = min ]z(x)[. 
x a M  

7. Lemma. Given k=>_0, q > 0 ,  there exists Aq>O such that i f  
M (k)+ the connected part of the set Tk7~m(T-kXo) which contains x o X 0 E ~,~q 

is a smooth curve at least in the interval [ r (xo) -Aq ,  r(xo)+ dq]; its 
equation (p = ~p(r) is monotonically decreasing and its derivative is bounded 

( ' away from 0 and o~ actually, R---+- = R - - Z -  + " " 

8. Definition. Given k > 0, q > 0, Xo s Mq (k)+, the connected part of 
the set Tkg~°)(T-kXo) which is above the interval [r(Xo) - Aq, r(Xo) + Aq] 
and contains Xo will be denoted by 7~k)(Xo). 

9. Lemma. Given k > O, q> 1, x s M~ k)+, there exists 2~> 1 such that 

p(  TIT~k)(x)) ~ ,~-tp(~k)(x)) , l = O, 1 . . . . .  k 

and 2 could be chosen 1 + --R~- . Furthermore, if y ~ 7~k)(x) and q~ = ~0(r) 

is the equation for 7~k)(x), the ratio --~-r is between 
y x 

exp _+ Oqp(?~k)(x)), for a suitable Oq > O. 

10. Corollary. I f  q > 1, k >_ O, x e M(q k)+, y ~ y~k)(X), there exists Cq > 0 
cos(p(T- 'y)  r ( r - l ~  k(T- 'y )  . . . . .  z~ , , 

such that cos are oerween exp = a captx, y~, 

for all t = 0 . . . . .  k, where p(x, y) = p-length of the arc of 7~k)(x) between x 
and y. Furthermore, Aq in Lemma 7 can be assumed (and will be assumed) 
to be such that y e M(2~ +. 

The above lemmas, definitions, and corollaries have obvious analogues 
for the expanding fibers and we shall refer to these lemmas, corollaries, 
and definitions as Lemma 7', Definition 8', Lemma 9', and Corollary 10'. 

The next lemma establishes a relationship between the expansion 
rates of two expanding fibers connected by a contracting one and is 
the key to the proof of the uniform local absolute continuity of the 
approximate fibers. 
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M (k)- and let x, yey(f)(Xo); assume also that 11. Lemma. Let Xo S _._qo 
x, y ~ M~h, )+. Then the automorphism T l, l = O, 1 . . . . .  k, is smooth in a 
neighborhood of  x and y on the fibers y~h)(x), 7~h)(y). The ratio of  the local 
expansion rates, under T t, I = 0 . . . . .  k, of  the p-lengths of  7(f ) at x and y is 
between exp___0q,,q o (pe(x,y)) where Oq. qo(e ) is a suitable function, 
monotonic and infinitesimal as e ~ 0 ;  pe(x, y) is the p-length of  the arc of  
7(f)(Xo) between x and y. 

Furthermore, i f  ( ~ r  )i(x), ( ). (y) denote of  the f l ~  ~ the derivatives 

equations for Ti7~h)(x) and T'7~h)(y) at Tix  or Tiy, respectively, i = 0, . . . ,  k, 
then their ratio is between exp+_)~-iOq, qo, i=O, . . . , k ,  for a suitable 
choice o f  Oq. q o. 

dq2 x d(p ( Finally the ratio i ( )  can also be bounded by 

exp + O¢.qo(p~(x, y)) for  i = O, 1 . . . . .  k. 

12. Lemma. Let x~Mq+(Mq); then the Junction ~o~k)(x)(~o~)(r)) of 
the curve 7f)(x) (2~ek)(x)) converges uniformly, together with its derivative, 
to a limit (p~r) (q)e(r)) which defines a curve that will be denoted by 7¢(x), 

or (¢W(x)). 

Proof of  the Above Lemmas. The proof is made easier by using some 
geometrical properties described in (i) through (vi) below: 

(i) Let ~ C M~ be a smooth curve and let T be smooth on ~. Notice 
that the p-length of an infinitesimal arc d7 between x and 2 is, to first 
order in dr = r(Yc) - r(x), the length of an orthogonal section of the cone 
defined in the billiards plane by ideally continuing the arrows x and 2. 
The section of the cone which gives the p-length of d;~ O.e., p(d?,) 
= -cosq~dr) is the one close to 8Ci [within (dr)2]. 

Clearly p(TdT) is the length of another orthogonal section of the 
same cone; this time the section has to be considered at the surface 0C 
of the obstacles Cj on which T;~ collides. 

Notice also that the variation de of the angle that the arrows x and 
2 make with a fixed direction in the billiards plane is related to q~(2) 7- ~o(x) 
- -do  by d e = k ( r ) d r - d q ~ .  Furthermore, the distance between the 
points on 0Ci and 8C~ associated with x and T x  is -z(x).  

If we denote (p'= q~(rx), / = r(Tx), dr' = r ( rx )  - r(T2), dcp' = q)(rx) 
-~p(T2),  the above remarks and some elementary trigonometry lead 
immediately to the following relations: 

p( Td~) = - cos q~' dr' = - cos qo dr - ~c(x) ( k(r) dr - dqo) 

dq; = - k(r') dr' + (d o - k(r) dr), 

which are correct to first order in dr. 
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(ii) An apparently more complicated but very useful form of the 
differential relations derived in (i) is, with the same notation and as- 
sumption as in (i): 

p(TdT) 
p(d7 ) - 

-cos~o'dr '  _ ( t + (k(r)_ dq~ t r(r, (o) t 
-cosq~dr  dr ] cos~o ] 

1 

1 + (k(/) + d~o' t ~(r, ~o) 
\ dr' ] cos(o' 

and 
&o' k(r') 1 

- cos (p' dr' cos (o' 
~(r, ~) + 

- cos~o T r  - k(r) 

de  k(r) 1 
_ _  - -  _ [ _  

+cosq~dr cos 9 z(r, qO + 1 

1 (d~0' + k(r,)) 
cosq~' \ - J r '  

(iii) It immediately follows from (ii) that if 7 is a decreasing curve 

(i.e., - ~ -  __< 0), then T7 is also decreasing and 

1 < dqo' < l 1 

~ - 2  = d /  = 3 U  +---To 

Similarly, if ? is an increasing curve, 7 '=  T-~7 is also increasing and 

t < _dg' < i 1 

R~-~ = dr' = - R  7 + - -  o 

dCo 
(iv) If y is smooth and has equation q)= 0(r-) and T r  < 0 and 

T, T 2 ..... T k are smooth on 7, then a repeated application of the formulas 
of (ii) above imply that the equation (p =(p(r) of Tk~=7 is given by 
(if rk(g, ~) = (r, ~o)) 

dq~ x ( 2 k ( x )  2k(T-~x) z(T_kx), 
-coscpdr  =f(k) \ C ~ - ~ ) " c ( T - i x ) ,  "cos~o(T-ix) ' " "  

(----~-r w_~ + k(T-kx)) COScp(T-kx))' 
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where for h = 1, 2, ..., 0% 

f(h)(bl, al, bz, a2, ..., ah- 1, bh) = -b~ 2- + 
Z., 1 

at + 1 
b2+ 

a2 + .-. 
1 

+ 
1 

ah_l + - -  
bh 

(v) The only property of f(h) that we shall really need is that if h is 
large, then fh depends very little on the variable with large index pro- 
vided the entries of the continued fractions are not too small; more 
precisely, we shall need the following statement: if 0 < o- < rain [a~bi+ ~[ 

l <_i<_k-1 

and O<o-N rain [aibil, and if the entries ai, bi= 1 . . . . .  k all have 
l <__i<k-1 

the same sign there is a constant Q such that 

c31og f~k) < Q 1 
c3a~ = ( l + a )  2~ ]a,l '  i = l  . . . .  , k - 1  

t Slogf(k) < Q 1 
Obi = ( l + a )  2i ]bi[' i = l , . . . , k  

[Q could actually be chosen as Q = 2(1 + o-)2]. 

In the case ai, bi have the values of (iv) above the parameter a could 

be a . . . .  z_o_,, see Lemma 9. 
R+ 

(vi) If d(x)=min(dT(x) ,dr - , (x ) ) ,  then there exists C > 0  such that 

C 
- cos q~(x) ~ Cd(x),  - cos rp(T +- 1 x) ~ Cd(x), rz(x)J N d(x) " 

(vii) Now the proof  of the lemmas proceeds as follows: 

1 Let ~(k) rk~O)(r -  kx)" Let x e M~ k)+ and put d i=  c i = q(1 + i2)" Yc = 

9{k) consists of a union of smooth curves. Let ~(k) be the smooth curve 
which contains x. Let A > 0 be so small that the curve ~{k) is at least 
above all the points of the interval I = Jr(x) - A, r(x) + A]. 

Call ~h= min [cos~o(r-hy)p, dh=mind(T-hy ) .  The formula for the 
y e l  y ~ I  

contraction coefficient p(Tdy)/p(@) in (ii) above implies 

p(T-h~tk)) <= 20 hp(~(k)), h = 0 . . . .  , k ,  
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( 2) where 2o = min 1 + > 1 + ~ . (Notice that we use the 
\ + /  

xsM COS(p(X) ] T-h~; (k) are  decreasing.) fact that, by construction, the curves 
The bounds in (iii) on do/dr imply that the length of l(T-h~ (k)) is 

related to the p-length of T-h~ (k) by 

I(T-h~(k))= '(~ \--dr-r/ dr<_C' .(~ dr<- p(T-h~ (k)) 
T-h~(k) - -  T - h } ( k )  - -  Ch 

< C'2ohp(~(g))< 2C' 2ohA 
C h C h 

for some suitable C' > 0. Hence 

2C' 

Ch+l 
20 (h + 1)A 

and (vi) above implies, for a suitable C" > 0: 

dh+l>=dh+l  - C" _ h _ l A  
c-=Z & 

Similarly, for some C" > O, 

ch+l >Ch+l - .[ IsincpJ d ~  dr>=ch+l _ _ _  
T - h- ~ ~(k) UF 

Cm 
-i; ; ' °h-  l a " 

From the last two formulas it is easy to infer, by induction, that there is 
C h ~ d h 

a Aq > 0 such that if A < Aq, then Ch > -~--, dh > -~--- Clearly, this implies 

Lemma 7 and Corollary l0 and the first statement of Lemma 9. The 
second statement of Lemma 9 can be proved using the technique of (x) 
below (but is much simpler) and we skip its proof. 

(viii) If xo ~ IvIq~, then Corollary 10 together with the continued 
fraction formula in iv) guarantee that, if qCk)(r) is the equation of 7~k)(x0), 

d (p (k) 
the functions ~ r - - r  (r) form an equieontinous sequence defined on 

r(Xo) -- Aq, r(Xo) + Aq. This implies, if one takes into account the measure 
dq) (k) 

preserving property of T, that--dr--  tends uniformly to a limit as k tends 

to infinity. This proves Lemma 12. 
(ix) Finally, we prove Lemma 11 and divide its proof into two steps: 
Assume Xo ~ M (k)- and x, y e ~k)(Xo); assume also that x, y ~ Mq (h)+. qo ' 

By Corollary 10 it also follows that x, y e M(z~o - . 
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The formula in (ii) above for the expansion coefficient of the p-length 
allows us to  express the rat io:  

P(Tt dT~) ~,/ P(Tz d?~) 
p(dT~) p(d~c), 

a s  

co x) 
d o  

i = l  l + (k ( r (T iy ) )_~r  T , y ) - - ~ ~  .... 

where ( ~ @ )  z e x, y, denote,  respectively, the derivatives in Tiz of 
l T \ 

Tiz  ~ 

the equations of Ti},~h)(z). 
Corollary i0 and the remark that x, y ~ M2(~o reduces the problem 

1 dq) Tix to that  of estimating the rat io between -cos~p(Tiy)  dr and 

l dq~ riy - cos~o(T~y) dr , i = 0, 1, ..., k. In the next point  we call expa~(x, y) 

this ratio. 
(x) We shall now use that,  for z = x, y, i = 0, ..., k, 

1 dq~r, z -cos¢(Tiz)  dr 

2k(T-hz) t 2k(Wiz) z(ri- lz) '  ~(r-hz)' c ~ s ~ ~ ]  = f(h+i+ 1) costp(Tiz) , "", 

N o w  (v) and Corol lary  10 imply the existence of Qqo > 0 such that  
expai(x, y) is between 

exp + Qq°2- (~- ~) p~(x, y) + Y' Q 
- -  s = 0  ( l  + (7) 2s  ~ = i + ,  (1 + a )  2 .  D,(x, y) , 

where, if ci_,(x, y) = min jcos~(Ti-~z)l: 
Z = X , y  

R+ [cos~o(Ti-*x)- cos qg(Ti-*y)[ Ik(Ti° *x)-  k(ti-*y)[ 
D,(x, y)= R~ - -  (ci_,) 2 - -  + ci_~(x, y)- I/R+ 

[z(Ti-Sx) -- z(Ti-Sy)] 
+ 

"~o 
/vt {h)+ c,_,(x, y) > +ii_s)2),z<s<z+ Since, by assumption,  x, y~  ~.~q, , = q'(1 " " h, 

and, by (vi), z(ri-~z) < C < Cq'(t + (i - s)2). Therefore,  d(T i-sz) 

QD,(x, y) ~ Q¢(1 + (i - s)2) z 



94 G. Gatlavotti  and D. S, Ornstein 

for a suitable Q¢; and the above estimate for [ai[ can be bounded by 

~=0 (l + a )  2s ,=i+1 (1 + a )  2s 

Hence there exists a suitable Oq,~o such that 

I~(x,  y)l _<- ,Z- ~Oq,,~o • 

This proves the second part of Lemma 11. 
(xi) To obtain the first and the third parts one needs a more refined 

estimate of the right-hand side of 

" i+h Qqo ~ -  (t~" s) Q_~q, 
l~i(x,y)[< a)2~ pe(x,y)+ ~ ( l ~ ) z i  Ds(x,y ). 

s=0 (1+ ~=i+1 
k 

Clearly, we need an estimate on ~ ~(x, y) and the first sum in the above 
i=O 

formula gives a contribution bounded by, for a suitable choice of aqo > 0: 

aqoP~(X, Y). 

So the main problem is the contribution from the second sum. It is 
easy to realize, using (ii), (vi), that if the arc of 7~k)(xo) between x, y is 
smoothly transformed by T-~,. . . ,T -h, then the distance between 
T-~x, T-~y is 

d(T-*x, T-Sy) <_ #¢(s) pe(x, y), s = 0,..., h 

and where t~Lq,(S) is a suitable function of s [which can be estimated to 
grow as (s!) s as s-+oo!] and I%(S) can also be chosen so that if 

t . . . ,T  -~ are smooth on the #q,(S) pe(X, y) <2 (2q'(1 + S)2) 2 '  then T-  1, 

arc of 7~k)(Xo). 
This remark, together with the estimate for D,(x, y) given in (x), 

completes the proof of the lemma [and we could use for 0¢,qo(0 ] the 
function 

a~oe+ ~ ~ (l+-a-~,+2; min((l+s2)2,11q'(S)(t+s2)50 
i=0  s=O 

which tends to zero (very slowly) as e--, 0. 

§ 3. Local Absolute Continuity of the Approximate Foliations 

The geometrical objects on which the local absolute continuity will 
be studied will be, as usual, the "quadrilaterals". 



Billiards and Bernoulli Schemes 95 

13. Definition. A domain G C M will be called a "k-quadrilateral" 
if it is connected and if its boundary is the union of four curves 0+, 0_, ~ ,  Oa 
such that 0+ nO_ =~b= 0~n0d and such that O+,0_ are contained in 
some fibers 7~ k) and Os, 0d are contained in some fibers 7~ k), (k = 0 . . . . . .  oe). 
We call Xb= ~- n0~, x; = ~+ n ~ ,  x~ = ~+ n~a, x'~ = 0_ n0d. 

x; 

t Xa 

14. Definition. Given q > t, ~ > 0, c~ > k > 0, the family (5~k)(~) con- 
sists in the k-quadrilaterals such that x,, Xb e Mq and the straight segment 
X, Xb is contained in a cone around the /-axis with opening very small 
compared to 1/R+ (i.e., the angle between x ,x  b and any tangent to 
~?~, 0_ is bounded away from zero); furthermore, we require that the 
diameter D(G) of G e l~i~k)(¢) be positive and N~A~. 

The bounds on the derivatives in Lemmas 7, 7', 12, t2' imply that 
the family (~i(qk)(~) covers, in the sense of Vitali, the Lebesgue set of 
M~,Vk=O, 1 . . . .  , oe, V~>0. 

In the following we shall repeatedly use the remark in Corollaries 
(~) x y~M(2~ +-. 10, t0' that if x e Mq (k)-+ and y e 7~(~)(), then 

Notice that ~ can be taken so small that, ifG ~ ts(qk)(~) andy  ~ M[~ -+ riG, 
the fiber (k) 7~(e)(Y) joins the opposite sides ~,  ~ ,  (0+, ~_) of G. We shall 
only consider those ~ having this property. 

15. Definition. Let G ~ (5(~k)(~). Let ,~(k) _ ~ ~ ~/t(k)- ~+--~+ . . . . .  Zq , x~M(q k)nG, 
0 =7~k)(g)nG. Define ~b : 0~)--,0 as 

(x) = e~k~(x) n 0 ,  V x  e 0 ~  ) . 

Similarly, if vs.t~(k) = vs't~ ,-~,~,Z2q?lAr(k)+. and  2 e M (k)+ (~G, we define the  mapping 
~'0~k~--,~ ' =~k~(~)nG as 

~(x)  = 7~k~(x) n O'. 

Notice that Definition 15 makes sense only if ~ is small enough (see the 
above comment). 

16. Definition. Let G e N~k)(~) and let us define on 0+, 0 s the measures 
m+, m~ which measure the p-length of a subset of 0 +, 0~, respectively. 
Similarly, if Y e M~k)-+ n G, then we introduce on 

0 = ~ ( ~ ) n  G (~' = ~ (x - )  n G) 

a measure m(m') which measures the p-length of a subset of 0(0'). 
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The main result of this section is contained in the following lemma: 

17. Lemma. Usin 9 the notations of the above definitions the mapping 
~(~) takes the measure m(m') into a measure absolutely continuous with 
respect to m+(ms) and its Radon-Nykodim density f(ck)(x)(f(~k)(x)) is 
between exp_  Oq(D(G)) where Oq(e) is a suitable function infinitesimal 
as e~oo. 

Proof. Consider first, for simplicity, the case when the obstacles are 
equal circles (k(r(x)) = const = l/R). 

Observe that if x e ~)=~+c~M2(~ - it also happens that 
. . . .  2 q  . . . . .  2q because c T~k~(xa) and xa~Mq by assumption. 

Similarly, if y = ~ x ,  then y~M~-c~M(2~ +, so we can assume that 
(~(k), jd~.q(k) t,~t(k)+ ra ~l/t(k)- 

+ ~ - ~  u + C lVZ4q E ~ l v . ~ 4 q  . 

The constant curvature assumption implies that Tk~,~*)(x) is a straight 
segment with slope independent on x ~ 0~ ) (actually the slope is 1/R, 
see Definition 4). 

Notice also that ~ )  is relatively open on ~+ and • is a diffeomorphism, 
so we can compute its Jacobian by considering an infinitesimal arc d 7 
around x in ~ )  and 

p(q~dT) 
m(~dT) P(~dT) p(TkcI)dT) p(Tk~dT) 
m+(dy) x =- p - ~  =- p(dT) p(TkdT) " 

p(Tkd~ ,) 

Lemma t l  implies that the product appearing in this formula is between 
exp__+ 04q.q(D(G)). Furthermore, the ratio outside the parentheses can 
be easily evaluated using the remark that TkT~k)(X) are straight parallel 
lines with slope 1/R: 

[ d~ )~ (~x) 
p(Tkdy) cos~o(Tk~bx) t - -R\ -~r  Jk 

p(r  k q~dT) cos q;(r~x) 1 - R ~-~r /k (x) 

where we are using the symbols of Lemma 11. So Lemma i7 follows from 
Lemma 11. 

In the general case of non-constant curvature of the obstacles the 
last formula for p(Tkq~dT)/p(Tkd7) is not so simple because TkT~k)(X) 
are not parallel straight lines; nevertheless, if k(r) is smooth enough 

k (k) (i.e., if~C i are of class C 3, i = t, 2 . . . . .  s), then the lines of T 7e (x) describe, 
as x varies in 0~ ), a very smooth foliation and the estimates of the above 
ratio do not substantially change (Corollary 10' is needed). 
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18. Definition. Let x e .T.q]~[(k)(~ G ,  G e ~k)(~). We can introduce natural 
coordinates (0~, fl) for x. They are defined as the p-length of the segment 
on 0s or 0+, respectively, from x; to the points 7~k)(x)nQs or 7(ek)(x)C~0+. 

Notice that, in the (e, fl) coordinate, the set M(k)c~Gr~(k)x ~(k) ~" ~q ~- ~Js ~ + 

(and, also, Mqc~ G C 0(~ ) x ~?~), Vk). 
19. Definition. Let G ~ N~qk)( 0.  Put 

A4r(k)+ n ~s" 

The define the set d C G which, in the sense of the (a, fl) coordinates, is 
d - ~(k) v ~(k) Clearly, - -  u S A I d + .  

G c~ Mq/¢ C d C M~k) c~ G C a~ k) × 0~ ) C G. 

We shall introduce on ~(f)x ~ )  the measure Vk(do~dfl)= dc~dfl. 

20. Theorem. Let  G ~ (5(k)(~) and use the above notations. Then the 
restriction of v to ~k) x ~ )  is absolutely continuous with respect to V~g) 
and vice versa; the Radon-Nykodim density Q(k)(X) of v with respect to 
V(k ~ is bounded by a suitable constant Cq.e (Yk=0,  1,..., <oo) and is 
almost constant in the sense that there is a function Oq(e), infinitesimal 
as e~O,  such that O~)(X)/Ok(Y) is between exp +_ Oq(D(G)), Vx, ,, ~ ~(k) ,, ~ )  

Proof. Since on ~k) and ~p) the mappings 4~, T of ~+5{~), ,~(k) into 
y]~(y) ~ G, yp)-(x)n G with Y e M~)c~ G, are diffeomorphisms it is easy to 
realize that x e ~ )  x @) (in the sense of the (c~, fl) coordinates) 

( - cos q~dq)dr ~ ~k) (k~ 

where "--(d-52- ) are the derivatives in x o f  the equation q)=~0(r)of  
\ a r /  e(c) 

Therefore, Theorem20 is a simple consequence of Lemma 17, 
Lemmas 9, 9', and Corollaries t0, 10'. 

4. Proof that (M, v, T) and (V, S~, p) are Bernoulli Shifts 

We shall first consider (M, v, T). Let ~ = (PI,-.., P,) be a finite 

partition of M into s subsets with smooth boundary. We put 0 ~  = 0 ~P~, 
i = 1  

L = ~ (length of 3Pi) < o~. It will be enough to show that ~ is a very 
i = 1  

weak Bernoulli partition see, for instance, [3]. Given 1 > e >  0 let q 
be so large that 

v(M/Mq/4) < e e . 
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Let us extract from the family O~(~) a denumerable family of disjoint 
sets {Gi} which covers the Lebesgue set of Mq. Suppose also that ~ has 
been chosen so small that exp + Uq(~) in Theorem 20 is between 1 _--Z-e 2. 

Let n; be so large that v Gin Mq/4 > 1 - e 2. Let ~3~ = (G1 . . . . .  G,.) 
i 

be the subfamily of "~ {Gi}i= t consisting in the sets in {Gi}~ ~ such that 
v(Gic~ Mq/4) > (t - e) v(Gi). Clearly 

v U - 2 e .  

Define also for further use the number N :  such that 

(4LAqq) Z 2-h( t + h2) <1e2 rain v(g) 2 . 
h> N~ g~3~ 

We may assume without loss of generality that v ( M / U  g)> 0 and call 
\ g ~  

Go=M~__ g and ~e={Go, GD..., Gn~ }. ~ .  is a partition; v(Go)<2e. 

Lemma21. There is N'~ > N, such that given N', N" > N'~, 
3~'  C VZ~"(T-ly P with the properties 

v(a)> 1 - e  (t) 

v(ang) v(g) Vg~3~ 
v(a) < ev(g) V 9 e f~nMq/4 (2) 

here ~ ~ c~ Mq/4 means {Go n Mq/4 ... .  , G,o c~ Mq/4 }. 

Proof. This is an immediate consequence of the K-property of 
(M, v, T). 

Next construct the family Fff)= (G~ k), G(kh of the quadrilaterals 
in thug)(0 obtained by considering the vertices x,, xb of a quadrilateral 

Gi s ~3~ and by drawing 7p~(x°), ~p~(xo), ~(x~), 7p~(x~). G~o ~ = M U G? ~, 

Lemma 22. Given e > 0 and N" >_ N' > N~ there is a k s such that the 
family Qk) consists in pairwise disjoints sets .for k ~  k~ and v(G~o k)) < 2e. 

Furthermore ~K~,u,, such that if k >= K~,u,, there is a family 
~2i" C V_-if," T-i~@ such that 

Z 
a ~ "  

I v(ang) --v(g) <sv(g) Vg~ff(.k)to(Fff>~M~/.,). 2) 
v(a) 

3) v(g~Mq/4)>(t-~)v(g) Vg~F.ff ) , 
1 v(G~ k)) 

4) ~ - <  v(Gi---T<2 i=0,1,...,n~. 
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Proof. This lemma immediately follows from the preceding lemma, 
from the fact that the quadrilaterals in ~3~ are closed and disjoint and by 
Lemmas 12, 12' that tell us that lira GI k) = Gi, i=0 ,  1, ..., n~, in measure. 

k~c~ 

Definition 23. Let a be a set in M; We define e C a to be the set of 
ne 

the points x s a n  U d~k) (cf., Definition 19 for d} k)) such that if x s e c~ ui'qk), 
i = l  

for some i, then 7~k)(x)c~dl k) C a. 
This definition makes sense because _~d(k) £ M~ k) and therefore there is 

a fiber 7~k)(x) through x. 

Define/~(k) _ ~(k) ,a(k)~. then: 

Lemma 24. Let N" > N' > N~. Then if k > k~,w, (@, Lemma 22) 
there is a family 9.I C V _ -y (T -  1)i N such that 

1) 2 v ( a ) > l - c e ,  
aff~l 

2) v(e) > (1 - ce) v(a) Va e 9,17 

3) ] v(ec~g)vie) - v(g) < cev(g) V g ~ 17} k) 

for a suitable constant c > O. Provided e is small enough. 
ne 

Proof. Let 9,I" be the same family as in Lemma 22. If A = U d~ u) and 
s = l  

x s A c ~ a  but x ¢ e  then there must exist i,N'<i<<_N", such that T~x 
is within 42-~(1 +i2)qAq from the boundary ~3~ (because the fiber 
7~k)(x) contracts as in Lemma 9 and x e M(qk)). 

Put z = min v(g), the above remark and our choice of N, imply 

v ( A n  ~,,(a/e))<=4LAqq i=N~ ~ 2-i(i+i2)<e2"c2 

(here we have also used 4) in Lemma 22). 
Hence if ~[ C W' is the family of the atoms a ~ 9.i" such that 

v(e) =- v(ec~ A) > v(a ~ A) (t - ez) 
it must be: 

~, v ( a n A ) >  ~, v ( a n A ) - e z .  

On the other hand 2) in Lemma 22 implies: (since (k) *(k) Gi DGi DGlk)nMq/4): 

v(ac~ G~ k)) < (1 + e) 2ev(a) V a ~ 9.I" 

v(ac~ U (  (k)/d(k)'] \. i= 1 ,G~ .~i ,] < 4ev(a) ga ~ 9.1". 
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Therefore for a suitable C > 0 (one can take C = 10): 

v(a)> 1 - Ce 
a ~  

v(e)  > (1 - e C )  v (a )  . 

Let Glk)~ F~ k), and suppose a ~ ¢~ C ~2V', then using the inequality 
v(d (k)) > r: 

v(a n GI k)) - v(e ~ GI k)) = v((a/e)~ GI k)) < v((a/e)n A) 

=< ez v(A n a) < 2ev(Gl k)) v(a) 

So 3) follows from 2), 3) in Lemma 22 and the remark G~k)nMq/4 C GI k) C GI k) 
(with some c > C). 

We shall now reduce the problem of showing that ~ is a very weak 
Bernoulli partition to a theorem in I-3]. Let us define a c'e-measure 
preserving mapping ~ ' a ~ M .  This mapping will be defined on e C a  
and will map ec~g onto g, V9 ~/~k). 

By our definition of ~k) and of e it follows that it is possible to map 
e ~  ~k) onto GI k) along dilating lines [in the (~, fl) coordinates this map 
is along lines with fl-const.] in such a way to preserve the vk-measure: 

n~ 

letting i = 1, 2 . . . .  , n~ we define a mapping ~ : e ~  ~ GI k) C M. 
i = 1  

By our choice of ~ at the beginning of this section, ( is a map of 
G(k)c~e onto ~(k) which is eZ-measure preserving as far as the measure v i - - i  

is concerned (cf. Theorem 20) and therefore Lemma 24 implies that ff is 
c'e-measure preserving for some c' > 0 1-e.g. c' = (c + e)]. 

n~ n~ 

We remark that ~ maps e C U GI k) onto ~ GI k) and G! k) C M~ k). 
i = i  i = 1  

Therefore the distance between Y~ and T~((x) can be bounded, if 

x e e by: d(Tl((x),  T t x ) <  CqA-~t 

for 0 < 1 _< k, as a consequence of Lemma 9' with some 2~ > 1. 
Let now F~ be the set of the points x e M such that (distance of 

Tix  from c3~)>= 1 s(l + i z) ' i = 0, 1 . . . .  If s is large enough v(F~) > 1 - e. 

Therefore, since ( is c'e-measure preserving, v( ( -~F~)>(1-c"8)v(a)  
for a suitable c" (e.g. c" = c' + 2) and for all choices of the number k >= k~.N,, 
on which ( depends (cf. Lemma 24). 

Hence we conclude that there is a positive integer io, k-independent, 
such that T i ((x) and T~x lie in the same set of N for io < i < k and for x e a 

and outside a set with measure v(a) C"e, (io could be given by the con- 
/ 

, ) \ 

dition C~2~i < s(1 +ia)  for i > i  o . 
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An applicat ion of  L e m m a  (1.3) of  Ref. [3] immediately tells us that  
is a very weak Bernoulli  part i t ion and, hence, (M, v, T) is a B-shift. 

It remains to deal with the dynamical  system (V, #, St). This system 
can be easily seen to be i somorphic  to the flow generated by (M, v, T) 
under  the function - z (T - l x ) .  The procedure  for the proof  of  the 
i somorphism of (V, #, St) is essentially identical to that in the Ref. [3]  
and we shall omit  the details. 

5. Concluding Remarks 

The const ruct ion of the approximate  fibers and the proof  of their local 
absolute continui ty is easily generalizable to a "true" billiards: i.e., to a 
billiards with reflecting bounda ry  condit ions (as long as the "table" 
is a rectangle). So it will be proven that  this system is a B-flow as soon 
as it will be known  that  it is a K-flow: this theorem is proven in [2] and [-5]. 

The periodic billiards is interesting for its connect ions  with a simple 
"wind-tree" model :  it is in fact clearly related to famous open problems 
such as the study of  the mean square displacement of a particle which 
moves  bounc ing  on  a periodic ar ray  o f  scatterers. 
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