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Abstract. We prove that increasing functions on a finite distributive lattice are 
positively correlated by positive measures satisfying a suitable convexity property. Applica- 
tions to Ising ferromagnets in an arbitrary magnetic field and to the random cluster model 
are given. 

1. Introduction 

Recently, Griffiths obtained remarkable inequalities for the correla- 
tions of tsing ferromagnets with two-body interactions [1]. These 
inequalities were subsequently generalized to a larger class of spin 
systems [2, 5]. An apparently unrelated inequality for the probabilities 
of certain events in a percolation model had been derived earlier by 
Harris [6, Lemma (4.1)]. While Harris'  inequality seems to have drawn 
!ess attention than it deserves, Griffiths' inequalities have received several 
applications of physical interest, and give useful information on the 
existence of the infinite volume limit and on the problem of phase transi- 
tions. Most interesting for the applications is the second inequality, 
which states that any two observables f and 9 in a suitably chosen class 
have positive correlations, or more precisely that their thermal averages, 
defined with a suitably restricted Hamiltonian, satisfy: 

( f g )  - ( f )  ( g )  > 0. (1.1) 

One of the simplest situations where a property of this type holds is 
the following. Let F be a finite totally ordered set, let # be a positive 
measure on F. Define, for any function f on F 

( f >  = Z - t  ~ l~(X) f ( x )  (1.2) 
x e a  v 
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where 
z = t , (x ) .  (1.3) 

If f and g are increasing real functions on F, then clearly: 

< f g )  - ( f ) ( g )  = (2Z2) -1 y '  #(x)#(y)(f(x)-  f(y))(g(x)- 9(y)) > O. 
x,y~r (1.4) 

It is natural to wonder whether something remains of this property 
when F is only partially ordered. In the present paper, we shall generalize 
the positivity of correlations expressed by (1.4) to the case where F is a 
finite distributive lattice [9] and where p satisfies a suitable convexity 
condition. This result also generalizes in a natural manner that obtained 
by two of us [8] for the random cluster model, which includes both 
Griffiths' second inequality with two-body interactions and Harris' 
inequality as special cases. 

In Section 2, we recall the relevant lattice-theoretic notions, state 
and prove the main result. We also show that the sufficient condition 
thereby obtained for (1.4) to hold is by no means necessary. Section 3 
is devoted to some applications, including Ising spin systems and the 
percolation and random-cluster models. 

2. C o r r e l a t i o n s  on a F in i t e  D i s t r i b u t ive  L a t t i c e  

We recall that a partially ordered set F is a tartice if any two elements 
x and y in F have a least upper bound x v y and a greatest lower bound 
x A y. A subset U of a lattice F is called a subIattice o f F  if for any x and y 
in U,  x A y and x v y also lie in F'. F' is then itself a lattice with the order 
relation and lattice operations induced by F. A subset F' of a lattice is 
called a semi-ideal of F if for any x ~ F'  and y ~ F such that y =< x, y also 
lies in U. A semi-ideal need not be a lattice. The length of a totally 
ordered set ofn elements is defined to be n - 1 ; the lenffth I(F) of a lattice F 
is defined as the least upper bound of the lengths of the totally ordered 
subsets of F. A finite non-void lattice has a least element O and a greatest 
element I. A minimal element x # O of a lattice is called an atom. A 
lattice is called distributive if the operations A and v satisfy either of the 
following two equivalent conditions 

x / ~ ( y V z ) = ( x A y ) v ( x A z )  forall  x,y ,z  in F ,  

x v ( y A z ) = ( x v y ) A ( X V Z )  foral l  x,y ,z  in F .  

A sublattice of a distributive lattice is also distributive. 
A real function on a partially ordered set F will be called increasing 

(resp. decreasinff), if for any ordered pair x _< y of elements ofF, f (x) ~ f (y) 
(resp. f (x)  > f(y)). 
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Let F be a partially ordered set and # a positive measure on F. For  
any function f on F, define ( f >  by (1.2, 3). When it is necessary to refer 
explicitly to # and F, the average (1.2) will be denoted by ( f ;  #, F) .  
Our main result is the following: 

Proposition 1. Let F be a finite distributive lattice. Let # be a positive 
measure on F satisfying the following condition: 

(A) For all x and y in F, 

#(x a y) #(x v y) ~ #(x) #0,') • (2.1) 

Let f and g be both increasing (or decreasing) functions on F. Then 

( fg> - ( f >  (g> > O. (2.2) 

Before turning to the proof  of the proposition we first pave the way 
with some elementary remarks. Let p be a positive measure satisfying 
condition (A), and let F o C F be the support ofbt: 

F o = {x e F : #(x) > 0}. (2.3) 

If x e F o and y e F 0, then by {2.1) #(x A y) #(X V y) > 0; this implies both 
#(x A y) > 0 and #(x v y) > 0, or x/x y e Fo and x v y e F 0. Therefore, 
by definition F o is a sublattice ofF;  as such it is both finite and distributive. 
Furthermore, if (2.1) holds for all x and y in Fo, then it holds for all x and y 
in F. In fact, (2.1) is non-trivial only for #(x)/~(y)>0, i.e. for x e F  o 
and y s F o. 

The average (1.2) depends only on the restriction of f to F o. If f 
is increasing on F, a fortiori it is increasing on F o. It follows from the 
preceding remarks that it is sufficient to prove the proposition for the 
case where Fo = F, i.e. where the measure # is strictly positive, which we 
assume from now on. 

If F consists of one element, (2.2) is trivially satisfied as an equality; 
I(F) is 0 in that case. If the number of elements of F is larger than one, 
the length I(F) of F is at least one, and F contains at least one atom. 
The proof  of the proposition goes by induction on the length of F, 
starting from I(F) = 0, and makes use of the following lemma: 

Lemma. Let F be a finite distributive lattice with an atom a, let F~, F~' 
and F, be the sets {xeF:x>=a} ,  { x e F : x ~ a }  and { x e F : x = x ' v  a 
with x' e F~'}, respectively. Then (1) F~, F" and F, are finite distributive 
lattices; (2) 1'" and F, are isomorphic; (3) F, is a semi-ideal of F'. 

Proof of the Lemma. (1) For  all x and y in F" we have x > a, y >= a 
and hence, by definition, x/x y _>_ a. On the other hand, x v y >_ x _ a. 
So both x/,, y and x v y belong to F~, i.e. F~ is a sublattice of F. Secondly, 
for any x ~ F" we have x A a < a, and therefore, since a is an atom, 
7* 
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x/~ a = O; conversely,  if x A a = O then x c F~'. F o r  all x and y in f~' we 
have (x ^ y) A a = x ,~ (y A a) = x a 0 = O. On  the other  hand,  (x v y) A a 
= (x ^ a) v (y ^ a) = 0 v 0 = O. Therefore  F~' is a sublatt ice of F. Finally, 
if x ' , y ' e f " ,  x = x ' v a  and y = y ' v a ,  then x A y = ( x ' v a ) A ( y ' v a )  
= (x' .", y') v a and  x v y = (x' v a) v 0"  v a) = (x' v y') v a. So bo th  x v y 
and  x A y lie in F a, i.e. F, is a sublatt ice o fF .  As F is finite and distributive, 
so are U ,  U '  and Fa. 

(2) Fo r  x e F;' we have x v a e Fa. Conversely,  for x e F, there exists 
by definition an element  x '  s F~' such that  x = x' v a. Suppose  that  also 
x = x" v a with x" ~ F~'. Then  x '  = x' A (x' v a) = x' A (x" v a) = (x' ^ x") 
v (x' ^ a) = (x' ^ x") v 0 = x' A x", and by symmet ry  x" = x' ^ x". Hence  

x' = x", i.e. x '  is de te rmined  uniquely (see also Ref. [9],  p. 12, T h e o r e m  10), 
and the m a p p i n g  x ~ x  v a f rom f~' on to  Fa is one-to-one.  We  have seen 
that  x A y ~ (x/~ y) v a and x v y ~ (x v y) v a. The  mapp ing  is therefore 
an i somorph i sm (Ref. [9], p. 24). 

(3) Consider  an e lement  x = x '  v a of  F,. F o r  y e f~ such tha t  y < x 
we have ( y A x ' ) v a = ( y v a ) ^ ( x ' v a ) = y ^ x = y ;  so y = y ' v a  with 
y' = y A x'  <__ x', and therefore y' e F~'. Thus,  by definition y e F~, and Fa 
is semi-ideal of  r ; .  If  the greatest  e lement  of  F j  is denoted  by I" ,  the 
greatest  e lement  of  F, is I" v a, and for any  x e F~ the cor responding  
element  in F;' is x' = x ^ I". 

Proo f  o f  Proposition 1. Suppose  that  the propos i t ion  holds for any 
lattice of  length < n - 1, and  let F be a lattice of  length n > 1 and  # a 
strictly posit ive measure  on F. Let  f and  g be increasing functions on F. 
We consider the quant i ty  

Q = Z 2 ( ( f g )  - ( f )  ( g ) )  

= F. It(x) It(y) ( f (x)  o(x) - f (x )  a(y)). (2.4) 
x , y ~ F  

Let  a be an a t o m  of F, and denote  by  Z '  and Z" the sum over  all e lements  
of  F~ and the sum over  all elements of  F~', respectively. We can rewrite g2 
as follows: 

~2 = ~ '  ~ '  #(x) #(y) ( f  (x) g(x) - f (x) g(y)) 
x y 

+ ~ "  ~ "  It(x) It(y) ( f ( x )  g(x) - f ( x )  g(Y)) (2.5) 
x y 

+ Z '  Z "  #(x) #(y) ( f ( x )  g(x) -- f ( x )  g(y) + f ( y )  g(Y) -- f (Y )  g(x)).  
x y 

Since/~ satisfies (2.1) on F, it also satisfies (2.1) on the sublattices f~,/-~' 
and F,. F u r t h e r m o r e  f and  0 are increasing on /-£, F" and ~ .  Since 
l(F~) = n - 1 and I(F;') < n - 1, the first two sums in (2.5) are posit ive by 
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the induction hypothesis. Using again this hypothesis to obtain a lower 
bound for the first and third term in the last sum in (2.5) we obtain 

Z' # f  2;'#9 2;"# Z' # Z" # f  ,52" #9 
f2> + 

- Z ' #  Z"#  

- Z ' # f  2 ; '#g  - S, '#g 2 ; " # f ,  

f2 > (2;'# X"#)- i ( Z ' # f  Z"# - Z'It Z " # f )  (X'#g X"# - Z'# Z"#g),  (2.6) 

where the summation variables have been omitted for brevity. We shall 
now show that, again by virtue of the induction hypothesis, both the 
second and the third factor in the right-hand member of (2.6) are positive, 
or equivalently: 

( f ;  #, F~'> ~ ( f ;  #, q > ,  (2.7) 

and similarly for g. From this it follows that f2 > 0, which implies the 
proposition. This part of the proof proceeds in two steps: we shall 
show that 

<f; #, F") < <f; #, F,) =< <f; #, F~). (2.8) 

To prove the first inequality in (2.8), we observe that for all x s F" and 
y e F~' such that y < x condition (2.1) implies 

#(x) #(y v a) < #(x ^ (y v a)) #(x v (y v a)) = #(y) #(x v a). (2.9) 

Therefore, if we define #a(x) = #(x v a) for all x e F", the function #/#a is 
decreasing on F~' (notice that by assumption #, > 0). On the other hand, 
the function f , (x)= f ( x  v a) is increasing on F", since f is increasing on 
F,. It then follows from the induction hypothesis that on F" with the 
measure #. (which satisfies (2.1)), the functions #/#. and f ,  are negatively 
correlated, or equivalently 

2;'#, 2;" #fa <-- X" # ~," mf~  . (2.10) 

Since f is increasing on F, f < f a  on F~'. From this and from (2.10) the 
first inequality in (2.8) follows. 

Next we observe that 

< f z ; # , r ' >  
<f;#,  F.> = (2.1t) <z;# ,G> ' 

where Z is the characteristic function of F.. Since F. is a semi-ideal of F', 
Z is decreasing on F~, and hence 

, t , t <fz ,  #, F~> < <f;/2, []~> <Z, #, F~>, (2.12) 

which by (2.11) immediately implies the second inequality in (2.8). This 
completes the proof of Proposition 1. 



94 C, M. Fortuin, P. W. Kasteleyn and J. Ginibre: 

Proposition 1 provides us with a sufficient condition for increasing 
functions on F to have positive correlations. The following argument 
shows that this condition is not necessary as soon as the length of F 
is larger than 2. Let # be a positive measure on F. Define f2 again by (2.4). 
f2 is a quadratic form with no diagonal elements with respect to the #(x). 
Take f and g increasing and let ~2 t be the contribution to ~2 of those 
terms which contain #(I) or p(O). Then 

f2~ = lz(I) ~ #(x) ( f ( l )  - f (x))  (g(I) - g(x)) 

+ #(0)  E #(x) ( f ( x )  - f (O))  (g(x) - g(O)) 
x # O , l  

>. #(I) #(0) ( f  (I) - f (O)) (g(I) - g(O)) . 

On the other hand, 

f2 - f21 = ½ ~ '  #(x) #(y)  ( f  (x) - f (y)) (g(x) - g(y)) , 
J¢,y 

where the sum X' runs over all (x, y) such that x 4= O, x 4: I, y 4: O, y 4: I. 
Therefore 

If2 - 011 _~ ( f  (I) - f (O)) (g(I) - g(O)) ½ ~ '  #(x) #(y) . 
x ,y  

Another sufficient condition to ensure that increasing functions on F 
have positive correlation is therefore: 

2#(1) #(O) > E '  #(x) #(y). (2.13) 
X~ y 

If l(F) = 2, F can be shown to have at most two atoms. If F has one atom 
and length 2 it is totally ordered; in that case (2.2) holds for any #. 
If F has two atoms and length 2, (2.13) reduces to (2.1). For / (F)>3,  
however, (2.13) holds for #(/)#(O) sufficiently large, whatever relations 
may exist between the #(x) for intermediate x. 

If F is the lattice ~ (X)  of subsets of the set X = {a, b, c}, ordered by 
inclusion (see next section), one obtains by elementary calculation the 
following necessary and sufficient set of conditions, which lacks the 
simplicity of (2.1) or (2.13): 

(#(ab) + #(ac) +#(abc)) # (~  > (#(b) + #(c) + #(bc)) #(a) 

(Iz(ab) + #(abc)) (#(0) + ~t(c)) > (#(b) + #(bc)) (#(a) + ~t(ac)) (2.14) 

#(abc) (#(0) + #(b) + #(c)) _>_ #(bc) (#(a) + #(ab) + #(ac)), 

and all conditions obtained from these by arbitrary permutations of 
a, b, c. If we denote disjoint union (and in general addition mod2, or 
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symmetric difference) by + we can write these conditions in the following 
general form: 

~, 12(R + ai) #(S) > 2 2 #(R) 12(S + al), (2.15) 
R~A~ + S~Ai'- R~Ai + S~AF 

where a i=a ,b  or c, A/- is an arbitrary semi-ideal of N(X\ai), and 
A + = ~(X\ai) \Ai- .  

3. Applications 

Consider a finite set X and the set ~(X) of subsets of X. If ~(X) is 
partially ordered by inclusion it is a distributive lattice for this order, 
the operations A and v becoming intersection c~ and union u in that 
case. Taking for F any distributive sublattice of ~(X) and applying 
Proposition 1, we obtain the following proposition: 

Proposition 1'. Let X be a finite set, F a subtattice of ~ (X) ,  t 2 a 
positive measure on F satisfying the following condition: 

(A') For all R and S in F, 

12(R c~S) # ( g w s )  >= [z(R) 12(S). (3.1) 

Let f and g be both increasing (or decreasing) functions on F. Then 

< f g ) - < f >  (9)  > 0 .  

Conversely, if we know Proposition 1' to hold, Proposition 1 follows 
immediately from a theorem in lattice theory ([9], p. 59, Theorem 3, 
Corollary 2) which states that any distributive lattice of length n is 
isomorphic to a lattice of subsets of a set X of n elements. Therefore, 
although Proposition 1' refers to a special class of lattices, it is in fact 
completely equivalent to Proposition 1. 

In the applications we shall restrict ourselves to the case where 
F = ~(X) for some X. Again, this does not imply a loss of generality, 
because (a) any measure # on a sublattice F'  of ~(X) which satisfies (2.1) 
can be extended to a measure on ~(X) satisfying (2.1) by defining 
#(R) = 0 for R ¢ ~(X)\F ' ;  (b) any increasing function f on F' can be 
extended to an increasing function on ~(X) by defining f ( R ) = f ( R  +) 
for R ~ ~'(X)\F', where R + is the least upper bound of R in F' ,  (c) averages 
do not change under this extension. 

In order to see more clearly what is achieved by Proposition 1 or 1' 
we first give a more explicit description of the set ~ of real increasing 
functions on ~(X). ~ is a convex cone, and contains the one-dimensional 
vector space of constant functions. Constant functions do not contribute 
to correlations and we eliminate them by a normalization: we impose 
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f(0) = 0. It is furthermore convenient to take a section of the remaining 
cone by the hyperplane f ( X ) =  1. Let therefore ~o  be the set of real 
increasing functions such that f ( 0 ) = 0 ,  f ( X ) =  1. ~o  is convex, closed 
under multiplication, and globally invariant under the transformation 
f (R)  ~ f ( R )  = 1 - f ( R ) ,  where R = X\R. It is convenient to introduce the 
family of functions n e e ~o, defined for any P C X, P # 0, by 

nr(R)=l  if R 3 P  
(3.2) 

= 0  if R~)P, 
The functions ne satisfy 

npnQ : Hpv Q 1 

ne(R)=nn(P) 

ne(R)ne(S)=ne(RnS).  

(3.3) 

Consider furthermore for any non-void semi-ideal A- of N(X) the 
characteristic function of its complement A + = N(X)\A - : 

;~+(R)=I  if R ~ A  + 
(3.4) 

= 0  if R e A  + 

The functions Zn* belong also to ~0 and satisfy 

Z~l Za; = Xz~ ~ a~ - (3.5) 

The set of functions ne is a subset of the set of functions Xa +. In fact, if 
F;, = {R E ~(X) : R 3 P}, F~, is the complement of a semi-ideal of ~(X), 
then F~ua=F;,c~F~, and 

n~, = Zr~. (3.6) 

Conversely, it is easy to see that any function Zn+ can be expressed in 
terms of the functions np,, where the sets Pi (if,l) a r e  the minimal sets 
in A+: 

Z~+ = ~ ( - t )  I,'1+1 H ne, (3.7) 
g% Y,d" * O i~d" 

where for any finite set J we denote by IJ[ the number of elements in J. 
The functions Zn + can be shown to form the extremal points of ~o.  The 
content of (2.2) for increasing functions is then exhausted by taking for 
f and 9 all possible functions Z~ +. 

We now look for measures on N(X) that satisfy condition (A'). 
Define 2 (R) ( -  oe __< 2(R) < + Go) by #(R) = exp(2(R)). Then (A') becomes: 

(B) For all R and S subsets of X: 

2(R c~S) + 2(Rw S) = 2(R) + 2(S). (3.8) 
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Let ,/g be the set of all real functions 2 on N(X) that satisfy (3.8). J/g is a 
convex cone; in other words, if/~1 and #z satisfy (3.1) then ~t =/~1#~ 2 
satisfies (3.1) for all real positive ~1 and a2. ~# is globally invariant under 
the transformation 2 (R)~  2(R)= 2(R). Condition (B) expresses that the 
function 2 is convex in a suitable sense. For functions of a real variable, 
convexity is roughly equivalent to increase of the first derivative, and 
to the positivity of the second derivative. The analogue of this property 
in the present case is the following. We assume for simplicity that 2 is 
finite everywhere. Then (B) is equivalent to either of the following two 
conditions: 

(C) For all r e X, the function 2(R + r) - 2(R) is an increasing function 
of R C X\r .  

(D) For  all r e X, s s X, s 4: r, and for all R C (X\r\s),  the following 
quantity is positive 

2(R + r + s) + 2(R) - ~(R + r) -- 2(R + s) >= O . (3.9) 

The functions n v defined by (3.1) are easily seen to satisfy condition (B). 
Moreover, i fP reduces to a point, P = {r}, then n, satisfies (B) with equality 
for all (R, S). It is therefore convenient to decompose any function 2 on F 
on the basis on the nv: 

2(R) = F, go(e) n a g ) =  ~ go(V) (3.10) 
P P C R  

where the go(P) are obtained by inverting (3.10): 

go(p)= ~ (_)lVl-lRI 2(R) (3.11) 
R C P  

Condition (D) is then expressed as the following condition on go: 

(E) For all r e X, s e X, r 4: s, and for all R C (X\r\s),  the following 
quantity is positive: 

go(P + r + s) ~ O . (3.t2) 
P c R  

Condition (E) contains no restriction on the one-body term g0(r). 
An interesting special case of (E) is obtained by taking go(P) > 0 for all P 
with IPi > 2. On the other hand, if go(P) vanishes for IPI > 2, condition (E) 
reduces to the condition go(r, s) ~ 0 for all (r, s). If go(P) vanishes for all 
JPt > 3, E reduces to the following condition: For all r 4: s, 

go(r,s)>= ~ Max(O, -go ( r , s , t ) ) .  (3.13) 
t~:r,s 

We now describe some applications of the previous results to physical 
systems. 
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1. Lattice Gas and Ising Spin System 

We interpret X as a set of sites which can be either occupied or empty, 
and n~ as the number of particles on site r. We take the Hamiltonian of 
the system to be H = - 2 with 2 defined by (3.10) and (p satisfying con- 
dition (E). This describes a lattice gas with many-body interactions, 
a special case being that where all the interactions are attractive (q~(P) ~ 0 
for [P[ > 2). The correlation functions are o(R) = (nR). We then obtain, 
among others, inequalities of the type 

O(nR-----~) = (ngns) - ( n R )  ( n s )  >= O, (3.14) 
ae(s) 

for all values of the inhomogeneous "chemical potential" ~0(r). 
The same system can be interpreted as an Ising spin system. With 

each site r E X is associated a spin variable o-~--2n,-1 ,  and for all 
R C X, we define o-g by: 

O'R --  H O'r " 
r~R 

The Hamiltonian is then rewritten as: 

H = - ~ q~(P) np = - ~ J(R) ~rg + constant.  (3.15) 
P R 

The relation between ~0 and J is easily obtained by expanding o-g as a 
function of the n e and conversely. One finds: 

J(R)= ~ 2 -IPt ~o(P) 
P3R 

~0(P) = ~ 2 tPI (_)JRI-LPI J(R) .  (3.16) 
R3P 

Condition (E) can be easily expressed in terms of J. Substituting (3.15) 
into (3.12), we obtain, for R, r and s disjoint: 

2 IPI ~ ( - ) l sh- lPlJ(S+r+s)>O.  (3.17) 
PER S3P 

S~r,s 

The sum over P is trivial and we obtain: 

J(S + r + s) (-)LsJ + IRnsl > O. (3.18) 
S~r,s 

This inequality should hold for all R not containing r or s, or equivalently 
for all R. Changing the notation from R to R and remembering that 
as(R ) = (_)lgnsL we see that condition (E) can be rewritten as follows: 

(F) For  all r + s, the following function on F is positive: 

d(S +r + S)as>=O. (3.19) 
S~r,s 
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Notice that condition (F) is invariant under the change of J(S) into 
( - ) l s l j (S ) ,  because Crs(R)=(-)lSl~s(R ). In particular, when reinter- 
preting a lattice gas as an Ising spin system, condition (E) becomes the 
same condition on J, whether we associate occupied sites with up spins 
or down spins. 

For  two-body interactions, (J(S)= 0 for Isl > 2), (F) reduces to the 
condition J(r, s) >= 0 for all (r, s). With two- and three-body interactions, 
(J(S) = 0 for ]SI > 3), (F) reduces to the following condition: 

For all r ~ s: 
J(r, s)>= ~ IJ(r, s, t)l. (3.20) 

t~r,s  

We now compare the present results with those obtained in earlier works 
[2]. There, one assume that J(R) > 0 for a11 R. For tR[ _>_ 2, this is similar 
to, but not equivalent to our condition (F). For  instance, with 2 and 3 
body interactions, (3.20) impties a stronger restriction than J2--> 0, but 
on the other hand does not contain any condition on the sign of J3. The 
most interesting difference is that we have no restriction on the one-body 
potential, and therefore on the magnetic field h(r)= J(r). For instance, 
with H defined by (3.15) and J satisfying (F), we obtain for any pair of 
sites (r, s) and any value of the (inhomogeneous) magnetic field: 

~<~> 
~h(s) 

- <G~o's> - <a,> <as> = 4((n~n~> - <n~> <ns> ) > O. (3.21) 

The class ~ of functions allowed for f ,  g in Proposition 1' is different 
from the class ~ used in [2-], which is the convex cone generated by the 
o- R. For instance, if r and s are two different sites, then tr~a s lies in ~ but 
not in 5¢, while n, + n S - n,~ = ¼(cr~ + ~ - a,xr~) + Ct  lies in ~ but not 
in ~. Note however that the functions n R belong both to ~ and ~ .  

Special cases of the preceding results can be obtained by the methods 
of Ref. [5]. In fact, the phase space F is the cartesian product Z x where 
Z2 = {0, 1}. Z 2 is totally ordered and can be considered as a special case 
of example (3) in [5], with the function 9 being taken as n(n(O) = 0, n(1) = 1). 
Propositions 3 and 5 in [5] then imply (3.14) in the case where ~p(P)> 0 
for all IPI > 2. The results of the present paper are more general, because 
here we can accommodate more general functions than linear com- 
binations of the n R with positive coefficients, for the observables and the 
exponent of the Boltzmann factor. 

The previous considerations extend straightforwardly to more general 
lattice gases where one allows more than one particle on each site, and by 
an easy limiting process, to lattice gases without hard cores. 
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2. Random-cluster Model 

We interpret X as the set of edges of a finite graph G. The set of vertices 
of the graph is denoted by V, the incidence relation, which associates 
two vertices with each edge, by i, and the graph by G = (V, X, i). The 
vertices associated with r e X are called the ends of r. We shall describe 
several measures on F = N(X) which satisfy (3.1). 

(a) For any r e X let p, and q, be real positive numbers. Take 

#(R) = l~ Pr 1~ q~- (3.22) 
r~R s~R  

Obviously, (3.1) is satisfied as an equality. If the Pr and qr are restricted 
to the interval [0, 1] and satisfy p~ + q~ = 1 for all r e X, ~ is a probability 
measure on ¢~(X). A graph provided with this probability measure is 
called a percolation model. Harris' lemma, mentioned in the introduction, 
constitutes a specialization to this case of Proposition 1', applied to the 
infinite quadratic lattice graph (or rather a sufficiently large finite 
subgraph of it), the functions f and g being arbitrary characteristic 
functions of the type (3.4). 

Consider next for any R C X the graph GR = (V, R, i), obtained from 
G by omitting all edges not in R. By a cluster of GR we shall understand 
a maximal connected subgraph of GR. 

For any subgraph G' = (U, S, i), with U C V, S C X, of G let 

7o,(R)=l  if G' is a cluster of GR 
(3.23) 

= 0  if G' is not a cluster of GR. 

Define #(R)= exp2(R) with 
2(R) = ~ q~(G') 713,(R) (3.24) 

13' 

where for any G', q~(G') is a real number, and where the sum runs over all 
connected subgraphs of G (or, equivalently, over all subgraphs of G). 
In order that 2(R) satisfies (3.9), (p(G) has to satisfy the condition 

(G) For all r ~ X, s e X, r + s, and for all R C (X\r\s), 

q~(G') [7~,(R + r + s) + 7~,(R) -- 7~,(R + r) -- 7a,(R + s)] > 0. (3.25) 
G' 

We shall now discuss several examples of functions q~(G') satisfying 
condition (G). 

(b) Let ¢ be a real function on the edge set X, and take for G' = (U, S, i): 
(p(G') = ~ ~(r). Then 2(R)= ~ ~(r), and (3.9) is satisfied as an equality. 

rES r~R 

With ~(r) = logpr - log q,, the measure is proportional to that of example 
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(a). A special case is that where all ~(r) are equal to a real number c, 
then 2(R) = clel. 

(c) Let to be a real function on the vertex set V, and take for G' -- (U, S, i): 
~0(G) = ~ to(r). Then 2(R) = ~ ~p(v) = constant, so that (3.9) is trivially 

veU v~V 

satisfied for any choice of to(v). 

(d) Let c be a real number and take q~(G')=c for all G'. Then 
2(R) = c•(R), where 7(R) = ~ 7w(R) is the total number of clusters of Ge. 

G' 
It is easily seen that ?(R + r + s) + 7(R) - 7(R + r) - 7(R + s) equals 1 
if GR contains two clusters G[ and G; such that in Ge+r+~ both r and s 
have one end in G~ and one end in G;, and equals 0 otherwise. Hence (3.9) 
is satisfied for c > 0. The corresponding measure is 

#(R)=~J (m with ~ = e x p c > l .  (3.26) 

(e) Take ~o(G')= to(v) if G' consists of a single vertex v ("isolated 
vertex"), (p(G') = 0 otherwise, Then 7w(R + r + s) + 7o,(R) - 7o,(R + r) 

- 7w(R + s) equals 1 if G' is an isolated vertex of GR which is neither an 
isolated vertex of GR+r nor one of GR+s, and equals 0 otherwise. 2(R) 
satisfies (3.9) if lp(v) > 0 for all v in V. The measure is then 

#(R) = 1-I (~s~ expto(v), (3.27) 
t)  

where the product is over the isolated vertices of GR. 

(f) Let {c,}, (n = 1, 2 . . . .  ) be a set of real numbers, and let n(G') be 
the number of vertices of G'. Take (g(G') = Cn(G, ). It can be shown that 
q~ satisfies (3.25) if the c, satisfy the following relations: 

C2n 
< 2c, 

} for n > 1 (3.28) 
2cn+ I < Cn+ 2 @ C.~ = " 

A few choices of c, which satisfy (3.28) are: c , = n  (this is the above- 
mentioned trivial example (c) with tp(v)= 1 for all v in V), c , =  c__> 0 
(example (d)), c, =6,1  (example (e) with to(v)= 1), c , =  n -~, where c~ is a 
positive real number. 

If #~ and #2 are two measures satisfying (3.1), the product #~#2 is 
also a measure satisfying (3.1). We discuss two examples of such a 
product measure. 

(g) Take 2(R)= c c0(R), where c is a positive real number and o)(R) 
is the number of independent cycles (cyclomatic number) of G R. Accord- 
ing to Euler's formula we have co(R) = [RI - I VI + 7(R). The corresponding 
measure is therefore the product of the measures discussed under (b) 
(with ~(r) = c for all r ~ X), (c) (with ~p(v) = - c) and (d). 
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(h) Take the product of the measures (3.22) with 0 < Pr < 1, q, = 1 - Pr, 
and (3.26): 

~t(R) = x ~(R) 1~ P~ [-[ q~. (3.29) 
reR seR 

A graph provided with this measure is called a random-cluster model. In 
a previous paper by two of us [7] it was shown that for x = 2 the func- 
tion Z which by (1.3) corresponds to the measure (3.29) is equal (apart 
from a trivial factor) to the partition function of an Ising model with V 
as the set of sites and with a Hamiltonian containing only ferromagnetic 
pair interactions: 

H = -  ~ Jro~a~,~,), (3.30) 
r~X 

Jr = - ½1ogqr (3.31) 

where the vertices v(r) and v'(r) are the ends of the edge r in the graph G. 
Similarly, for any W C V the Ising model spin correlation function 
(Ove)x~ (where in order to avoid confusion the averages for the Ising 
model discussed before are denoted by ( ) i , )  is equal to the expectation 
value under the measure (3.29) with x = 2 of a quantity ew defined by 

ew(R) = 1 if each cluster of G R contains an even number 
(possibly zero) of vertices from W (3.32) 

= 0 otherwise, 
that is, 

(aw)Is = (eve ; # ) .  (3.33) 

Now it is obvious that for any pair (W1, W2) of subsets of V we have 

~w~ + w2 ~ 8wlSw~, (3.34) 

where W1 + Wa is the symmetric difference of W~ and W2. Since the 
functions ew are increasing on N(X), Proposition 1' can be applied, giving 

(~w~w2) > (ew,) (e~w~). (3.35) 

From (3.33), (3.34) and (3.35) it follows that 

(awl + w~)~s > (a..,)I~ (aw2)x~, 

which is the second Griffiths-Kelly-Sherman inequality for the case where 
there are only pair interactions. 
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