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Abstract .  Shape optimization in a general setting requires 
the determination of the optimal spatial material distribution 
for given loads and boundary conditions. Every point in space 
is thus a material point or a void and the optimization problem 
is a discrete variable one. This paper describes various ways of 
removing this discrete nature of the problem by the introduc- 
tion of a density function that is a continuous design variable. 
Domains of high density then define the shape of the mechanical 
element. For intermediate densities, material parameters given 
by an artificial material law can be used. Alternatively, the den- 
sity can arise naturally through the introduction of periodically 
distributed, microscopic voids, so that effective material param- 
eters for intermediate density values can be computed through 
homogenization. Several examples in two-dimensional elastic- 
ity illustrate that these methods allow a determination of the 
topology of a mechanical element, as required for a boundary 
variations shape optimization technique. 

1 I n t r o d u c t i o n  

Shape opt i ln iza t ion in its most general set t ing should con- 
sist  of a de te rmina t ion  for every point  in space whether  
there  is mate r ia l  in tha t  point  or not. Alternat ively,  for 
a F E M  discret izat ion,  every element is a potent ia l  void or 
s t ruc tu ra l  member .  In this set t ing,  the topology of the 
s t ruc ture  is not  fixed a priori,  as in boundary  var ia t ion 
techniques,  and the general  formulat ion should allow for 
the  predic t ion  of the  layout  of a s t ructure .  Shape design 
problems formula ted  this way are inherently discrete op- 
t imiza t ion  problems and there are various ways of solving 
t hem wi thout  the  use of discrete opt imizat ion  algori thms.  
One way is to use continuous approximat ions  based on 
heurist ics  and this is sat isfactory in some cases. The most  
sa t is factory  approximat ions  are obta ined  by introducing 
composites  such as layered s t ructures  or porous,  per iodic  

media.  This  means tha t  the  shape can be described by a 
densi ty of mater ia l  tha t  can take on all values between zero 
and one and for which in termediate  values make physical  
sense. Also, the  problem is now a s t anda rd  sizing prob-  
lem, which among other  things implies tha t  a fixed F E M  
discret izat ion can be used through-out  an i tera t ive  opti-  
mizat ion procedure.  

The  s t anda rd  approach to shape opt imiza t ion  is to in- 
t roduce  boundary  variat ions for a given topology (lay-out) 
of the  s t ructure .  This methodology for shape opt imiza-  
t ion has a t t r ac ted  a great  deal of a t tent ion  and the lit- 
e ra ture  on the subject  is quite extensive; we refer to the 
surveys by Ding (1986) and by Haftka and Gandhi  (1986). 
The  boundary  var ia t ion method  can be implemented in a 
number  of ways, for example  by employing certain mesh 
moving schemes to define the shape of a given s t ructure .  
In this case, the  design variables are the coordinates  of 
nodal  points  of a finite element model  of the s t ructure .  
A different approach to representing boundar ies  in shape 
opt imiza t ion  is to introduce the boundary  segment idea 
which describes the design boundary  by a set of simple 
segments such as s t raight  lines, circular  arcs, elliptic arcs 
and splines. The op t imum is then sought within this re- 
s t r ic ted  definit ion of the boundary.  

The boundary  variat ions techniques are not  s t ra ight-  
forward to implement  and normal ly  require some method  
for FEM-remeshing  which should be used for the struc- 
ture  at hand  several t imes during an i terat ive opt imiza t ion  
scheme. Also, the definition of the allowable boundary  
var ia t ions needs to be carefully considered, in order  to ob- 

ta in  acceptable  designs. However, the techniques have now 
reached a level of ma tu r i ty  tha t  makes it viable to imple- 
ment  the  bounda ry  variat ions methods  in CAE (Computer  
Aided Engineering) systems for product ion use. 

The bounda ry  var ia t ion techniques are l imited in scope 
in the sense tha t  the methods  only allow for the predic t ion 
of the op t imum shape of the boundar ies  of a given initial 
topology. A new method  tha t  can yield the opt imal  topol- 
ogy as well as the opt imal  shape,  even in a rough form, 
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of a structure would be a useful extension of the present 
methodology. Such a method should be seen as a pre- 
processor for the boundary variations techniques in cases 
where it is obvious that  much can be gained by changing 
the topology as well as the shape of boundaries. 

The formulation of shape design problems as point- 
wise mater ia l /no material problems was proposed by Kohn 
and Strang (1986a, 1986b) and the practical possibilities 
of this approach were first studied in a recent paper by 
Bendsce and Kikuchi (1988). It turns out that,  in gen- 
eral, existence of solutions cannot be expectect unless the 
problem is turned into a material distribution one, using 
composite materials. For a periodic medium with known 
microstructure,  homogenization theory can be applied to 
compute a relation between a material density and the 
effective material properties and in this way the shape de- 
sign problem appears as a problem of finding the optimal 
density-distribution of material in a fixed domain. 

We thus take an approach where a structural element 
is understood in a broad sense as being defined only by the 
loads it is supposed to carry; its volume (cost), and design 
requirements such as stress and strain limitations. The 
only restrictions on the allowable shapes is that  the result- 
ing structure should connect to the given surface tractions. 
The initial design in the iterative design optimization pro- 
cedure is a rough block of space in which we fill material 
in an optimal way (or we have a rough block of material 
and remove material). 

In the present paper, we compare the use of compos- 
ites consisting of material with voids of square and rect- 
angular shape with the use of a layered medium, where a 
very weak material plays the role of voids. Also, results 
that  can be obtained from an artificial power-law for the 
dependence of rigidity on density are presented, with a lin- 
ear law representing the design of variable thickness sheets 
in plane stress. The methods  allow for a determination of 
the topology of a mechanical element and give useful in- 
formation on the form of the boundaries of the optimal 
shape. For moderately low volume fractions the lay-out of 
truss-like structures is predicted, but  for very low volume 
fractions it is recommended that  the traditional lay-out 
theory be employed, as described by Rozvany (1984). 

f~ in R 2. Refering to the reference domain f/, we can 
define the optimal shape design problem as the problem 
of the optimal choice of elasticity tensor Eijkl(X), which 
is a variable over the domain and which takes the form 

= x( )2 jkz • (1) 

Here Eijkl is the constant rigidity tensor for the material 
employed for the construction of the mechanical element, 
and X(x) is an indicator function for the part  fl m of fl 
tha t  is occupied by the material: 

1 if x E  f~m 
X(x)= 0 if x e f ~ \ F ~  m " (2) 

Note that  by defining the admissible tensor in this way for 
each point x in space (or rather, in f~) one has the dis- 
crete choice of material or no material. That  is, we have 
formulated a distributed parameter  optimization problem 
with a discrete valued parameter  function. A direct ap- 

p r o a c h  to such an optimization problem by discretization 
using finite elements thus requires the use of discrete op- 
timization algorithms. However, such an approach would 
be unstable with respect to choice of elements and dis- 
cretization mesh, as the distributed problem, in general, 
does not have a solution, unless composite materials are 
introduced (see Kohn and Strang 1986a, 1986b). The use 
of composites moves the on-off nature of the problem from 
the macroscopic scale to a microscopic scale. 

In the following examples, various cases of the min- 
imization of compliance for fixed volume are illustrated, 
with linear plane stress as the physical model. 

Introducing the energy bilinear form 

a(u, v) = f Eijkl%l(U)eij(v) dx,  (3) 

f~ 

with linearized strains e(u) = 1 \ Ozj + Ozi ] and the load 

linear form n(v) = f~ f.vdx + frT t.vds, the minimum 
compliance problem takes the form 

minL(u)  (4a) 

subject t o : a ( u , v )  = L(v), all v E U,  (4b) 

2 G e n e r a l  p r o b l e m  f o r m u l a t i o n  

In the following, the general formulation for opt ima ! shape 
design of linearly elastic structures is presented. The set- 
up is analogous to the well-known formulation for sizing 
problems (cf. Olhoff and Taylor 1983). 

Consider a mechanical element as a body occupying 
a domain f~m which is part  of larger reference domain 

volume constraint .  (4c) 

Here the equilibrium equation is written in its weak, 
variational form, with U denoting the space of kinemati- 
cally admissible displacement fields, f are the body forces 
and t the boundary  tractions. For the choice of the elas- 
ticity tensors given by (1), the volume is 

Vol = / X(x) dx = measure (f~rn) . (5) 

f1 



The min imum compliance problem can conveniently and 
efficiently be solved by using the so-called op t imal i ty  cri- 

te r ia  method ,  where the op t imal i ty  condit ion for the prob-  
lem is solved direct ly through an i terat ive scheme (cf. 
Cheng and Olhoff 1982; Bendsce 1986; Rozvany 1989). 
For the  compliance problem,  the opt imal i ty  condit ions re- 
duce to 

0 oDEijkl(D)%l(U)eij(u) = A ~  (vol) , (6) 

for each real valued design variable D. Here A is a posit ive 
constant ,  namely  the Lagrange mult ipl ier  for the volume 
cons t ra in t  and 'vol '  denotes the pointwise expression for 
the  volume, as expressed in terms of the  design variables. 

In the examples  tha t  follow, the analysis p roblem was 
solved th rough  F E M  and the design variables where dis- 
cret ized as element-wise constant .  The i terat ive upda te  
scheme for the design variables was based on (6), with the 
value of A adjus ted  in an inner i tera t ion loop. 
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3 T h e  d i r e c t  a p p r o a c h  

For the  sake of comparison,  a direct  approach to the solu- 
t ion of the  shape opt imiza t ion  described above was t r ied 
on a number  of examples.  The first s tep of this approach 
is to choose a sui table  reference domain  ft which allows 
for the definit ion of surface t ract ions  and other  boundary  
condit ions.  Then for a fixed F E M  discret izat ion of this 
domain,  the  elements tha t  are voids are determined.  This 
d i s t r ibu t ion  of voids can be computed  by employing a 0-1 
discrete op t imiza t ion  method  or, as was done here, by a 
sui table  differentiable approximat ion  of this on-off char- 
acter  of the  problem.  By introducing an artificial densi ty 
funct ion g(x) ,  x C f~, 0 < g(x)  < 1 and with p >> 1 let t ing 

Eijkl(X) = [g(x)]PEijkl ,  Vol = f g(x)  d z ,  (7) 

f~ 

we obta in  an artificial mater ia l  where in termedia te  values, 
0 < g < 1, give very l i t t le stiffness at an unreasonable  cost 
(volume is l inear in g ). This scheme works very effectively 
and results  in g-values 1 or 0 in most  elements (see Fig. 1). 
However, the scheme is very dependent  on the mesh and it 

is impossible to give any physical  meaning to in termediate  
values of # . 

Note tha t  if we set p = 1 in (4), we have the case of 
op t imal  design of var iable  thickness sheets as described 
by Rossow and Taylor (1973). This does not  result  in 
a mater ia l -void  type  s t ructure ,  so it is unsat isfactory for 
generat ing two-dimensional  shapes. However, as for gener- 
a t ing three-dimensional  shapes,  the problem makes sense 
and it is computa t iona l ly  well-behaved (solutions exist,  cf. 
Bends0e 1983). Figure  2 shows an example for this case. 

F ig .  1. Direct approach applied with gP, p : 4. The top 
picture is a support, the bottom one is half of a 'bridge', with 
symmetry around the left hand side. The volume constraint in 
both cases corresponds to 64% of the full area. The black areas 
indicate material, with intermediate values of # shown as white, 
square holes with an area (1 - g) × element size 

4 P e r i o d i c  m e d i a  a n d  h o m o g e n i z a t i o n  

In the p rob lem s ta tement  of Section 2, the opt imal  shape 
is, f iguratively speaking,  defined by the macroscopic dis- 
t r ibu t ion  of voids. Tha t  is, at  each point  in space there 
is mater ia l  or there  is no mater ia l  (void). Int roducing a 
mater ia l  densi ty g by construct ing a composite  mater ia l  
consist ing of an infinite number  of infinitely small  holes 
per iodical ly  d i s t r ibu ted  through the base mater ia l ,  we can 
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Fig. 2. Variable thickness sheets. Left hand picture shows 
the loadings and the design area, right hand side two optimal 
designs (lower half-part), correspQnding to volumes of (a) 64%, 
(b) 36% 

transform the problem to the form of a sizing problem. 
The on-off nature of the problem is avoided through the 
introduction of #, with /z = 0 corresponding to a void, 
/z = 1 to material and 0 </x  < 1 to the porous composite 
with voids at a microleveh We now have a relationship 

Eijkl(x ) = E, ijkl[#(x),®(x)], Vol = / / ~ ( x )  dx,  (8) 

where the effective material parameters Eijkl for the com- 
posite can be obtained analytically or numerically through 
the formulas of homogenization (see below). The compos- 
ite material will, in general, be orthotropic so the angle 
(9 of rotat ion of the directions of orthotropy enters as a 
design variable, via well-known transformation formulas 
for frame rotations. Also, the density # can in itself be 
a function of a number of design variables which describe 
the geometry of the holes at the microlevel and it is these 
variables that  should be optimized. Figure 3 shows the 
density-rigidity relation for a composite with square holes, 

Rigidity as Function of Density (square hole) 
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Fig. 3. Eijkl as a function of the density /~ for a periodic 
microstructure of square cells with square holes 

and as for the direct approach we have obtained a situa- 
tion where intermediate density values give less than pro- 
portional rigidity. However, for composites, intermediate 
densities make physical sense. 

Materials with microstructure play an important  role 
in optimal structural  design and have been introduced for 
a number of problems as a basis for regularizing ill-posed 
optimization problems, for example in plate design (Cheng 
and Olhoff 1982; BendsCe 1986; Rozvany et al. 1987), or 
in the design of torsion bars (Lurie et al. 1982; Good- 
man et al. 1986). In this paper, composites are viewed 
as a practical tool for solving the discrete valued mate- 
rial distribution problem of shape design, but as noted by 
Kohn and Strang (1986a, 1986b), the optimal design prob- 
lem as formulated in Section 2 also requires regularization 
through, for example, the introduction of materials with 
microstructure.  The use of composites in the present set- 
ting may thus also achieve regularization, at least partly, 
even though this is not the primal goal of the approach. 

For the sake of completeness of the presentation, the 
formulas of homogenization will be briefly recalled. For 
details, the reader is refered to Bensousson et al. (1978), 
Sanchez-Palencia (1980) and Bourgat (1977). Suppose 
that  a periodic microstructure is assumed in the neigh- 
bourhood of an arbitrary point x of a given linearly elastic 
structure (see Fig. 4.). The periodicity is represented by 
a parameter  e which is very small and the elasticity tensor 
E~jkl is given in the form 

E~jkl (x) = Eijkl (x, x / e ) ,  (9) 

where y --* Eiikl(x ,y)  is Y-periodic, with cell Y of peri- 
odicity, Y = [YI_R, Y1L] × [Y2R, Y2L]. Here x is the macro- 
scopic variation of material parameters,  while x /e  gives the 
microscopic, periodic variations. Now, suppose that  the 
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Fig. 4. A: a periodic microstructure with square holes. O is 
the angle of rotation. B: a square cell with a square hole. C: a 
layered structure 

structure is subjected to a macroscopic body force and a 
macroscopic surface traction. The resulting displacement 
field ve(x) can then be expanded as 

= ,,o (x) + + . . .  (lO) 

where the leading term v0(x ) is a macroscopic deforma- 
tion field tha t  is independent of the microscopic variable 
y. It turns out tha t  this effective displacement field is the 
macroscopic deformation field that  arises due to the ap- 
plied forces when the rigidity of the structure is assumed 
to be given by the effective rigidity tensor 

f [  0ilkz q Eidk In  (x) = ~ 1  Eijk l (x ,y )_Zi jpq(X,y)~  [yq J d y . ( l l )  

Y 

Here R kl is a microscopic displacement field that  is given 

as the Y-periodic solution of the cell-problem 

f oily kl avi EijPq(X'Y) Oyq Oyj dy = 

Y 

= f Eijkl (x, y) Or_( dy for all v ,  (12) Oyj 
Y 

where v denotes Y-periodic virtual displacement fields. 
From (11) and (12) we see that  the effective moduli E2Hkl 
for plane problems can be computed by solving three anal- 
ysis problems for the unit cell Y. For most geometries 
this has to be done numerically, using FEM or, as can be 
advantageous, BEM or spectral methods. Equations (11) 
and (12) hold for mixtures of linearly, elastic materials and 
for materials with voids, where the boundary of the void 
does not intersect the boundary of the unit cell. Figure 3 
shows the variation of the effective moduli for a material 
with square voids imbedded in square cells, as illustrated 
in Fig. 4. 

For layered materials, the effective moduli can be com- 
puted analytically, using (11) and (12). Alternatively, the 
effective moduli can be derived by a smear-out technique 
that  finds the effective moduli from a relationship between 
the direct averages of the strain and stress tensors in the 
unit cell, obtained through the use of interface conditions; 
for details see e.g. Olhoff et al. (1981), Bends0e (1986). 

Now, consider a layered material, as illustrated in Fig. 
4, with layers directed along the y2-direction and repeated 
periodically along the yl-axis. The unit cell is [0,1] x 
~ ,  and it is clear that  the unit cell fields R kl are inde- 
pendent of the variable Y2. Also note that  in (11), the 
term involving the cell deformation field ll k: is of the form 

3tt kl z22P_ Eijpq(x'y) Oyq , so an explicit expression for ilkl is not 

needed. 
Taking first k = 1 and l = 1, using test functions 

v = [p(yl) ,0] in (12), we obtain 

Oill  1 
E l 1 1 1 ~ - - -  = El111 + c l ,  (13) 

a Y l  

where cl is a constant. Periodicity of il11 implies that  

1 f El111 + cl dy  = 0. (14) 
IYI El111 

Y 

With the notation 

M ( I )  = / 
Y 

for the average over Y of a function f ,  we have shown that  
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Zl111~-~y I = E l i 11÷¢1 ,  

with 

c 1 = -[M(1/Ell l l )]  -1 . 

Similarly with k = 2, I = 2 we obtain 

0ft 22 
El111-0~-y 1 -- El122 ÷ c2 , 

c 2 : - M ( E l 1 2 2 " ~  . [ M (  1 )] -1 
\ E l 1 1 1 ]  

(16a) 

(16b) 

(17a) 

(17b) 

/2 = 3 'E+  ÷ (1 - 3 ' )E -  • (2o) 

We note tha t  for layered materials, voids should be repre- 
sented by a very weak material, even if layers at multiple 
scales are introduced (see below). On the other hand, lay- 
ered materials have analytical expressions for the effective 
moduli, which is a distinct advantage for optimization. 
For other types of microvoids, the effective moduli must 
be computed numerically for a number of dimensions of 
the voids in the unit cell and for other values of densities 
the effective moduli can be interpolated using, for exam- 
ple, Legendre polynomials or splines. Note that  this only 
needs to be carried out for different values of Poisson's 
ratio, as Young's modulus enters as a scaling factor. 

Finally for k = 1, l = 2, we use test functions v = 
[0,~(yl)]  to obtain 

2 
E1212--~-y 1 = E1212 ÷ c3 (18a) 

(18b) 

Assuming that  the direction of the layering coalesces with 
the directions of orthotropy of the materials involved, the 
only non-zero elements of the tensor E are E l l l l  , E2222 , 
E1212, El122 (= E2211). In this case, the information given 
in (16) through (18) is sufficient for calculating the effec- 
tive moduli from (11). We get 

EIH111: [ M ( E @ 1 1 1 ) 1 - 1 ,  

(E2211"~ 
E g 2 2  : M(E2  2) - M 

÷[M(E2211~12"[M(E@111) t  

EIH122=M(E1122"~. [ M (  1 )] -1 
\ E l l l l ]  ~ , (19) 

5 M a t e r i a l  d e n s i t y  a p p r o a c h  by  m a t e r i a l  w i t h  vo ids  

The purpose of introducing composites with microvoids 
into the general formulation for shape design is to avoid 
the discrete valued nature of this formulation. The results 
of an optimization should preferably lead to a distribution 
of material where the density is 0 or 1 almost everywhere, 
corresponding to a design with only macroscopic holes. 
Thus the important  quantity for shape design is the den- 
sity of material while the underlying geometric quantities 
defining this density are of less interest. Employing mi- 
crovoids which are square holes in square unit cells, we 
obtain tha t  the density ~ is described by just one geomet- 
ric variable, namely the length of the sides of the square. 
Also the density ~ can take on all values between 0 and 1, 
a feature that  is not satisfied for e.g. circular holes. How- 
ever, for square holes the effective material is orthotropic, 
with directions of orthotropy given by the angle of rota- 
tion of the unit cell. This means that  this angle of rotation 
should also be considered as a design variable. To recapit- 
ulate, with a composite with square microvoids, the opti- 
mal shape that  minimizes compliance for a given volume 
can be found by solving the problem given by (4), with 
two distributed design variables, ~(x) (a sizing variable), 
O(x) (a rotat ion angle), in the fixed domain a and with 

Eiykl(x) = Eiykl[#(x), ®(x)], Vol = / , ( x )  dx.  

f~ 

For a layering of two materials with the same Poisson ratio 
~,, with different Young's moduli E + and E -  and with 
layer thicknesses -'/ and (1 - y), respectively, we get 

E H l l  = I1, EH22 = (1 - ~2)I  2 + v211, 

E1H2 12 = 1 -2 I., I1 , EH22 = v, i1 ' 

I1 = E-E+/[qE - + (1 - ' ~ ) E + ] ,  

The reference domain f~ is a suitable chosen domain that  
allows for the proper assignment of boundary conditions 
and boundary  tractions. This domain can be chosen sim- 
ply connected or not,  depending on design requirement. 

The use of the fixed reference domain and the formu- 
lation of shape optimization as a sizing problem means 
that  the same FEM mesh can be used throughout  the it- 
erative optimization scheme. For the optimization of the 
angle O of cell rotations, an iterative Newton type algo- 
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:Fig. 5. Material density approach asing square holes in square 
cells. The top picture is a clamped 'beam', the bottom picture 
is the right half-part of a bridge. The volume constraint is 64%. 
The picture shows, macroscopically, the size of holes in each 
element of the discretization. In reality these holes are at the 
microlevel 

r i t h m  can be employed or recent results  on opt imal  rota-  
t ion of or thot ropic  mater ia ls  can be used (Pedersen 1-989a~ 
1989b). For mater ia l s  with square microvoids, the cells 
should be ro ta ted  along the directions of pr incipal  s t ra in  
(which at  the op t imum coalesce with the directions of prin-  
cipal  stress).  Unfortunately,  the opt imizat ion  of the angle 
of cell ro ta t ion  is prone to somewhat  errat ic  behavior  near 

the op t imum,  bu t  this does not  influence the overall shapes 
tha t  are obta ined.  However, examples  show tha t  the an- 
gle of ro ta t ion  should not  be ignored in the opt imiza t ion  
p rob lem (BendsCe and Kikuchi 1988). 

The  method  has been tes ted on a large number  of ex- 
amples,  a few being i l lustrated in Figs. 5 and 6. Note tha t  
for compara t ive ly  small  volume fractions,  the  method  pre- 
dicts the  lay-out  of truss-l ike s t ructures .  For very low vol- 
ume fractions,  very fine discret izat ion meshes are required 
(for coarse meshes the  s t ructures  break up),  so for these 
cases it is perhaps  be t t e r  to use t rad i t iona l  lay-out  meth-  
ods (Rozvany 1984). The  method  turns  out to be s table 
wi th  respect  to the  discret izat ion of the  domain.  It is very 
fast wi th  respect  to compute r  t ime,  it predicts  topology as 
well as bounda ry  form and it has a physical  in terpre ta t ion  
of in termedia te  densi ty values. 

F ig .  6. Material density approach using square holes in square 
cells. Optimal design of a beam, clamped at one end and loaded 

at a corner at the other end (one-half of a simply supported 
beam). It is required that the rim of the beam is fixed (with 
/t = 1) and there should be 3 holes inside the beam (with 
tt ~- 0). With these constraints, as indicated in the bottom 
picture, the optimal design is the truss-like structure shown at 
the top. Volume constraint is 45% 

The use of square holes at the microscopic level is but  
one, albei t  the simplest ,  choice of composi te  tha t  can be 
employed.  More complicated microstructures  invariably 
lead to more design variables with no apparent  benefit .  
Several exper iments  show tha t  similar shapes and compli-  
ance values are obta ined ,  independent ly  of the microstruc-  
ture.  The impor t an t  feature is tha t  a micros t ruc ture  is 
in t roduced.  Figure  7 shows examples computed  by use of 
rec tangular  microvoids in square cells, a case where the  

density of mater ia l  is given by tw o design variables.  

6 M a t e r i a l  d e n s i t y  a p p r o a c h  b y  l a y e r e d  m a t e r i a l  

Recent  s tudies on bounds  on the effective mater ia l  prop-  
erties of composite  mixtures  made  of two mater ia ls  have 
shown tha t  for plane elast ici ty the s t rongest  mater ia l  can 
be ob ta ined  by a layered medium,  with layering at  two 
different microscales (cf. Avel laneda 1987; Kohn 1988). 
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I* Design area *1 

MACRO-SCALE 
MICRO-SCALE 1 

MICRO-SCALE 2 

Fig. 8. The build-up of a second rank layered material, by 
successive layering 

:Fig. 7. Material density approach using rectangular holes in 
square cells. The picture at the top is the upper part of a fillet, 
with only part of the domain free to be designed; the volume 
constraint is 36% of this area. The bottom picture shows the 
right hand part of a beam loaded on the top and on a part of 
the bottom; volume constraint is 64% 

This means that  the existence of solutions is assured for 
minimum compliance shape minimization problems. Voids 

should be exchanged by a very weak material and the com- 
posites to be used are those constructed by layering. As 
shown in Section 4, effective material properties for lay- 
ered materials can be obtained analytically and for a so- 
called second rank layering two densities -~ and 5 of layers 
are needed to define the material properties and the total 
density of material. First, a (first order) layering of the 
strong and the weak material is constructed, the thick- 
nesses of the strong and weak layers being ff and (1 - "~), 
respectively, in the unit cell, [0, 1] x ~ (see Fig. 8). This 
resulting composite material is then used as one of two 
components in a new layered material, with layers 5 thick 
of the isotropic, strong material and with layers (1 - 5) 
thick of the composite just constructed; the layers of this 
composite material are placed perpendicular to the direc- 
tion of the new layering. The effective properties of the 
resulting material are computed by recursive use of the 
formulas in Section 4; the moduli are computed as the 
material is constructed, bottom-up.  This computat ion is 
most  conveniently carried out by the use of a computer 
language for symbolic computations,  as derivatives of the 
moduli with respect to ~ and 5 are needed for optimiza- 
tion. 

The layered materials can be used for shape design in 
a manner analogous to the use of composites with voids. 
The density of material now depends on the two design 
variables q and ~, and in the optimization problem defined 
in (4), we have in this case 

E jk (x) = o (x ) ] ,  

= / { ~ ( x )  ÷ [1 - ~(x)]"/(x)} dx,  Vol 

f~ 

where (9 denotes the angle of rotation of the layers of the 
composite. Figure 9 shows some example shapes obtained 
by use of layered composites. The resulting designs are 
very similar to those obtained by using square holes, so 
these simpler composites should be used when speed of 
computat ions is an issue. On the other hand, the analyt- 
ical expressions for the effective moduli for layered mate- 
rials simplifies the change of material coefficients for the 
base materials, especially where non-isotropic base mate- 
rials are considered. This feature is important  when con- 
sidering shape design with composite materials. 

7 C o n c l u s i o n s  

The optimal topology of a mechanical element can be pre- 
dicted in a number of ways, by introducing an artificial 
density or by introducing a density of a composite with 
voids. Weighing cost and complexity against generality 
it seems that  the most  satisfactory method is to employ 
the porous material approach, using simple square voids 
at the microscale. 

The methods for predicting the topology of a mechan- 
ical element can be used as a preprocessor for a boundary  
variations technique for optimal shape design. The inter- 
facing can be done semi-automatically through the use of 
graphics facilities (Bendsce and Rodrigues 1989), but  re- 



Fig. 9. Material density approach using layered materials. The 
top picture is a support with volume constraint 64%. The bot- 
tom picture is a clamped beam loaded at the right end; volume 
constraint is 36% 

search should be carried out in order to develop methods 
for automatic  interfacing. Notions from image processing 
and pat tern  recognition seem to be suitable for such auto- 
matic interfacing, and the possibility of choosing the final 
form of the structure from a discrete set of 'production- 
friendly' shapes should be investigated. 
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