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An integral treatment for non-Darcy free convection over a vertical flat plate 
and cone embedded in a fluid-saturated porous medium 

A. Nakayama,  T. Kokudai and H. Koyama, Hamamatsu,  Japan 

Abstract. An integral treatment was proposed for analysis of non- 
Darcy free convection over a vertical flat plate and cone within a 
fluid-saturated porous medium. A flexible one-parameter family of 
third order polynomials was employed to cope with vast changes in 
the velocity and temperature profiles encountered in the Darcy flow 
limit through to the Forchheimer flow limit. Zero curvature require- 
ment for the temperature profile at the wall was exploited as an 
auxiliary relation to determine the shape parameter. Comparison of 
the approximate results with the exact solution reveals a high per- 
formance of the present integral procedure for heat transfer rate 
prediction. 

Eine Integrai-Methode fiir freie ,,Non-Darcy"-Konvektion 
entlang einer vertikalen flachen Platte und einem Kegel 
in einem gesiittigten porOsen Medium 

Zusammenfassung. Eine Integral-Methode wurde zur Analyse yon 
freier ,,Non-Darcy"-Konvektion entlang einer vertikalen flachen 
Platte und einem Kegel in einem ges/ittigten por6sen Medium 
herangezogen. Eine flexible einparametrige Schar yon Polynomen 
dritter Ordnung wurde verwendet, um grol3e Anderungen in den 
Geschwindigkeits- und Temperaturprofilen im ,,Darcy"- bis hin zum 
,,Forchheimer"-Bereich erfassen zu k6nnen. Die Forderung, dag das 
Temperaturprofil an der Wand keine Kriimmung aufweisen daft, 
wurde als Hilfsbeziehung benutzt, um den Formfaktor zu bestim- 
men. Ein Vergleich der angen~iherten Ergebnisse mit der exakten 
L6sung offenbart, dab die dargestellte Integral-Methode sich sehr 
gut eignet, um W/irmeiibertragungswerte berechnen zu k6nnen. 

Nomenclature 

A , B , D  
C 
g 
Gr 
i 
K 
r 

Ra x 
T 

x ,  y 

o~ 

A 

shape factors 
empirical constant associated with the Forchheimer term 
tangential component of the acceleration due to gravity 
modified Grashof number 
1 for a fiat plate and 3 for a cone 
permeability 
1 for a flat plate and x for a cone 
local Rayleigh number 
temperature 
Darcian velocity components 
boundary layer coordinates 
effective thermal diffusivity 
boundary layer thickness 
kinematic viscosity of the fluid 
shape parameter 

Subscripts 

e external 
w wall 

1 Introduction 

Heat and fluid flow within porous media has attracted con- 
siderable attention because of numerous possible applica- 
tions in both geophysics and engineering problems [1]. The 
Darcy flow model which assumes proportionality between 
the velocity and pressure gradient has been widely used to 
analyse free convection over heated bodies embedded in 
porous media e.g. [2, 3]. The Darcy flow model, however, 
breaks down, when the Rayleigh number becomes high. 
Plumb and Huenefeld [4] obtained a similarity solution 
for the non-Darcy free convection over a vertical flat plate, 
using the Ergun model, [5, 6] which accounts for the porous 
inertia by a velocity squared term, and supported the ex- 
perimental observation made by Fand, Steinberger and 
Cheng [7]. 

Although numerical integration results have been furnished 
for a limited number of cases, a lengthy shooting process 
required for such numerical integrations, still invites a sim- 
pler and yet sufficiently accurate solution procedure for the 
heat transfer problems associated with porous media. Cheng 
[8] applied the Karman-Pohlhausen integral method to ana- 
lyse various Darcy flow problems. His integral method was 
modified by the authors [9, 10] to achieve a better accuracy 
in integration results. The integral relation was also used by 
Bejan and Poulikakos [11] and Kaviany and Mittal [12] 
to attack non-Darcy flow problems. The integral treatment 
based on an exponential velocity profile, reported by Bejan 
and Poulikakos, however, overestimates the Nusselt number 
by 10 to 15%. Also as indicated by Kaviany and Mittal [12], 
one of the difficulties lies in the fact that the non-Darcy effect 
due to the porous inertia reflects on the velocity and temper- 
ature profiles so drastically that an exponential profile can- 
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not cope with changes in the velocity and temperature fields 
within the boundary layer. 

In the present paper, we shall propose a highly accurate 
integral method for analysing the non-Darcy free convec- 
tion. A flexible one-parameter family of third order poly- 
nomials is imroduced to describe vast changes in the velocity 
and temperature profiles, encountered m the Darcy flow 
limit through the Forchheimer limit. An effort is made to 
match the condition for the temperature profile curvature at 
the wall. It will be shown that this integral treatment leads 
to a substantial improvement in the accuracy of the heat 
transfer results. The closed form expression for the local 
Nusselt number, derived in this study, is found quite useful 
for speedy and accurate estimates of heat transfer rates. 
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In the foregoing equations, u and v are the Darcian velocity 
components in the x and y directions, and T is the local 
temperature�9 The tangential component of the acceleration 
due to gravity is indicated by 9. K is the permeability; v the 
kinematic viscosity; c~ the equivalent thermal diffusivity of 
the porous medium; fl the coefficient of thermal expansion; 
and C the empirical constant associated with the porous 
inertia term which becomes quite significant as the Rayleigh 
number increases. The appropriate boundary conditions are 

y = 0 :  v =0 ,  T=Tw,  (5a, b) 

y ~ o o :  u = 0 ,  T=Te ,  (5c, d) 

where the subscripts w and e refer to the wall and ambient. 

2 Governing equations and boundary conditions 

Figure 1 takes a vertical flat plate and cone under consider- 
ation. The surface wall temperature T,~ exceeds the ambient 
temperature To. As a result, the buoyancy force drives the 
fluids upwards along the heated wall surface. 

Using the usual boundary layer coordinates (x,y), the 
governing equations for the non-Darcy free convection, 
namely, the continuity equation, the Ergun model equation, 
and the energy conservation equation are given by 

~r u 8r v 
= 0 ,  (1) 

Cx/Ku2 f l K ( T _ T ~ ) 9  ' 
u + = - -  ( 2 )  

V V 

8T 8T 82T 
eY 2 (3) 

where 

J" 1: a flat plate 
/" 

x: acone 
(4) 

Gravity 
: �9 . . ,  . . "  
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Fiat plale Cone 
Fig. 1. Physical model and boundary layer coordinates 

3 Integral procedure 

Let us integrate the energy Eq. (3) across the boundary layer 
0 < y < 6, exploiting the continuity Eq. (1) and the boundary 
conditions given by Eqs. (5 a) and (5 b): 

d r u ( r  Te)dy (6) - -  - -  = - - r o ~ - -  . 

dx o 

Substituting Eq. (2) into Eq. (6), we have 

) d 
ru + U 2 dy 

~ X o  v 

= - r  C~y + u (7) 

The Ergun model equation, which is a quadratic equation 
in terms of u, can be solved for u as 

v T -  To 1/2 1 , 
u: 2 c - ~ K  [(I+4Gr(T-T~_T~)) -- ] (8a) 

where 

Gr = CK 3/z 9 fl(Tw - Te)/v2 (8b) 

is a modified Grashof number representing the relative sig- 
nificance of the porous inertia (Forchheimer term). Eq. (8 a) 
along with Eq. (5 b) provides the slip velocity u w = u l y = o: 

V 
u w - - -  [(1 +4  Gr) 1/2 - 1]. (9) 

Upon integrating Eq. (7), and utilizing the foregoing rela- 
tion, we obtain the following explicit expression for the 
boundary layer thickness 6: 

(10) 

8 Gr(1 +4Gr)I/2D 
(6/x)2Ra~ - 

i [(1 +4Gr)l/e-1] [2A + [(1 +4Gr)1/2-1] B]' 

where 

i=  {13:: aaflatplatecone (11 a) 
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6 
A = S (U/Uw) 2 dy/6,  ( l lb)  

0 
h 

B = S (U/Uw) 3 dy/6,  (11 c) 
0 

6 ~u y:o C - (11 d) 
u,~ ~y 

and 

Rax = K 9 fl(Tw - Te) x/v c~ (11 e) 

is the local Rayleigh number. The integer i for the axisym- 
metric case (i = 3) accounts for the three-dimensional (thin- 
ning) effect on the boundary layer growth. The shape factors 
A, B and D can be expressed in terms of functions of a certain 
shape parameter, as we specify the velocity profile: 

6 - A ( y ~  A ( y f  , 2 + A [ y ' ~  3 
U / U w = l -  4 \ ~ ] - ~  - e ~ ~ )  . (12) 

The foregoing equation with Eq. (8 a) automatically satisfies 
the required boundary conditions given by Eqs. (5b) and 
(5 c). The shape parameter A is set to the negative of the 
second derivative at the wall, namely, 

A - . (13) 
u w 0y 2 r=o 

Substitution of Eq. (12) into (11b), (11 c) and (11 d) yields 

396 + 32A + A 2 
(14a) 

A(A) = 1680 ' 

B(A) = 

and 

D ( A ) -  

9288 + 892A + 46A2+A 3 

53760 
(14b) 

6 - A  
(14c) 

4 

For determination of the shape parameter A, an additional 
relation is required. Through the previous studies on the 
Darcy flows [3, 9, 10], we have found it quite effective to use 
the compatible condition associated with the temperature 
profile curvature at the wall, which is implicit in the energy 
equation, namely, 

dTw ~2T (15a) 
Uw dx = c~ ~y2 y=0" 

Since the wall is assumed to be isothermal, the foregoing 
relation simply suggests zero curvature of the temperature 
profile at the wall: 

~2T y=O-- ~ (U CN~ 2) y=o + u = 0 .  (15b) 
Oy2 8y2 v 

Substituting the velocity profile given by Eq. (12) into the 
foregoing equation, we obtain a quadratic equation for the 
parameter A, which can easily be solved for A as 

A =  
2 [7 (1 + 4 Gr) 1/2 - 3] - 2 [[7 (1 + 4 Gr) 1/2 - -  3] 2 - -  9 [(1 + 4 Gr) 1/2 - -  112] 1/2 

(1 + 4 Gr) 1/2 -- 1 

Once the shape parameter A is determined for given Gr using the foregoing equation, the local Nusselt number of our 
primary concern may be evaluated from 

) Nu~- ey r = o / k  x / K g f l ( T  w To) ~y + u 2 = 1+2  D - , : o  Kgfl(T~- Te) 

: (i Rax) 1/2 [ (1 + 4 Gr) 1/2 [(1 + 4 Gr) 1/2 - 1] 3 [2A + [(1 + 4 a t )  1/2 --  1] B] D ql/2, 

[_ 32 Gr 3 J 

(16) 

(17) 

where Eqs. (9) and (10) were used to obtain the final expres- 
sion for Nux.  It is particularly interesting to note that the 
vertical flat plate solution can readily be translated for the 
cone solution, simply by substituting 3 Ra x in place of Ra~. 

4 R e s u l t s  a n d  d i s c u s s i o n  

The shape parameter A versus Gr curve was generated from 
Eq. (16), and plotted in Fig. 2, the limiting values for the 
Darcy flow and Forchheimer flow limits may easily be ex- 
tracted from the equation, namely, 

=~9Gr4- for G r ~ l  (18a) 

A ( 1 4 - 4 . ~ i 0 = 1 . 3 5 1  for Gr>>l (18b) 

Upon substituting the foregoing limiting values into 
Eqs. (14) and (17), we obtain the asymptotic expressions for 
the local Nusselt number as follows: 

f 0.4205 for G r ~ l  (18c) 
Nux/(i Rax)l/Z = ( 0.4782/Gr 1/4 for Gr>> l (18d) 

Thus, in the Forchheimer flow limit (Gr >> 1), Nux varies in 
proportion to 

(Ra~/Gr) 1/4 = ( , , /K 9 fl(Tw - re) x 2 / C  ~2)1/4 

instead of Ra~/2. The values 0.4205 and 0.4782 are in good 
agreement with the exact values, namely, 0.444 and 0.494, 
respectively. Bejan and Poulikakos [11] used an exponential- 
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Fig. 3. Heat transfer results 
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Fig. 4. Temperature profiles 
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Table 1. Nux/Ralx/2 

Gr Present Exact Bejan-Poulikakos' 
approximation number approximation 

0 0.4205 0.4439 0.5000 
10 -z 0.4191 0.4423 0.4992 
10 -1 0.4085 0.4297 0.4912 
1 0.3528 0.3662 0.4317 

10 0.2435 0.2513 0.2973 
10 / 0.1466 0.1519 0.1779 

The present heat transfer formula Eq.(17) and the Bejan- 
Poulikakos' formula Eq. (19) are compared against the exact 
solution [14] in Fig. 3. The present formula provides a close 
approximation to the exact solution, while the Bejan- 
Poulikakos' formula overestimates the heat transfer rates by 
10 to 15%. The values based on both formulas are tabulated 
in Table I for a direct comparison with the exact solution. 
Excellent agreement observed between the present approxi- 
mate solution, and the exact solution may be attributed to 
our effort to match the compatibility condition at the wall, 
namely, zero curvature of the temperature profile at the wall. 

Although we cannot expect an approximate method of 
this kind to predict accurate temperature profiles, it would 
still be worthwhile to check the assumed temperature pro- 
files, so that the accuracy of the integral treatment can be 
examined further. Equation (2) along with (9) provides the 
dimensionless temperature distribution, namely, 

T -  T~ (20) 
Tw-To 

:(1+4Gr)1/2--1 (~w)[2+[(l+4Gr)l/Z_l](~w) 1 
4 Gr 

where the function (U/Uw) is given by Eq. (12). In Fig. 4, the 
temperature profiles for Gr = 0, 1 and 10, obtained from 
Eq. (20), are presented with those generated from the exact 
solution. The abscissa variable is chosen to be 

YRalx/2=[~Ra~x/2](~), (21) 

where the value in the bracket is evaluated from Eq. (10). The 
Assumed profiles near the wall appear to be in close agree- 
ment with those of the exact solution. This fact guarantees us 
a high performance of the present integral procedure for 
predicting heat transfer rates. 

decay velocity profile and temperature profile shapes based 
on the Oseen's linearized solution, and derived the following 
integral solution for the isothermal flat plate: 

Nux/ea~/2 (19) 

: [ [ ( 1  + 4 Gr)l/a-1] [16Gr2-[(l + 4 Gr) l/z- 112]] 1/2 

96 Gr 3 

5 Concluding remarks 

In this article, we proposed a consistent integral treatment 
for analysing free convection over a vertical flat plate and 
cone embedded in a fluid saturated porous medium. A one- 
parameter family of third order polynomials was used to 
describe the velocity and temperature profiles. Obviously, an 
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effort to match the compatibility condit ion for the tempera- 
ture profile at the wall was successful for improving the 
accuracy of the heat transfer results. The present heat trans- 
fer results fall within about  5% of the exact results. 

Although more elaborate numerical integration schemes 
are now available, integral treatments such a presented here 
should keep being exploited for speedy and yet sufficiently 
accurate estimations of heat transfer rates. 
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