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UNIQUENESS AND STABILITY OF

HARMONIC MAPS AND THEIR JACOBI FIELDS
Willi J&4ger and Helmut Kaul

Dedicated tec Hans Lewy and Charles B, Moarey

Let M,N be Riemannian manifolds and let f,,f, : M—>N be
harmonlc maps., Using a maximum prlnclple, an estimate of
the distances of these maps by the distances of their
boundary values will be proved. Corresponding estimates
will be stated for the norm of Jacobi fields along harmo-
nic maps, and for the distances of solutions of the heat
equation.

Let M be a connected C?-Riemannian manifold with nonvoid
boundary 8M , and let N be a C}-Riemannian manifold

without boundary. We denote by M= M-aM the interior of
M . Suppose that x >0 1is an upper bound of the sectional
curvature of N . An open subset A of N satisfies the
cut locus condition, if every pair of points in A can be

joined by exactly one minimizing geodesic arc of N . We
denote by

Br(a) := { yeN : dist(a,y)<r}

the open r-ball in N with center a€ N , and define
0025~2611/79/0028/0269/$04,60
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2 JAGER ~ KAUL
(1 - cosvet) /x x>0

qK:]R——->IR s q‘(t) :=[ )
t7/2 K =0,

Our results are:

THEOREM A, Let £,,f, :M—>N be continuous mappings which

-]
are harmonic in the interior M of M. Suppose that there

is a ball B,(a)C N satisfying the cut locus condition and

n
£, , £,(M)CB(a) , r < 7=

Then the function

8 = O(f,,f,) :M—R ,

q, (dist(f) (x),f,(x)))
cos(Yxdist(a,f, (x))) cos(/cdist(a,f,(x)))

satisfies the maximum principle

sup © < sup © .
M M

In particular, from fllam = f2|aM follows

fl=f2'

THEOREM B, Let f :M—>N be a continuous map which is

o
harmonic on M. Assume that there is a ball Br(a)C N sa-

tisfying the cut locus condition and

f(M)CBr(a) sy P < Y

Then for every continuous vector field X along f which

o
is a Jacobi field on M, the function
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JAGER - KAUL 3

IX(x) |2
cos?(/xdist(a,f(x)))

=0 (X): MR, xX—>

satisfies the maximum principle

sup 8 < sup 0 .
M M

In particular, X = 0 is the only Jacobi field along f

with x'aM = 0,

For a real number T >0 we consider the product manifold

and the boundary of MT without the top,
M = ({0}xM) U (1O,TIxdM) .

In the heat equation

(4-3,)f = 0o for mappings f :M,?.—-——»N s

Bt denotes the derivative with respect to the first
("time") variable and the generalized Laplacian A, defined

by (3), is acting on the ("space") variables of M as
usual (£11,(31,(51),

THEOREM C. Let f£,,f, :M,—>N be continuous maps and so-

lutions of the heat equation in the interior of M;. Sup-

pose that there is a ball B,(a)CN satisfying the cut

locus condition an

£,0Mp) 5 £,(Mp) ©BL(a) 1< pme

Then we have
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b JKGER - KAUL

sup 8 < sup 0 ,
M apM

where 6 = 8(f,,f,) :MT——%JR is the function in Theorem A

with M replaced by My,

BEMAKK§. (i) Theorem A improves a result of the authors
({71, Corollary 3) where for a similiar function 6 the
maximum principle has been proved under the stronger condi-
tion

r < 1,00291//x .
(ii) Geodesic arcs on the standard sphere, the endpoints of
which are antipodal give rise to the conjecture, that the
bound =#/(2/x) in Theorem A and Theorem B is the best pos-
sible.

(iii) Consider the Dirichlet problem for harmonic maps
f :M—»Br(a)CN s

M is compact, Br(a) satisfies the cut locus condition,
and r < 1/(2/x) . Then we conclude from Theorem A and the
result of Hildebrandt, Kaul and Widman in [6] for conti-
nuous boundary datas the existence, uniqueness and the con-

tinuous dependence of solutions on the boundary values.

(iv) Since Jacobi's differential equation is the linearized
Laplace-Beltrami equation (see (6) and (7)), Theorem B may
be considered as an infinitesimal version of Theorem A, The
fact, that under the conditions in Theorem B X = 0 is the
only Jacobi field along f with Xj,y = 0, expresses the
nondegeneracy of the Hessian szf of the energy

1
¢ ——> E() = 5 f |def2avoly .

This fact generalizes the part of the Morse-Schoenberg
Theorem which says that any geodesic arc of length less
than =//x is free of conjugate points,

(v) Theorem B answers a question posed to us by Eells and
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JAGER - KAUL 5

Lemaire. Theorem A and Theorem B establish assumptions of
Theorem (3.1), Corollary (3.2) and (4,3) in {21, where
Eells and Lemaire prove the smooth dependence of harmonic
maps on their boundary values and the metrics of M and N.

(vi) The cut locus condition in Theorem B can be weakened
to the assumption: every point of the ball Br(a) can be
joined with the center a by exactly one minimizing geo-
desic arc,

The main idea in the proof of our results is to use the
maximum principle for a properly chosen elliptic operator
2 on the manifold M and a &£-subharmonic function

8 :M—= IR, which controls the distance of solutions
f,,f£,: M—N or the norm of the Jacobi fields. If the
target manifold N has nonpositive sectional curvature,
the problem is easy, since the geodesic distance of two
harmonic maps is subharmonic with respect to the Laplace-
Beltrami operator on the manifold M. However, if the sec-
tional curvature of N gets positive, the situation be-
comes more delicate. The techniques successful in the har-
monic case are easily carried over to the corresponding

heat equation.

The authors want to thank Professor Eells and Professor
Lemaire for very interesting and helpful discussions.
W.J4ger is appreciating the support he got for his study
as a guest of the Department of Mathematics of the Univer-
sity of Utah.

We start with some preparations. The following standard

notations on Riemannian manifolds are used:

< , > scalar product

b the corresponding norm
dist geodesic distance

d differential

D covariant differentiation
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6 JAGER - KAUL

R Riemannian curvature tensor
v gradient
div divergence,

0
and with respect to a co-ordinate chart for M,

Bag coefficients of the scalar product

gf‘B coefficients of the inverse matrix of (gue)

ruBY Christoffel symbols

I partial differentiation in direction of
} the a-th base

D, covariant differentiation vector field.

Let S be a Riemannian manifold, let f :8—+S be a C2-
map and X :M—»>TS a CZ-vector field along f (i.e.
X(x)e Tﬂu)s Vxeﬁ ). We define with respect to a co-ordi-
nate chart for %

2 .- af
(1) ld£]2 := 5 g*f<a £,3,6>
(2) |Dx|2 := 3;@ g“B<DaX,DBX>
.z af - Y
(3) Af := g*®(D 3, f ;; Fog' 3y f)

4) AX :=

&M £

ap - Y
g (DGDBX § Tag DyX)

.o
H

(5) Re(X) = B g®PR(X,3,£)09,f .

All these quantities do not depend on the choice of the

[+]
chart. |df| , |DX]| are real functions on M and Af ,AX,
Rg(X) are vector fields along f . A is called the (gene-
ralized) Laplace-Beltrami operator and Ry is the Riemann

curvature tensor along f.

The map f is harmonic, iff
(6) Af =0,

and X is called a Jacobi field along a harmonic map f iff

(M AX +Re(X) = 0 .
Let
E() := § J |af|2 avoly,
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JAGER - KAUL 7

be the energy of f. One calculates that the gradient (the
"first variation") of the energy is given by

VEE(X) = - [ <af,X> dVoly

for smooth vector fields X along f with X|am = 0, and
the Hessian (the "second variation") is

vzzf(x,Y) = -M[ <AX + Re(X),Y>d Voly

for smooth vector fields X ,Y along a harmonic map f
with X|am= Y|y3m =0 . Hence, the harmonic maps are the cri-
tical points of the energy functional, and a vector field
X along a harmonic map f 1is a Jacobi field iff

VZEL(X,Y) = O

for every vector field Y along f with Y|3y = O. For
further details about the variational calculus of the ener-
gy we refer to {11,[3],

Let h:S—>IR be a C2-map. The Hessian of h is the
symmetric bilinear form

(8) v2h :TySXTyS —R , 92n(u,v) := <D, Vh,v>

Vy€S. From the chain rule we get for the composition map
o
hef :M —> IR

(9) <V (hef)(x),u> = <(Vh)(£f(x)),df(w)> Vue T,M , x€EM,
(10)  a(hef) = ¥ g*PV2h(a, £,8,f) + <(Vh)ef,af> ,
(11) |9¢hef) |2 = 5 g2B<(Vh)of,3,£><(Th)e£,3,E> .

In the special case S = IR, the equations (9) and (lo0) re-
duce to

(12) 9(hof) (h'of)VE

(13) A(hof)

(e £)|vE]2 + (h'e f) A,
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8 JEGER - KAUL

Let
Uysesns¥ w
§ 2K el — R

be Cz-maps, and set

k

L wod, .
i=1 1

Let £ be the formally self adjoint elliptic operator on M

® :=

o

(18)  Lu) := divie ®vu) VueCZ(M,R)

12 "

Lemma 1, Suppose that ®“ < w holds. Then for every

V€ cz(ﬁ,m+) satisfying

v$ = 0 on the set w-l{O} of zeros of ¢ ,

we have
Ay on ¥7'(0}
x(ed,‘l') > 2 X o
s -h 2y 3 wevpavy on BovHO)

i=1

Proof. We have

X(e%’)

div(e P (e®)) = div(vy + yva)

2 AP + YAD + <VY,UO>
On ua'l{O} holds ¢ =0 , VvV = 0 , whence
Le®y) = av .
On M -y-1{0} it follows from (12) and (13) that

X
Le®) = av + ,%w igl(w"owi)lvwilz

(w'owi)Awi

+*
I
<
™
n M=
(WY

+
A

o B

"R

[N

(m'owi)<vw,vwi> ,

and by application of Young'’s inequality

276



JAGER - KAUL 9

2
<m'o¢i)<V\b,V¢i> 2 ‘W’(w'°¢'i)2|‘7¢i|2 - l‘;‘l'wl
Yi=1,...,k, hence, observing u"> u'?, the second esti-

mate. [}

Let s, :IR— 1R Dbe the solution of

(15) sy *k*s, =0 , s.(0) =0 , s,.(0) =1

K

and
t

(16) q.(t) = [ s,
o

or explicitely

(sinJkt)/Jx (1-cosJkt)/k x>0

q. (t) =
t T {

s (t) =
« { t2/2 k=0,

Lemma 2., If X is a Jacobi field along a geodesic arc

o : loy,pl~—> N such that
XK,et'> =0 , o'l =1,

then under the assumption

O<p<u/dc

the estimate

s!(p)

K
s, (p)

2
XLX'>[0 2 Clvp 2+ v |20 = —slvy |+ v, |
K

holds with

1= X(0) , v, := X(p)

v 2

1

(o' is the tangent vector of o and the prime at vector
fields indicates the covariant differentiation D/at).

Proof. This proof is based on Karcher’s Jacobi field tech-
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1o JAGER - KAUL

niques ([8]},App.A). From the assumptions
et} =1 , <X,0'> =0
there follows
<X,R(X,0")a"> < - (|X]|%]e']? - <X,0'>%) < «-|X|? ,

since «x 1is supposed to be an upper bound for the sectio-
nal curvature of N . Let s : IR —TR Dbe the solution of
the boundary value problem

s"+xs =0 , s(0) = |X(O)| = |v,| , sCp) = |X(p)]| = |v,].
The function
g := s+|X]' - s'-|X] : [0,p] — TR

is differentiable on every intervall 1le,8fCJ0,pl without

zeros of X . From Jacobi’s equation
17) X" + R(X,0")o' = O

and the last inequality we get

1] 1]
g' = s X" - s"|X| = s-(£%%§rl) + ko5 |X]
L L SXTLXT XX <X,X">2 b ks |X]
1x1 Ix13

= s |X]73CIX|2|X1 ]2 - <X, X'>2)

"1 ¢X,R(X,0")a'> + k.s.|X] 20,

- s.|x| 2
hence
(18) gla+0) < g(8-0) .

The function s is explicitely given by

1
s(t) = E_TF3'(‘V1I°5x(°'t) + lvzlosK(t)) s

K

from which follows
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JAGER - KAUL 11

s20 on (0,p]

and

-|vy|st(p)+|v,| s' (p) L -lvil+lva]s, (p)
s (p) se(p)

s' (0) =

If X =0, the assertion is trivial. In the case X#0
has only finitely many zeros in 10,p[ ,

s X

0<tl<...<tk<p s

since X 1is solution of a second order differential equa-
tion. From

|X|'(ti10) =+ 'X'(ti)| ’
it follows

hence by application of inequality (18) to the intervalls
]ti-i’ti[ (t°:=0 s tk+1:=°)’ we obtain
g(0+40) £ g(t,-0) £g(t;+0) ... 2g(t, +0) <g(p-0) ,

therefore

0<g(p-0) - g(0+0) = s(p)|X]'(p=0) = s'(p)|X(p)]|

- s(0)]x]"04+0) + s'(0)|X(0)]

[XCp) |+ |X] " (p-0)

ste)|vyl={vy|

) sl

- Xyt x| '¢0+0)

|v2|-sL(p)|vl|

s, (p) V1
= <X,X"™>(p) - <X,X'">(0)

sL(p)

Ty (v 12+ |v, |2
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12 JAGER - KAUL

2
* sK(p)lvx"'VzI -0
On the product N XN we introduce the Riemannian metric

u, ®u,,v,®v,> := U,V > 4 <u,,v,>

1 2

for wuy,v; ETyiN » Y{EN , i=1,2. One verifies that for

smooth maps
o] 0
f,,f, iM—>N and f; xf,:M-—>NxN
the identity
(19) a(f, x £,) = Af, @Af2

holds.

The distance function on N,
dist : NxN —1R

is of class C2 on U, x U, outside the diagonal, if U,
and U2 are open subsets of N satisfying the condition

¢20) {every pair y, €U, , y,€U, can be joined by ex-
o

actly one minimizing geodesic arc of N.

If ¢ :IR—>IR is a C2-map such that ¢'(0) =0 (for ins-
tance, ¢ =q_ defined in (16)), the composition map

¢edist : U, xU,—> R

is of class C? ([41,85.1).

Lemma 3. Let U‘,UZCN be open sets satisfying the condi-
tion (20) and

dist(y ,y,) < n/Je V(yl,yz)GUl xU, .

Then the Hessian of

Q'< ¢= qradlst :leuz-—-»nz
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JAGER - KAUL

(q, 4is defined by (16)) admits the following estimates:

2 =
, vl ¥, =Y,
VEQ (v,v) 2 <‘7Q.<(y),v>'z 2
T2,y T «Q (y)]|v| v, v,

VveTy(NxN), y=(y,,y,)€U, XU, , and

v2Q, (v,v) 2 (1-«Q (y))|u]?
if v has the special form O0@u or u@oO .
Proof. Let be y=(y,,¥,)€U;x U,, p:= dist(y,,y,), and

V-VIGVZET N@T N &~ T (Nx N). In the case p>0 (&>
Y2
A #yz ) we denote by

ei(y)ETyiN i=1,2
the outside directed unit tangent vectors of the unique
minimal geodesic segment joining Y, and Yy Let

tan
. 1= v, . >e., PRl .- .
vy vl,el(y) el(y) Y v v

13

be the tangential part and the normal part respectively, of

v: with respect to this geodesic segment for i=1,2, Then

1
the gradient of the distance function is

(21) v dist (y) = el(y)Gez(y) if p>0 ,

and using the chain rule we get

0 p 0
(22) vQ (y) =
) {sx(p)(el(y)Qez(y)) p>0 ,

2 - - . .
v2Q (v,v) = <D,vQ ,v> = <D,((s odist)vdist),v> ,
hence

ME p=0
(23) VZQ‘(V,V) = 2

281
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1k JEGER - KAUL
p >0.

In case p >0 , the Hessian of the distance function can
be expressed in terms of Jacobi fields: for sufficiently
small ¢€IR, let

o, * [O,p]—>N
be the uniquely determined geodesic arc such that

- nr - nor
°t(0) = expyl( ev) ) N °e(°) = expyz(ev2 ).

The family (e, ,t)+—>0(e,t):= Ue(t) constitutes a varia-

tion of the geodesic arc o=o0, , and the variational vec-~

tor field of this variation,
x(t) := 22c0,t)  vtelo,e] ,
is a Jacobi field along ¢ satisfying
X(0) = v';“' ,» X{p)= v;‘" .

Therefore, from Synge’s formula ([u4],S4.1), we obtain

2

9
244 2 ——
vidist(v,v) = 3e2 1ength(o£)|e=°

[}
[ (|1X']2 - <X,R(X,0")a'>) dt .
[¢]

Taking Jacobi’s differential equation (17) and Lemma 2 into

account, we get

[«]
v2dist(v,v) = [ (|X'|2 + <X,X">)dt
o
= <x,x'>|z
51 (o) )
s X nor 12 _ N AT
25 & TP - v |+ 1v27l

This inequality together with (23) and (21) yields in case
p >0

(24) VZQK(V,V);s;(p) <e,(y)De,(y),v,®v,>2 +
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JAGER -~ KAUL 15

2
(2u4) + s;(p)i§1|vi"° [2 - 2l |- vy |
Using
()::<ei(y),vi>)2 < (L lvti‘“'l)2 <2z lvti""|2 s
i i i
we get
v2Q (v,v) 2 s'(p)( Zi]<ei(y),vi>)2
- (1-s!(e)) L lvgwlz
1
= 51 (p){ zi:<ei<y),vi>)2
- (=81 (N I v |2+ (1-s! (o)) T |v™|?
i i
2 (s1(p)+2(1-51(0)))( fi: <e;(y),v;>)2
- (1-s! (e L |v;|2
1
5 3(1+51(p)) 5, (p)72¢9Q, (y) ,v>*

-(1-s!(p)) T vs|2
1
= (2Q (y))"1<vQ (y),v>2 - «Q (¥ I |v;]2,
1

Observing (23) for o =0 , we have proved the first inequa-~
lity. In order to prove the second one, we conclude from

(24) in case v, =0 , v, T u

v2Q (v,v) 2 si(p) <e,(y),u>? +5'(p) u"|?

Sé(p)lutnnlz + sé(p)lunorlz

si(p)ful?

(1-!Qéy))|uP
for p >0 and due to (23), this remains true also for

p =0.[:]

Let fl,f2 :ﬁ-—*—N be harmonic mappings and assume that
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16 JAGER - KAUL

there is an open ball Br(a)CN which contains the traces
£, (e, and fuifitis

r < w/(2/x).
We define maps
o
h’b,,wz tM— R
by

v(x) := qnodist(fl(x),fz(x))
(25) {

wi(x) 1= qkodist(a,fi(x)) i=1,2.

v is C2-differentiable if B.(a) satisfies the cut locus
condition, and ¢,,$, are C?-differentiable if any point
of Br(a) can be joined by exactly one minimizing geodesic
arc. We denote by

(26) K := { xEM : £(x) = £,(x) )

the coincidence set of fl and fz'

[}
Lemma 4. Suppose that ¥,¥,,¥, :M—>IR are of class c?,

then
2
i=1 -
27 Ay 2
fvel2 _ Kepe é |df; |2 on M-K
2¢ j=1 =t = ’
(28) Y4 = 0 on K,
and

(29) A*i _>_ (1" K wi)‘dfilz ’ 5.:1,2.

Proof. Introducing the notations
F(x) := (£, (x),f,(x)) , Fi(x) := (a,f;(x)) i=1,2,

we can write
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JEGER - KAUL 17

v = QKOF . wi = QKOFi i=1,2

(Q'< is defined as in Lemma 3) and due to (19), the map-
pings
0
F,F,F, :M—>NxN
are also harmonic.
We fix a point xezﬁ and choose a co-ordinate map around
x with

af _
g (x) = caB

From the identities (11),(10) and the harmonicity of F,
Fl’Fz we obtain the formulas at x suppressing the argu-

ment x in the formulas

(30) [vw|2 = [v(Q.oF)|2 = L <(VQK)0F,auF>2 .
a
179512 = [9(QoF;) |2 = £ <(9Q)eF;,0 Fi>?  i=1,2,

Ay = A(Q °F) = § v2Q (3 F,3,F)

= 2 -
Ay = 8(Q . °F;) E v Qx(aaFi’aaFi) i=1,2.

The application of Lemma 3 yields
ay 2 ¥ |3, F|2 = |aF|?
¢}
if x€K (&= p(x) = QKoF(x) = 0), and in case x€M-K:

<(VQK)oF,aGF>2
E 2 QKOF

v
—

AY - x-(QKoF)IaaFP)

L N L

Similarly we derive from the second inequality in Lemma 3
avg 2 (1-<¢i)|dri{2 i=1,2 ,

and observing
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18 JAGER - KAUL

|aF|2 = |df |2+ |af,|2 , |dF |2= |af;|? i=1,2,

we get the inequalities (27) and (29). The third assertion
(28) follows immediately from (30) and (22).[ ]

Proof of Theorem A, Let the assumptions of Theorem A be
satisfied. We use the notations (25) and (26):

¥ qKodist(fl,fz) s $g T qkodist(a,fi) i=1,2,

K

{ xeM : £ (x)=£,(x) } = p~1{0} .
We define
m:[O,K'l[—>IR s thr— =1g(l-ct) ,

and construct the differential operator &£ = div e"®v on
M by (14) using the functions ¢,,¥,,s (k=2) : We have

@' () = gee , e"™(t) = (Tf.c—zﬁ—z = w'2(t) ,
o = (uov!) + (uowz) z -1g(1-n¢1)(1-w2)
= -1g(cos(vkdist(a,£,)) cos(/kdist(a,f,))) ,
and
o = o(f,,£,) = ey ,

Because of (28) and " = w'? , Lemma 1 is applicable and

gives
2 = L.
Ay on K
>
= 2 |vel? 2 K S
Aw LE—*L- + "]'_El mAwi on M K .

Application of the estimates (27) and (29) in Lemma 4% yield
L8 20 on M.

o
Therefore, the function 6€ C°(M,IR)MNC2(M,R) is a subso-
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JAGER - KAUL

189

lution of the elliptic second order operator L , thus by

Hopf’s maximum principle the assertion

sup € ¢ sup 0
M oM

follows. [ |

Proof of Theorem B. Let the assumptions of Theorem B be
fulfilled. The function

v o= |X]2:M— TR
. o 4]
is C2 on M. After choice of a co-ordinate chart for M
get
(31) 3 = aB!xl2 = 2 <D X,X> ,

3,0g¥ = 2 <D DX,X> + 2 <D X,DX> ,
hence

= ad - Y
Ay = u}i g (3,9,¥ %ras 3 %)

aB
2az,eg ( <D D X,X> + <D X,DX>

- Y
Eyj raB <Dyx,x>).
Inserting Jacobi’s differential equation (7), we get

sy = 2 ¥ g%8 <D x,px> - 2 <R.(X),X>
a 8 f
(32) a8

=z 2 - 2%<R X> .

o
Let us fix a point x €M and choose a chart around x
such that

g®B(x) = Sgp *

we

Since « 1is an upper bound for the sectional curvature of

N , we have at the point x

<Rg(X),X> = T <R(X,3,)3,£,X>
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20 JAGER - KAUL

< Lo (|X|2[a,£]2 - <X,3, £>2)
a

[ L

2 2

< 1X12 £ 10,1
= vy |df|2 ,

furthermore, from (31) we get at x

|ve ]2

1]

T (3 ¢)2 = 4 T <D X,X>2
a @ a G,

A

y 2 2=y 2
L |DgX|2[X|2 5w |DX]

From (32) and the last two inequalities we conclude:

(33) V¢ = 0 , Ay >0 on -i{0} ,
and
2
vy ap > 2 oy jag)2 on R-wlro) .

2y
Now we define
v, = qKodist(a,f) t M — 1R,
w0,k —> IR , t+>-1g(l-ct) ,

and construct the differential operator L= div e ®v on
M by (14) using LIRL (k=1), Then we have

¢ = 2wow1 = -21g(1-:w1) =z -1g cos?/xdist(a,f)

and

¢

0 = 0,00 = e [x|2 = ¥y .

The application of Lemma 1 to &2 and ¢ = X2 yields
L) = Leby) = ay >0 on y-l{o} ,
and, in virtue of (34) and (29)

L)

iv

- IV!)_lz K
Ay 2‘, + 2@1—:‘—*‘—15*1

o -
-2x9|df]2 + 2xp|df|2 = 0 on M-y~l{O} .

v
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Therefore, © :M-—IR 1is a subsolution of the elliptic
operator £ and by Hopf’s maximum principle, the assertion
follows.[]

In order to treat the parabolic case, we set for T>0

Mp := [0,TIxM , a¢M := ({O}xM) U (L10,TIx3M)

and denote by M% the interior of MT.

Suppose that
. MO
fl,f2 .MT-—<>N
are solutions of the heat equation (A —at)f = 0 such that

£0M7) L E,(MDCB (@), r<a/(2/k)

and Br(a) satisfies the cut locus condition. Quite analo-
gously to the case of harmonic mappings, we define

¥ = qodist(f,,f,): M — R,

T
¥; T qedist(a,fy) :M,‘E.—-——IR 1=1,2,
and
K := { (t,x) Mg ¢ £ (£,x) = £,(£,x) }
Lemma 5. £ las, |2 on K
(a-00% 2
t ol ‘ 2 2
V'}}‘ 2 ]
—_— - df., o Mn - K
2y T <ty lafil® en Mp-Xo,
V¢ = 0 on K,
and

(A -03,)9; 2 (1-xp)|af; ]2, 1=1,2.

(the operators d, v, A4 are acting on the variables of M)
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Proof. We proceed as in the proof of Lemma 4 defining
. M0
P,Fl ,F2 : MT—>N>< N

correspondingly, such that we can write
v = QeeF , ¥ = QeoF; .

In virtue of (19), the mappings F,FI,F2 are also solu-
tions of the heat equation.

We fix a point (t,x) EM.‘I’. and choose a chart around x
such that

g = 6, .
From the identity (9) follows
at‘, = at(QKoF) = <(VQK)°F’atF> ,
and from (11) and (10) we get at x
- = 2
(8 -39 = E v2Q (3,F,d, F)
and similarly
- = 2 ‘-
(a at)wi z § v2Q (8,F;,0 F.) i=1,2.

The right hand sides of these both equations can be estima-
ted in the same way as in Lemma 4.[ ]

Proof of Theorem C., Here we follow the lines of the proof
of Theorem A. We take  the same function

8 = o(f,,f,) = e®oy 1M — R,

with M replaced by Mg, but apply now the parabolic ope-
rator

ur— Pu:= Lu - e"¢atu s

where £ is the same elliptic operator as in Theorem A ac-
ting on the M-variables of wu: My —> IR. From Lemma 1 we

obtain
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P (o) = Pe® )
{(A_at”, on X=v7'(0}
>
2 ) _|V¢|2 2 x other-
(A=30¥ = = + ¥ B (4% vise.

Taking the estimates of Lemma 5 into account, we get

(o) 20 on M% .

Since % is a parabolic operator on M; satisfying the
assumptions of the maximum principle, we obtain the assert-

tion
sup @ < sup © .[]
MT aTM
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