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UNIQUENESS AND STABILITY OF 

HARMONIC MAPS AND THEIR JACOBI FIELDS 

Willi Jager and Helmut Kaul 

Dedicated to Han~ L z ~  and Char~e~ B. Moarz~ 

Let M,N be Riemannian . . . .  manifolds and let f.,,f2 : M �9 N be 
harmonic maps. Uslng a maxlmum prlnclple, an estimate of 
the distances of these maps by the distances of their 
boundary values will be proved. Corresponding estimates 
will be stated for the norm of Jacobi fields along harmo- 
nic maps, and for the distances of solutions of the heat 
equation. 

Let M be a connected C2-Riemannian manifold with nonvoid 

boundary aM , and let N be a C3-Riemannian manifold 
o 

without boundary. We denote by M := M -aM the interior of 

M . Suppose that ~ ~0 is an upper bound of the sectional 

curvature of N . An open subset A of N satisfies the 

cut locus condition, if every pair of points in A can be 

joined by exactly one minimizing geodesic arc of N . We 

denote by 

Br(a) := { y 6N : dist(a,y) �9 r } 

the open r-ball in N with center a6 N , and define 
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JAGER - KAUL 

(I - cos//~t)/K ~ > o 
qK : ~ .... � 9  , q~(t) := 

t 2 / 2  ~: = o .  

Our results ape: 

THEOREM A. Let fl,f2 :M >N b_~e continuous mappings which 
O 

are haPmonic in the interiom M of M. Suppose that there 

is a ball Bm(a)C N satisfying the cut locus condition and 

f!(M) , f2(M) C Br(a ) ' m < 2~ " 

Then the function 
,, , ,, 

9 = 9(ft,f2) : M >IR , 

q~ (dist(f! (x) ,f2 (x)) ) 
X |  �9 . . . . . . . . . . .  ~-_. 

cos(cr~Kdist(a,f,(x))).cos(C~dist(a,f2(x))) 

satisfies the maximum principle 

sup e < sup e . 
H %M 

I__nn pamticulam, f~om fllaM = f2~aM follows 

f! = f2 �9 

~ ,  Lee f :M *N be a continuous map whlch is 

O 

harmonic on M. Assume that theme is a ball Bm(a)C N s_~a- 

tisfying the cut locus condition and 

f(M) CBm(a) , m < 2/~K ~ . 

Then for ever[ continuous vectom field X along f 

0 

is a Jacobi field on M~ the function 

which 
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JXGER - KAUL 

@ = @f(X) : M ~ , xl > 

satisfies the maximum principle 

3 

Ix(x)l' 
COS = (~dist (a,f(x))) 

sup e S sup e . 
M aM 

I__nn particular, X = O 

with XI~ M = O. 

is the 9nly Jacobi field alon~ f 

For a meal number T > o we considem the product manifold 

M T := [O,T] x M 

and the boundary of M T without the top, 

~T M := ({O}xM) u ([0,T]xaM) . 

In the heat equation 

(&-~t) f = o for mappings f :M~----~N , 

~t denotes the derivative with respect to the first 

("time") variable and the generalized Laplacian &, defined 

by (3), is acting on the ("space") variables of M as 

usual ([I],[3],[5]). 

~ .  Let ft,f2 :M T ,N b__ee continuous maps and so- 

lutions of the heat equation in the interior of M T. Sup- 

pose that there is a ball Br(a ) c N satisfying the cut 

locus condition and 

w 
fl(MT ) , f2(MT ) CBr(a) , r < ~ . 

Then we have 
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4 JKGER - KAUL 

sup @ i sup @ , 
M T 8TM 

where e = e(fl,f 2) : M T 

with M meplaced by M T. 

�9 ~ is the function in Theorem A 

REMARKS, (i) Theorem A improves a result of The authors 

([7], Corollary 3) where fom a similiar function 8 the 

maximum principle has been proved under the stronger condi- 

tion 

r �9 I.o02gl/V~K . 

(ii) Geodesic arcs on the standard sphere, the endpoints of 

which are antipodal give rise to The conjecture, that The 

bound ~/(2/~K) in Theorem A and Theorem B is the best pos- 

sible. 

(iii) Consider the Dirichlet problem for harmonic maps 

f : M ~Bm(a) C N , 

M is compact, Br(a) satisfies the cut locus condition, 

and r �9 ~/(2/~) . Then we conclude from Theorem A and the 

result of Hildebmandt, Kaul and Widman in [6] for conti- 

nuous boundary datas the existence, uniqueness and the con- 

tinuous dependence of solutions on the boundary values. 

(iv) Since Jaeobi's differential equation is the linearized 

Laplace-Beltmami equation (see (6) and (7)), Theorem B may 

be considered as an infinitesimal version of Theorem A. The 

fact, that under The conditions in Theorem B X = 0 is the 

only Jaeobi field along f with X]8 M = O, expresses the 

nondegeneracy of the Hessian V2Ef of the energy 

,,> = M; Id 1  dv~ �9 

This fact generalizes the part of the Momse-Schoenberg 

Theorem which says that any geodesic arc of length less 

than ~//~ is free of conjugate points. 

(v) Theorem B answers a question posed to us by Eells and 
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J~GER - KAUL 5 

Lemaire. Theorem A and Theorem B establish assumptions of 

Theorem (3.1), Corollary (3.2) and (4.3) in [2], where 

Eells and Lemaire prove the smooth dependence of harmonic 

maps on their boundary values and the metrics of M and N. 

(vi) The cut locus condition in Theorem B can be weakened 

to the assumption: every point of the ball Br(a) can be 

joined with the center a by exactly one minimizing geo- 

desic arc. 

The main idea in the proof of our results is to use the 

maximum principle for a properly chosen elliptic operator 

on the manifold M and a ~-subharmonic function 

@ : M ~]]~, which controls the distance of solutions 

fl,f2 : M ~ N or the norm of the Jacobi fields. If the 

target manifold N has nonpositive sectional curvature, 

the problem is easy, since the geodesic distance of two 

harmonic maps is subharmonic with respect to the Laplace- 

Beltrami operator on the manifold M. However, if the sec- 

tional curvature of N gets positive, the situation be- 

comes more delicate. The techniques successful in the har- 

monic case are easily carried over to the corresponding 

heat equation. 

The authors want to thank Professor Eells and Professor 

Lemaire for very interesting and helpful discussions. 

W.Jager is appreciating the support he got for his study 

as a guest of the Department of Mathematics of the Univer- 

sity of Utah. 

We start with some preparations. The following standard 

notations on Riemannian manifolds are used: 

< , > 

t t 
dist 

d 

D 

scalar product 

the corresponding norm 

geodesic distance 

differential 

covariant differentiation 
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6 JAGER - KAUL 

R Riemannian curvature tensor 

V gradient 

div divergence, 

o 
and with respect to a co-ordinate chart for M, 

g~8 
gab 

ra87 

a 

D a 

coefficients of the scalar product 

coefficients of the inverse matrix of (gaS) 

Christoffel symbols 

partial differentiation ) in direction of 
the =-th base 

cova~iant differentiation vector field. 

o 
Let S be a Riemannian manifold, let f :M >S be a C 2- 

o 
map and X :M ~TS a C2-vector field along f (i.e. 

X(x)q Tf~)S VxE~ ) . We define with respect to a co-ordl- 

nate chart for ~ : 

(I) IdfI2 :: a~ gSB<%af'S8 f> 

(2) IDXI 2 :: ~ gaS<DaX,DsX> 

(4) aX := E g~8(D~DBX - E rs87DyX) 

(5) Rf(X) := E gaSR(X,Saf)asf a 

All these quantities do not depend on the choice of the 

chart. Idfl, IDXI are real functions on ~ and Af ,6X , 

Rf(X) are vector fields along f . A is called the (gene- 

ralized) L aplace-Beltrami operator and Rf is the Riemann 

curvature tensor alon~ f. 

The map 

(6) 

and X 

(7) 

f is harmonic, iff 

Af :0 , 

is called a Jacobi field alone a harmonic map f iff 

AX +Rf(X) : O . 

Let 

Ecf) := Idfl 2 dVol M 
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JAGER - KAUL 7 

be the energy of f. One calculates that the gradient (the 

"first variation") of the energy is given by 

VEf(X) = - MS <Af,x> dVol H 

for smooth vector flelds X along f with XI~ M = 0 , and 

the Hessian (the "second variation") is 

V2Ef (X'Y) = -M S <6X + Rf(X),Y>dVol H 

fop smooth vector fields X , Y along a harmonic map f 

with XI~M= Y[~H = 0 . Hence, the harmonic maps are the cri- 

tical points of the energy functional, and a vector field 

X along a harmonic map f is a Jacobi field iff 

V2Ef(X,Y) = 0 

for every vector field Y along f with YI~M = O. FoP 

further details about the variational calculus of the enem- 

gy we mefem to [I],[3]. 

Let h : S �9 �9 be a C2-map. The Hessian of h is the 

symmetric bilinear form 

(8) V2h :TySXTyS ~ , V2h(u,v) := <DuVh,v> 

V y E S . From the chain mule we get for the composition map 
O 

hof :M ~ 

(9) <V(hof)(x),u> = <(Vh)(f(x)),df(u)> rUE TxM , xEM, 

(Io) A(hof) = ~ gaSV2h(aaf,%sf) + <(Vh)of,Af> J 

(II) Iv(hof) l 2 = ~ gaS<(Vh)of,%af><(Vh)of,88f> �9 

In the special case S = IR, the equations (9) and (Io) re- 

duce to 

(12) V(hof) = (h'of)Vf 

(13) A(hof) = (h'%f) IVfl 2 + (h',f) af. 
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8 JXGER - KAUL 

Let 

r162 w 
, [O,K-I[ ~IR 

be C2-maps, and set 

k 
:= ~ E woe i �9 

i=I 

Let ~ be the formally self adjoint elliptic operator on M 

0 
(I~) ~(u) := div(e-r V uE C2(H,IR) 

Lemma I. Suppose that ~,2 ~ w" holds. Then for ever~ 

r EC2(~,~+) satisfying 

vr : 0 on the set r of zeros of r , 

we have 

f 
Ar o_~n r 

2Cer162 ]Vr 2 ~ k 
- 2r §162 Z (~'or162 o_~n ~-r Ar 

i=1 

Proof. We have 

~(er162 = div(e-r162162 = div(vr +r162 

= ar + r162 + <vr162 . 

On r holds r : 0 , vr : 0 , whence 

2(er162 = Ar . 

0 
On M-r it follows from (12) and (13) that 

k 
2f(er162 = Ar + ~r E (~"or162 2 

i=l 
2 k 

+ ~r E (~'or162 i 
i=1 
k 

2 
+ ~ Z (~'er162162 , 

i=l 

and by application of Young's inequality 
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J~GER - KAUL 

(m'or > -r #i)21V~i 12 - Iv#f2 
- ~ 

Vi=1~...,k, hence, observing m">m'2 the second esti- 

mate. [] 

Let s< : ~ , �9 be the solution of 

~ 0 (15) s" +K.s K : 0 s (0) : 0 , s~( ) : 1 
K �9 K 

and 

t 
(16) qK (t) :: S s K 

O 

or e x p l i c i t e l y  

{ ( s i n ~ t ) / ~  { (1 -cos~ t ) /~  ~ > 0 
s~(t)  : , qK(t) = 

t t 2 / 2  ~ : O.  

Lemma 2. If X is a Jacobi field along a geodesic arc 

: [o,p] �9 N such that 

< X , ~ ' >  : 0 , l o ' I  : ~ , 

then under the assumption 

0 < p < , / 4 ~ "  

the estimate 

p �9 s ~ ( o )  12 2 2 <x,x'>l o T 2 - - j ( I ~ ,  +lvul ) tv, l ' lva l  
- sK(p) 

holds with 

v I : :  X ( 0 )  , v z : :  X ( p )  

(o' is the tangent vector of o and the prime at vector 

fields indicates the covariant differentiation D/~t). 

Proof. This proof is based on Karcher's Jacobi field tech- 
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l o  JXGER - KAUL 

niques ([8],App.A). From the assumptions 

t ~ ' 1  : 1 , <x,o'> : 0 

thePe follows 

< x , R c x , o , ) o , >  ~ ~ . < l x l 2 1 o ,  I 2 - < x , o ' >  2 )  ~ ~ . l •  2 , 

s i n c e  z i s  supposed t o  be an u p p e r  bound f o r  t h e  s e c t i o -  

n a l  curvature of N . Let s : ]R ~ ~ be the solution of 

the boundamy value pPoblem 

s - + ~ s  : o  , s < o )  : I x ( o ) l  : l v ,  I , s ( ~ )  = I x < p ) l  : I v = l .  

The function 

g : :  s . l x l ,  - s , . I x l  : t o , , J  

is differentiable on evePy intervall 

zePos of X . From Jacobi's equation 

(17) X" + R(X,o')a' = 0 

and the last inequality we get 

]a~8[ C ]0~0[ without 

s '  : s . i x l " -  s " . l x l  : ~ .  - -  + , , : . s .  t x l  

<X t,Xt>+<X~X'> <X,X'> 2 
= S - S . - -  + K.s.lXl 

l x l  I x l '  

: s . l x l - S ( I x l ~ l x ,  I 2 -<x,x,>2) 

- s.lXl -I <X,R(X,o'),,'> + ~.s.]X] ,_ 0 , 

hence 

(18) g(a+0) ~ g(8-O) . 

The function s is explicitely Eiven by 

1 
s(t) -- %---U~.(Iv11.s (p-t) + Iv21.s (t)) , 

from which follows 
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JXGER - KAUL 11 

s ~0 on [0.p] 

and 

s ' (o )  = - Iv * ls~Cp>+lv= l  
sK(p) 

s ' ( , )  = - I ~ l l * l v = l s ; ( P )  
s~(,) 

If X = 0, the assertion is trivial. In the case X~ 0 , X 

has only finitely many zeros in ]0,p[ 

0 < t l < . . .  < t k < P  , 

since X is solution of a second order differential equa- 

tion. From 

I x l , ( t i •  = t I x ' ( t i ) l  , 

it follows 

g(ti+O) -g(ti-O) : 2s(ti)IX'(ti) I &O , 

hence by application of inequality (18) to the intervalls 

]ti_l,ti[ (to:=0 , tk+l:=p), we obtain 

g(O+0) ~g(t1-O) ~g(t I+0) ... ~g(tk+0) ~g(p-0) , 

therefore 

O < g ( p - O ) - g ( O + O )  = s ( p ) l X l ' ( p - O )  - s'(o)lx(o)l 
- s (o ) lx l ' (o ,o )  , s ' ( o ) l x ( o ) l  

= Ix (p> l .  Ixl ' ( , - o )  

s~(p) lv21-1 , , ,  I 
- I,,21 sKCp) 

- Ix(o)  t" lx l ' (o ,o )  

I, ,21-~::(p) Ivl  I 
�9 Iv, I 

s (,) 
K 

: <X.X'>(p) - <X.X'>(O) 

s'(p) 
s,:(p) ( lv*12 +1v212)  
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12 JKGER- KAUL 

2 

On the product N x N we introduce the Riemannian metric 

<U 1 ~ U2~VI~V2 > :: <Ul ~V|> + <U2,V2> 

for ui,v i ET~N , YiEN �9 i=1,2. One verifies that for 

smooth maps 

O O 
fl~f2 :M ~ N and f! • f2 : M ~ N• 

the identity 

(19) A(f I x f2 ) = Af I ~Af 2 

holds. 

The distance function on H, 

dist : N • ~IR 

is of class C 2 on UI• U 2 outside the diagonal, if U 1 

and U 2 are open subsets of N satisfying the condition 

every pair yl 6 UI , Y2 EU 2 can be joined by ex- 

(20) actly one minimizing geodesic arc of N. 

If r : IR m]R is a C2-map such that CV(O) = 0 (for ins- 

tance, r :q~ defined in (16)), the composition map 

r :UI • U 2 >JR 

is of class C 2 ([4],w 

Lemma 3. Let UI,U 2CN be open sets satisfying the condi- 

tion (20) and 

dlst(Yl,y 2) �9 ,/~ ~(yl,Y2)6 U I xU 2 �9 

Then the Hessian of 

QK := q odist :UIxU 2 ~IR 
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JAGER - KAUL 13 

(qK is defined by (16)) admits the following estimates: 

v2QK(v'v) > I Ivl~ Y* :Y2 
<VQK(y),v> 2 ( 2Q~(y) - KQK(y)Ivl 2 Yl ~y2 

VVETy(NXN), y= (YI'Y2)EU IXU 2 , and 

v2QK(v,v) ~ ( I -~QK(Y))Iul  2 , 

if v has the special form 0~)u o__rr u~0 . 

Proof. Let be Y= (Yl,Y2) EUIx U 2, p:: dist(yl,Y2), and 

v =v1~v 2 6T N~)T N~Ty(NX N). In the case 0 > 0 (< 

Yl R Y2 ) we denote by 

ei(Y)6T N i :I,2 

the outside directed unit tangent vectors of the unique 

minimal geodesic segment joining Yl and Y2' Let 

v?" v~ r:= v i- v~ ~" i :: <vi'ei(Y)>ei (y) ' i I 

be the tangential part and the normal part respectively, of 

v i with respect to this geodesic segment for i = I~2. Then 

the gradient of the distance function is 

(21) Vdist(y) = e1(y)~e2(y) if 

and using the chain rule we get 

{o 
(22) VQK(y) = 

S K (P) (e I (Y) ~e 2 (Y)) 

hence 

(23)  

p>0 

p~O 

p>0  , 

V~QK(v,v) = <DvVQK,v> = <Dv((SKodist)Vdist)  ,v> , 

= ~Iv12 p =0 
V2Q (v,v) [ s~(p)<Vdist(y),v> 2 + s (p)V2dist(v,v) 
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14 JXGER - KAUL 

p > 0 .  

In case p >0 , the Hessian of the distance function can 

be expressed in terms of Jacobi fields: for sufficiently 

small z E ~  let 

o c : [0,.] >N 

be the uniquely determined geodesic arc such that 

eXpy1( ~ v2 ) .  o r  : ev r) , oe(p  ) : eXpy2( e .~ 

The family (r ~ $(c,t):: o c ( t )  constitutes a varia- 

tion of the geodesic arc o= o o , and the variational vec- 

tor field of this variation, 

a~(O x ( t )  :=a-~c , t )  v t e [ 0 , ~ ]  , 

is a Jacobi field along o satisfying 

X(0) = v nat l , X(p) : v nat 
2 " 

Therefore, from Synge's formula ([4],w we obtain 

82 
V2dist(v,v) : az--- ~ length(oc)Iz:o 

: I (IX'l 2 - <X,R(X,o')o'> ) dt . 
0 

Taking Jacobi's differential equation (17) and Lemma 2 into 

account, we get 

V2dist(v,v) = ~ (Ix,I 2 + <x,x">)dt 
0 

p 
: <X,X'>Io 

s~(~) z 
E iv,.=. 12 2 .~ I .~ . . 1"2  I .  >" sK(P) i :1  ' z s (p) Ivt 

This inequality together with (23) and (21) yields in case 

p >0 

(2~)  V2QIcCv 'v )~s ' (~  < e l ( Y ) ( ~ e 2 ( y ) ' v l O v 2  >2  4- 

r 
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JAGER - KAUL 15  

( 2 ~ )  
2 

- Iv'l . + s'(p>,~ I v ~ ' l  2 2 1 v ? l . ,  = 

Using 

( .~<ei(Y ) .vi>)2 ~=, 2 vt,, 2 ,=.r  I) : . . 2 ~ 1  i I 
1 i z 

we get 

v2qK(v,v) '(P)( ~ <ei(Y),Vi>)2 >.. s K 
i 

- ( 1 - s , ~ ( o ) )  Y:. Iv".*"l 2 
�9 = 1 
1 

= s'(p)( 7. <ei(Y),Vi>)2 
K i 

- ( 1 - s ~ ( p ) ) ~  I v i l " ,  (J. - , ,~c, , ) )~:  Iv~'~ 2 
~: i 

> (s'(pl+�89 7. <ei(Y),Vi>)2 m K 

i 

- ( 1 - s ~ r  I v i l  = 
l 

r �89 (0)) " SK (~ (y) 'v>2 

-(1-s'(~)) ~ Ivil 2 
i 

= (2Q~(y))-l<vQK(y),v>2 - KQK(y) .~ Ivll 2. 
1 

Observing (23) for p =0 , we nave proved the first inequa- 

lity. In order to prove the second one, we conclude from 

(24) in case v! = 0 , v 2 = u 

'(p) <e2(Y),U> 2 + s'(p)lu#arl2 v2q~(v,v) & s~ 

= s , r  = , s , ( p ) l u " * ' l  = 

= s ' ( , ) t u {  2 
K 

= (I-KQ~(y))[ul 2 

for p �9 and due to (23), thls remains true also for 

p:0.[] 

0 
Let ft,f2 : M---~N be harmonic mappings and assume that 

283 



16 JXGER - KAUL 

there is an open ball Br(a)CN which contains the traces 

f1(~),f2(~) and fulfills 

r < ~ / ( 2 ~ ) .  

We d e f i n e  maps 

O 

# , $ 1 , #  2 : M  �9 

by 

(25) ~ # ( x )  := q o d i s t ( f l ( x ) , f 2 ( x ) )  

[ ~i(x) := q odist(a,fi(x)) i = 1,2. 

# is C2-differentiable if Br(a) satisfies the cut locus 

condition, and %li# 2 are C2-differentiable if any point 

of Br(a) can be joined by exactly one minimizing geodesic 

arc. We denote by 

(26) K := { xs : fi(x) = f2(x) } 

the coincidence set of f and f . 
! 2 

O 

Lemma #. Suppose that ~,@i,$ 2 :M 

then 

(27) 

2 

l 
ilt Idfi I~ 

A~ i 2 

Iv '~ l  ~ - ,~.,~. E 
2~ i=1 

~ are of class C 2 

on K 

I d f i l  ~ 
O 

on M-K , 

( 2 8 )  V$ = 0 on K , 

and 

( 2 9 )  A% i L (I- K #i)Idfil 2 , i = 1,2. 

Proof. Introducing the notations 
,, 

F(x) := (fl(x),f2(x)) , 

we can write 

Pi(x) := (a,fi(x)) i -- 1,2, 
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J~GER - KAUL 17 

: QK oF ' @i = QK~ i :1,2 

(QK is defined as in Lemma 3) and due to (19), the map- 

pings 

o 

F ,FI,F 2 :M - NxN 

are also harmonic. 
o 

We fix a point x EM 

x with 

and choose a co-ordinate map around 

g~8(x) : 8 
~8 

From the identities (11),(Io) and the harmonicity of F , 

FI,F 2 we obtain the formulas at x suppressing the argu- 

ment x in the formulas 

(30) IV@I 2 = [V(QK~ I 2 = E <(VQ )oF,0 F>2 , 

IV@i 12 = Iv(QK~ 2 = E <(vQK)oFi,aaFi >2 i = 1,2, 

8@ = 8(QKoF) = ~ V2Q<(8 F,a F) , 

8# i = A(Q oF i) = ~ V2QK(%sFi,8aF i) i =1,2. 

The application of Lemma 3 yields 

o 

if xE K (~ ) @(x) = _0 6F(x) = 0 ) , and in case xE M- K: 

<(VQK)oF,SaF >2 
A~ >_E ( 

2QoF 
K 

{v$12 ~ . 5 . ] d F I  2 
25 

- <.(Q oF) l%aFl2 ) 

Similarly we derive from the 3econd inequality in Lemma 3 

A#i i (l-K@i)IdFi 12 i =1,2 , 

and obsemving 
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18 JKGER - KAUL 

Idr l2  = l d f ,  l 2+ Idf212 , IdFi l  2 .  I d f i l  2 i - 1 , 2 ,  

we get the inequalities (27) and (29). The third assertion 

(28) follows immediately from (30) and (22).[] 

Proof of Theorem A. Let the assumptions of Theorem A be 

satisfied. We use the notations (25) and (26): 

= qK~ ' #i = qz~ 

K = { xEM : f1(x) = f2(x) } = #-l{O} . 

We define 

w : [0,K'I[ > IR , t~--~-Ig(1-~t) , 

and construct the differential operator ~ = div e-~9 on 

M by (14) using the functions #l,#2,s (k=2) : We have 

~2 
w"(t) = (l_~t) 2 = w'2(t) , w'(T) = 1-~T ' 

= (wo#1) + (wo# 2) = -ig(l-~#l)(l-K%2) 

, -Ig(cos(/~disT(a,fl)).cos(/~Kdist(a,f2))) , 

and  

8 = e(fl,f 2) = e#.~, . 

Because of (28) and ~,, : ~,2 , Lemma I is applicable and 

gives 

,t'(e) -~ .~(e~.~) 

[ a~ ,on K 

>. 
A~- Iv~'12 +~, E2 ,: o 

25 i'1 [:~-i A$i on M-K . 

i -1,2, 

Application of The estimates (27) and (29) in Lemma ~ yield 

o 
2(e) ,_ 0 on M . 

Therefore, The function @ECe(H,IR) f~C2(~,3R) is a subso- 
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J~GER - KAUL 19 

lution of the elliptic second order operator ~ , thus by 

Hopf's maximum principle the assertion 

sup @ ~ sup e 
M aM 

follows.[] 

Proof of Theorem B. Let the assumptions of Theorem B be 

fulfilled. The function 

== I x l  2 = M ~ 

0 
is C 2 on M. After choice of a co-ordinate chart for 

get 

o 
M we 

(31) a~, = a B ) x l 2  = 2 <DBX,X> , 

aaa6# : 2 <DaDsX,X> + 2 <DaX,DsX> , 

hence 

&$ : ~ gaB(Oa88~ - E rasY~y$) 
a~ y 

: 2a~sgaS( <D DBX,X> + <DaX,DsX> 

- Z r~,8"~ <D,fX,X > ) . 

Inserting Jacobi's differential equation (7), we get 

A# = 2 ~ gas <D X,DsX > _ 2 <Rf(X),X> 
(32) a~ 

2 1 o x l  2 - 2 < R f < • 2 1 5  . 

o 
Let us fix a point x 6M and choose a chart around x 

such that 

gaB(x) : 6aB �9 

Since ~ is an uppem bound for the sectional curvature of 

N , we have at the point x 

<Rf(X),X> (~) ~ <R(X,~af)Saf,X> 
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E ~ . ( I x l 2 1 ~ f l  ~ - <x,~=f> ~) 

~. Ix l  2 ~ l ~ = f l  2 

= K r I d f ]  2 , 

furthermore, from (31) we get at x 

[v@J 2 = E ( ( )a r  2 = 4 Z <DaX,X>2 

4 E I D = X I 2 1 x I 2 ( ~ " *  IDXI 2 

From (32) and the last two inequalities we conclude: 

( 3 3 )  Vr = 0 , Ar ~ 0 on r , 

and 

(34) Aq, �9 Ivq'12 o ~_~ _ 2 , : ,  Idfl  2 on M -  { 0 }  . 
2~ 

Now we define 

r :: qKodist(a,f) : M r~ , 

: [0,K-l[ >IR , t P-->-Ig(1-~t) , 

and construct the differential operator ~= div e-$v on 

M by (14) using ~1,w (k=l). Then we have 

= 2mo#1 = -21g(1-K#1) = -ig cos2V~Kdist(a,f) 

and 

0 = Of(X) = e~.iX[ 2 = er . 

The application of Lemma I to ~ and ~ = ~XI 2 

.~(e) = ~(ee.r = ~r ~ 0 on r , 

yields 

and, in virtue of (34) and (29) 

,,#..(e) >_ A~, - Iv~'l~' + 2~, '~ 

2r  -~K~l A~* 

> _ - 2 K ,  I d f l  2 + 2 K e J d f l  2 = 0 on ~ - # ' * ( 0 )  . 
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Therefore, 8 : M--~ is a subsolution of the elliptic 

operator ~ and by Hopf's maximum principle, the assertion 

follows.[] 

In order to treat the parabolic case, we set for T > 0 

H T := [O,T]xM , 8T M := ({O}xM)U([O,T]xSM) 

o the interior of H T- and denote by H T 

Suppose that 

fl,f2 :M~ ~ N 

are solutions of the heat equation (A -~t)f = 0 such that 

f l ( H ~ )  , f2(M~)CBr(a) , r < ~/(2~'~) 

and Br(a) satisfies the cut locus condition. Quite analo- 

gously to the case of harmonic mappings, we define 

O 
:= qKodist(fl,f2) : M T ~ , 

O 
~i :: qKodist(a,fi) : MT---~IR i : 1,2, 

and 

K :: { (t,x) s T : fl(t,x) : f2(t,x) } �9 

Lemma 5. 

I l ld f i l  = 
CA - at) ,~,  ~ I v ~ l  2 ,~ 

. . . .  , E a l d e i l '  2,1, ": 

on K 

O 
__~ M T - K 

v@ = 0 on K, 

and 

(A -%t)#i ~ (1-~#i)[dfi 12 , i =1,2. 

(the operators d, 9, A are acting on the variables of M) 
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Proof. We proceed as in the proof of Lemma 4 defining 

O 
F,FI,F 2 :M T ~NxN 

correspondingly, such that we can w~ite 

= Q~oF , ~i = Q~~ ' 

In virtue of (19), the mappings F,FI,F 2 are also solu- 

tions of the heat equation. 

We fix a point (t~x) EM~ and choose a chart around x 

such that 

gaB(x) = 6aB �9 

From the identity (9) follows 

%t ~ = ~t(QKoF) = <(VQK)oF,%tF> , 

and fmom (11) and (lo) we get at x 

(A -%t)# = ~ V2Q~(aaF,aaF) 
Q 

and similamly 

(A- %t)#i = ~ V2QK(SaFi,%aFi ) i = 1,2. 

The might hand sides of these both equations can be estima- 

ted in the same way as in Lemma ,.~ 

Pmoof of Theorem C. Here we follow the lines of the proof 

of Theorem A. We take'the same function 

8 = 8(fl,f 2) = e#.~ :M T ,IR , 

with M replaced by M T , but apply now the parabolic ope- 

ratom 

u: ~ ~u:= ~fu- e-~%t u , 

where ~ is the same elliptic opematom as in Theomem A ac- 

ting on the M-variables of u: M T ~ ~ . From Lemma I we 

obtain 
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5 ~(e) =~(e~.5) 

{ (A-%t)$ on K =5-I{0} 

other- 
IV~1225 2 K (A_St)Si wise. (A-at) $ - + #I_E~I_K$ i 

Taking the estimates of Lemma 5 into account, we get 

o 
~(8) ~ 0 on H T . 

Since ~ is a parabolic operator on M T satisfying the 

assumptions of the maximum principle, we obtain the assert- 

tion 

sup 8 ~ sup 8 .~ 
M T aTM 

References 

[I] Eells,J.,Lemaire,L.: A report on harmonic maps. Bull. 
London Math. Soc. Io. 1-68(1978) 

[2] --: Deformation of metrics and asso- 
ciated harmonic maps. To appear in the V.K.Patodi Me- 
morial Volume. Tara Institute Bombay 

[3] Eells,J,.Sampson,J.H.: Harmonic mappings of Riemannian 
manifolds. Amer. J.Math. 86. 1o9-16o(1964) 

[4] Gromoll,D.,Klingenberg,W?T, Meyer,W.: Riemannsche Geome- 
tric im Gro~en. Berlin, Heidelberg, New York: Springer 
1968 

[5] Hartman,P.: On homotopic harmonic maps. Canad.J.Math. 
19. 673-687(1967) 

[6] H-~Idebrandt,S.,Kaul,H.,Widman,K.O.: An existence theo- 
rem for harmonic mappings of Riemannian manifolds. Acta 
Math. 138. 1-16(1977) 

[7] Jager, .~,Kaul,H.: Uniqueness of harmonic mappings and 
of solutions of elliptic equations on Riemannian mani- 
folds. To appear in Math.Ann. 

[8] Karcher,H.: Riemannian center of mass and mollifier 
smoothing. Comm. Pure Appl.Math. 3__oo. 5o9-541(1977) 

Willi J~ger Helmut Kaul 
Institut fQr Angewandte Mathematik Mathematisches Institu% 
Im Neuenheimer Feld 294 Auf der Morgenstelle Io 
D-6900 Heidelberg, Germany D-7400 TQbingen, Germany 

(Received March 13, 1979) 

291 


