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Let u(x,t) be a solution, O u ~ AIul p for x 6 ~3' t Z O 

where [] is the d'Alembertian, and A, p are constants with 
A > O, I < p < I + /~. It is shown that the support of u 

is contained in the cone 0 ~ t ~ t O - Ix-xOl, if the "ini- 

tial data" u(x,O), ut(x,O) have their support in the ball 

Ix-xOl ~ t O . In particular "global solutions"of u = AIul p 

with initial data of compact support vanish identically. 
On the other hand for A > O, p > I + /2 global solutions 
of []u = AIu p exist, if the initial data are of compact 
support and ull is "sufficiently small" in a suitable norm. 
For p2 = 2 the time at which u becomes infinite is of order 

llull 
Let [] denote the d'Alembertian 

[] - 22 A 32 3 22 
= . 

~t 2 ~t 2 i~I ~x i 

acting on functions u(x,t) = u(xl,x2,x3,t). We are con- 

cerned here with globa ! solutions of a nonlinear wave 

equation of the form 

(I) [3u = r 
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2 JOHN 

or of an inequality of the form 

(2) [] u z r 

with a prescribed function ~ and prescribed i ntitial data 

(3) u(x,O) = f(x) , ut(x,O) = g(x) 

A globa ! solution of (1), respectively (2), shall mean a 

solution of class C 2 in the closed half-space x E ~3' 

t Z O, for which f E C 3, g E C 2 for x 6 ~3" "Blow-up" 

consists in non-existence of a global solution for given 

f, g, #. In that case instead of global solutions there 

may still exist local solutions u defined for x E ~3 and 

sufficiently small t. 

We associate with u the solution u O of the linear wave 

equation 

(4) Du ~ = 0 

with the same initial data f, g as u. We introduce for 

any (xO, to ) 6 ~4 the forwar d and backward . solid character- 

istic cones with vertex (xO,to): 

(5a) F + (xO,t O) = {(x,t): Ix-xOl ~ t-t O , t Z O} 

(5b) F- (xO,to) = {(x,t): Ix-xOI ~ to-t, t Z O} 

Our first theorem shows that for certain ~, u O a 

solution of (2) either blows up or becomes identically 

zero for sufficiently large t: 

Theorem I. Let A, p denote constants with 

(6) A > O, I < p < 1 + /2 

and let u be a global solution of 

(7) []u z AlulP 

Let moreover for a certain point (xO,to) E ~4 
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(8) uO(x,t) Z 0 for (x,t) 6 F+(xO,to ). 

Then u has compact support and 

(9) supp u C F-(xO,t O) 

We list a number of immediate consequences of Theorem I 

-(xO,t O) in the form of corollaries. Since F is empty for 

t O & O we have: 

Corollary Ia. If u is a global solution of (6), (7), and 

if uO(x,t) Z 0 in some forward characteristic cone with 

vertex in the plane t = 0, then u vanishes identically. 

Since u 0 ~ 0 for f = O, g Z O (see formula (17b) below), 

we conclude 

Corollary Ib. A global solution u of (6), (7) vanishes 

identically if the initial data f, g satisfy 

f(x) = O , g(x) Z 0 for all x 6 ~3 

Let f and g have their support in a ball Ix-xOl ~ p . 

Then by the strong Huygens principle valid in 3 dimensions 
O 

u vanishes in the cone F+(xO, p). Hence 

Corollary Ic. Let f and g have their support in a ball 

Ix-xOl & ~. Then every global solution of (6), (7) with 

initial data f, g vanishe8 outside the bounded set 

s p). 

Corollary Id. Let the initial data f, g have compact 

support, then a global solution u of (6), (7) can exist 

only if 

(10) f(x) > O for all x 6 ]R 3 , f g(x) dx ~ O 

Indeed u has compact support by Corollary Ic. Let 

v(x,t) be any solution of [3v = O with initial data F, G. 

If here v(x,t) ~ O for t ~ 0 we have by Green's identity 
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4 JOHN 

o f Avlul p dxdt f 
t>O t>O 

= -f (Fg-Gf) dx 

(vDu - uOv) dxdt 

For F = I, G = 0 we have v = 1, leading to the second in- 

equality in (10). For F = O we have v ~ O for arbitrary 

non-negative G. This implies the first inequality. 

Standard arguments based on energy inequalities* for 

the operator[] show that the solution of the initial 

value problem for an equation of the form (I) is unique, 

if the function ~ is Lipschitz continuous. More precisely 

it is easy to show that a function u(x,t) of class C 2 in a 

cone F-(xO,to ) with t O > O, and satisfying there an in- 

equality IN ul & Mlu I with some fixed M, vanishes in that 

cone if its initial data f, g vanish for Ix-xOl ~ t o . 

Applying this theorem to the function u(x,p-t) we conclude 

from Corrolary Ic. the following: 

Corrolary II. Let u be a global solution of the differen- 

tial equation (I), where the function ~(s) satisfies 

~(s) > AIsl p for all s, with constants 

(11a) A > O , I < p < I + /2 

(11b) ~(O) = O , lim sup ~(s)/Is I < 
s§ 

Then u vanishes identically if it has initial data of com- 

pact support 2 

Examples of 919bal solutions: a) For t o > O, p > I the 

function 

A(p-1) 2 
(12a) u = a(to+t)-2/(p-1) with a = 2(p+1) 

See [I], p. 119. 

More generally this would apply to solutions of differ- 
ential equations ~ u = ~, in which $ depends on x, t, u 
and derivatives of u, as long as $ in its dependence on 
u satisfies conditions (11a,b), uniformly in the other 
variables. What matters in addition to (6), (7) is only 
that (~3u)/lu I is bounded for small lul. 
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JOHN 5 

is a global solution of 

(125) []u = Aiul p 

Here, f, g do not have compact support. Moreover 

2t 
= (ato)-2/(p-1) (I - (p_1)t0) < O u O 

for all x and sufficiently large t. 

b) For t O > O, p > 3/4 the function u defined by 

(13a) u = a[ (t-to)2-1x-xOi2] 4 with 8Oa1-Pto 6-8p = A 

(x,t) 6 F-(xO,to ), and by u = O elsewhere, is a global for 

solution of 

(13b) []u = 8Oa1/4Iui3/4 ~ AiuI p 

with initial data of compact support. Since ~(s)/s for 

s + O is not bounded when ~(s) = 8Oa1/41s13/4, the solu- 

tion u does not have to vanish identically~ 

Theorem II. Let the function #(s) belong to C2(R), satisfy 

~(0) = ~'(0) = ~" (0) = O, and be H&lder continuous with 

exponent > /-~ - I for IsI < I. Then global solutions u of 

(1) exist for any sufficiently regular initial data f, g 

with support in a ball of radius P, provided ID~fl for 

lal ~ 2 and IDSgl for 18I ~ I do not exceed a certain 

positive number 8, that only depends on p and the choice 

of ~(s). 

Since the function ~(s) = AislP for A > O, p > I + 

satisfies the assumptions of this theorem, global solu- 

tions of [T u = Aiul p for p > I + /'/ exist for any initial 

data f, g with compact support that are sufficiently small 

in a suitable norm, regardless of the sign of f and g. Thus 

3 More general global solution v of rlv z A*IvI p with 

support in F-(xO,t O) are obtained by forming v = (1+ew)u 

where w(x,t) 6 C ~ and e is sufficiently small. 
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6 JOHN 

Corollary III. In Corollary II, and hence also in Theorem 

I, the constant I+/~ cannot be replaced by any larger one. 

Corollary II tells us that for certain ~ a non-trivial 

solution u of (1) with initial data of compact support 

blows up after a finite time T, without however giving 

an estimate for T. For the special case ~(s) = s 2 Theorem 

III below shows that T is of the precise order -2, where 

E is a measure for the magnitude of the initial data: 

Theorem III: Let the initial data be of the form 

(14) f(x) = eF(x) , g(x) = eG(x) 

g f o r  g i v e n  F 6 COCIR3) , G E C ~ 3 ) .  L e t  T = T ( e )  be t h e  

l a r g e s t  T s u c h  t h a t  a s o l u t i o n  u ( x , t )  o f  Q u  = U 2 w i t h  

initial data f, g exists for x 6 ~3" 0 ~ t < T. There 

exist three positive constants A, B, e 0 depending on F, G 

but not on e, such that 

(15) Ae -2 < T < Be -2 for le I < e 0 . 

The literature on global existence, decay and blow-up of 

solutions of nonlinear hyperbolic equations is extensive ~ . 

The natural tool for deriving local existence theorems are 

energy inequalities leading to a priori estimates for L 2- 

norms. These by themselves prove inadequate to discuss 

behavior of solutions for very long times, except when the 

solutions can be shown to decay sufficiently rapidly in the 

maximum norm 5 . Additional information on global behavior 

can be obtained by establishing convexity properties or 

other differential inequalities for various integral ex- 

pressions formed from the solution, as in the methods 

based on "logarithmic convexity "6 . In the case where the 

See [2] - [31]. 

' See [17], [18], [27], [29], [6], [IO]. 

6 See [14], [11], [16], [19]. 
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JOHN 7 

number of space dimensions does not exceed three (but not in 

higher dimensions), we have the very helpful fact that the 

inverse of the d'Alembert operator is positive: if u Z 0 

and u has vanishing initial data, then u Z O. This fact 

formed already the basis of J.B. Keller's classic investi- 

gation [9] of nonlinear wave equations, and also is the 

main tool in the present paper. 

Many of the earlier results referred to overlap with the 

ones given here, but require the initial data to satisfy 

various inequalities 7. Recently T. Kato [32], gave a very 

simple proof of an analogue of Corollary II in m space 

dimensions, with the bound I + ~ in (11a) replaced by 

(m+l)/(m-1) under the additional assumption 

f f(x) dx > O, f g(x) dx > O, not both zero 

on the initial data. [Actually Kato's theorem refers to 

hyperbolic equations more general than (I)]. 

On the other hand some global existence theorems analogous 

to Theorem II have been proved in m dimensions. Indepen- 

dently S. Klainerman [10] and W. Strauss [33] have shown 
2 

that for m Z 5 global solutions of D u = u exist, when- 

ever the initial data are of compact support and "suffi- 

ciently small" in some suitable sense. 

Proof of Theorem I. 

We make use of the classic explicit expression in three 

dimensions for the global solution u(x,t) of the linear 

problem 

(16a) ~u = w(x,t) for 

(16b) u = f(x), u t = g(x) 

tZO, x6~ 3 

for t=O, x6~ 3 

for given f E C3QR3 ), g 6 C2aR3 ) and w 6 C 2 for x E ~3' 

t ~ O. One finds that 

See e.g. Glassey's paper [3]. 
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8 JOHN 

O 
(17a) u = u + Lw 

where 

t g(x+t~)d~ + ~ f(x+t~) d~ (175) uO(x,t) = ~-~I~ =I I=i 

is the solution of Du ~ = 0 with initial values f, g, and 

t 
of (t-s) ds I~1 =lw(x+(t-s)~'s) d~ (17o) Lw(x,t) 

is the solution of (16a) with zero initial data. We notice 

two often used consequences of these formulae, namely that 

f = O, g > O implies u 0 > O, and that w > 0 implies 

Lw > O. 

Assume now that u(x,t) is a global solution of (6), (7) 

and that the corresponding u 0 satisfies (8) for some 

(x 0 , t O) �9 

We associate with a function w(x,t) its averages w(r,t) 

on spheres of radius r about a point xO: 

= I ~i =I w(xO+r~,t) (18) w(r,t) 4--~ i d~ 

Expressing iterated spherical means by simple ones, we 

have from (17c) that for r > O, t > 0 

2 t 
Lw(r,t) = (4~)-S(t-s)ds ~ Id~ ~ w(xO+r~+(t-s)~,s)d~ 

o ii = i i=1 n 

t r+t-s 
= S ds r t~+s I dl { w(xO+l~,s) d~ 

o I - 1 8=r 1 1 =I 

t r+t-s 
(18a) = f ds r s f+s 2~ w(l,s) dl 

o I- I 

We write the identity in the form 

(19) Lw = Pw 

where the operator P acting on functions s(r,t) with 

domain r Z O, t > 0 is defined by 
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JOHN 9 

(20) P~(r,t) = ff ~r q(l,s) dlds , 

Rr,t 

and R denotes the set r,t 

(21) Rr, t = {(l,s): t-r<s+l<t+r, s-l<t-r, O < s} 

in the Is-plane. (See Fig. I ). Observe that q ~ O implies 

Pq > O since I > O in R 
r,t" 

(r,t)  

/ 
/ 

/ 
/ 

p 
/ 

/ 
/ 

/ 

/ /  

t - r  / /  

0 

( r , t )  

A 
t - r  t+r r - t  r§ 

Fig. I 

Assume that u(x,t) is a global solution of (6), (7) and 

that the corresponding u O satisfies (8) for some (xO,t O) . 

It follows from (17a) and (7) that 

(22) u ~ T AIul p 

for (x,t) 6 F+(xO,to ). Suppose now that (9) does not hold. 

There exists then a point (x I ,t I ) for which 

Ixl-xOl > to-t I , tl > O , u(xl,tl ) + O 

Set t2 = tl + Ixl-xOl. Then 

(23) t O < t 2, O < t I ~ t2, (xO,t2) 6 F+(xO,to ) , 

and thus by (22) 
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10 JOHN 

(24) u(xO,t2 ) > O 

since the point (xl,tl) lies in the domain of integration 

of L as defined by (17c) for the arguments 

O 1 O 
x = x , t = t 2, s = tl, (t-tl)~ = x -x 

Since r+(xO,t2 ) C : r+(xO, to  ), i n e q u a l i t y  (22) holds  for  
Ix-x~ < t-t 2. Introducing the average u of u we find from 

(22) that 

(25) u Z Aplul p for O ~ r ~ t - t 2 

Because of the convexity of lul p as a function of u for 

p Z I we have generally 

(26) lul p Z lul p �9 

Hence for (r,t) with O ~ r ~ t - t 2 

(27) u(r,t) ~ APIul p = AII ~r IG(l's) IP dlds 
R r , t  

Moreover by (24) 

(28) u(O,t 2) > O 

We shall see that inequalities (27), (28) imply blow-up of 

u. This is proved by deriving larger and larger lower 

bounds for u. 

By (28) we can find a positive 6 so small that 

(29) u(�89 t 2 + �89 > O 

We define the regions 

(3Oa) T = { (l,s): t 2 + ~ ~ s + I ~ t 2 + 2~, s-I ~ t 2} 

(3Ob) S = { (l,s): t 2 + 26 ~ s + I, t 2 ~ s-I ~ t 2 + 6}. 

Then (see Fig. 2) 

(31a) T c Rr, t for (r,t) 6 S; (�89 t 2 + �89 6 T; 
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(31b) 0 & r < t - t 2 for (r,t) 6 S 

11 

ts+28 

t2+ 

ta 

\ S-" ",/ 
}%, /', 

, , ,  
, 

,,-,,, -,,, 
\ 

Fig. 2 

It follows from (28) that for (r,t) 6 S 

(32) ~(r,t) ~ A ;I ~r luC~,s) i pd~s--c 
T r 

where c by (29), (31a), is a positive constant. 

Let T denote the set 

(33a) Z-{(r,t): O < r < t - t 2 - 2~} 

We introduce for any (r,t) 6 7 the sets (see Fig. 3) 

(33b) Sr, t = {(l,s) : t-r < l+s < t+r ; t 2 < s-I < t2+~} 

(33c) Tr, t = {(l,s): t-r < l+s < t+r ; t2+26 < s-I < t-r} 
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12 JOHN 

t - r  

t2§ 

it§ 

tz 

[r,t] 

/ /  
/ 

/ 

% % 
k k 

\ \ 

k 
k 
k 
k 
\ 

\ 
k 

\ 

k 
k 
\ 

k 
\ 
\ 
k 

k k 

t-r t§ 

Fig. 3 

Then for (r,t) 6 Z 

(33d) Sr, t c Rr, t , Tr, t ~Rr, t , Sr,t cS , Tr, t C 

It follows from (27), (32) that for (r,t) 6 

u(r,t) Z "-P~ [ [  1 I-p dAds 

Sr,t 

Introducing new variables of integration 

(34) C~ = s + I , 8 = S - 

we find, since p > I, 

t2+~ t+r 
~(r,t) ~ ~r AcP2p-2 f dB f (u_8) 1-P do 

t 2 t-r 

(35) 

t~r 1 -p 
~r ~ AcP2P-2 (e-t 2 ) do 

t-r 

Z ~ AcP2 p-2 (t+r-t 2) 1-p 
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JOHN 13 

for (r,t) q Z. Since for (r,t) 6 E 

~ t-r-t 2 ~ t+r-t 2 < t+r 

we have 

~2-P(t+r)-1 r 

(t+r-t2)I-p Z ~ (t+r)l_p 

for1<p~2 

for 2 < p < I + ~ 

It follows from (35) that 

-qo (36) u(r,t) Z Co(r+t) for (r,t) e E , 

where CO, qo are positive constants not depending on (r,t), 

and in particular 

1 for I < p < 2 
(37) I < qo = 

p-1 for 2 < p < I + /2 . 

Assume more generally that we have established an in- 

equality of the form 

(38a) u(r,t) ~ C(t+r)-q(t-r-T)a(t-r) -b for (r,t) 6 E 

where the constants C, q, a, b satisfy 

(38b) C > O, q > I, a > O, b > O 

and we have set 

t2 + 2~ = T 

Then by (27), (33d), (34) for (r,t) E E 

~(r,t) ~ a ff 
T 

r , t  

~r lu(A,s) IP dAds 

t-r t+r 
~ r f d B f  

T t-r 
(~-8)cPu-qP(8-z)Pas-Pb de 
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14 JOHN 

t-r t+r 
CP t-r'-Pb ; dB ; 

9 T t-r 
(~-8) ~-qP (8-T) pa da 

AC p (t-r- T ) pa+ I t+r 

8r(pa+1) (pa+2) (t-r) pb t-r 

(pa+2) (e-t+r.)+ (t-r-T) du 
uqP 

AcP(t-r-T)pa+2 

4(pa+1)(pa+2) (t-r) pb 
I(r,t) 

where 

t+r 1 
I(r,t) = ~-{ f u -pq da . 

t-r 

Observe that qp > p > I. If here t-r > l(t+r), then by the 

mean value theorem 

I(r,t) z (t+r) -pq z 21-pq(t+r)-1(t-r) 1-qp 

I 
While for O < t-r < =(t+r) 

z- - 

I ((t_r)1-qp _ (t+r) 1-qp) I(r,t) = 2(qp-1)r 

I (i_21-qp) (t_r)l-qp 
2(qp-1)r 

(t+r)-1(t-r) 1-qp 

It follows that 

i_21-qp 
2 (qp-1) 

-1(t-r-T) a~ (t-r) -b~ (39a) u(r,t) Z C~(t+r) for (r,t) 6 

where 

(39b) a = pa + 2, b ~ = pb + qp - I, C 

A I-21-pq 21-pq 
(39c) Dq = ~ Min (2(pq-'1) ' ) 

C p 
= (pa+2)2 Dq 

Using the values a = b = O, q = qo' C = C O corresponding 

to (36) we arrive at the inequality (39a) with 

= C ~ I ~Dqo (4Oa) a ~ 2, b ~ = qOP-1 , = ~ C 

Define generally sequences a k, b k, C k for k = 1,2,3,... by 
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JOHN 15 

(4Ob) a I a ~ = b* = , b I , C I = C* as given in (40a) 

(4Oc) ak+ I = Pak+2 , bk+ I = Pbk+P-1 , Ck+ I = (Pak+2)-2D1 C~ . 

Then (38) will hold with C = Ck, a = ak, b = b k, q = I for 

k ~ I. Solving (4Ob, c) yields 

2(P k-l) bk = qopk-1 
ak = p-1 ' 

and thus 

Ck+ I = (ak+1)-2DIC~ 
I 
2 2k DICk p 

4(k+I) p 

C k ~ exp Ipk( 1 log C* 
k-1 2 log(j+1)+2j log p-log(D1/4) ] 

] 3=1 p 

It follows that for k sufficiently large 

C k ~ exp(Ep k) , 

where 

2 log(j+1)+2j log p-log(D1/4) 
(4Od) E = ;log C ~ - ~ 

9= I pj+1' 

Then by (38a) with C, q, a, b, replaced by Ck, i, a k, b k 

respectively we have 

(41) u(r,t) ~ t-r [pkj(r,t) 1 
(t+r) (t_r_T)2/(p_1) exp 

for (r,t) 6 Z. 

Here 

(42) J(r,t) = E + ~ log(t-r-T) - qo log(t-r) 

It is crucial 8 now that for the qo defined by (37) 

2 

p----[ > qo 

For then J(r,t) § = for t-r + ~. It follows from (41) for 

8 This is where the upper bound I + ~ for p comes into 
play! 
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16 JOHN 

k § = that u(r,t) = ~ for all r,t with t-r sufficiently 

large. But then u cannot he a global solution. 

PrOof of Theorem II. 

Our assumptions on the function $(u) are that 

(43a) ~ 6 C2~) , ~(O) = ~' (O) = ~" (O) = 0 

and that there exists constants B, q with 

(43b) B > O, /2 - I < q ~ I 

such that 

(43c) I$" (u) - $" (v) l ~ Blu-vl q for lul ~ I, Ivl ~ I 

Assumptions (43a, b, c) imply that 

l~" (U) l ~ AR(p-I)IuIP-2; }~'(u) l ~ ARIU] p-I ; 

(43d) {~(u){ ~ A{u{ p for {u{ ~ 1 , 

where 

B 
A = (q+1) (q+2) ' p = q + 2, I + /2 < p ~ 3 

Conversely for the function 

(44a) $(u) = AIul p with A > O, p > I + /2 

(43a, b, c) are satisfied with 

(44b) B = Ap(p-1), q = p-2 when I + ~ < p < 3 

B = Ap(p-1) (p-2), q = I when p Z 3 

We also assume that f 6 C~0R3) , g e C~GR3) , and more 

precisely that for certain x O, p 

(45a) f(x) = g(x) = O for Ix-x~ > p 

Under these circumstances u 0 and its derivatives of orders 

3 will decay like I/t for large t, as follows from the 

explicit expression (17b), when we convert the surface 
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JOHN 17 

integrals to volume integrals 9 . More exactely define 

(45b) = sup Ipl lID f(x), plBl§ II 
x 
e ~v+2 
8 ~v+l 

There exists a universal constant y such that 

(4Sc) p1~IID%~ I < y ~ N for x E m 3, t ~ o,I~I ~ 

when *~ v = O,1,2,3. By the strong Huygens principle more- 

over 

(45d) uO(x,t) = O unless t - p < Ix-xOl < t+p 

We shall show the existence of a global solution u of 

(46a) []u = %(u) 

with prescribed initial data f, g, provided No(fOr given 

p, p) is sufficiently small. It suffices to find a u(x,t) 

for which the expressions DUu(x,t) for lal ~ 2 exist and 

are continuous in x,t for x E ~3' t Z O and which satis- 

fies 

(46b) u = u O + L~(u) 

We only have to make use of the following lemma: 

Lemma I: Let w(x,t) be defined for x 6 ~3" t Z O, and let 

the DUw(x,t) for I~I ~ 2 also exist 11 and be continuous 

there. Then Lw(x,t) as a function of x and t is of class 

C 2 for x 6 ~3" t ~ 0, has initial data zero, and satisfies 

~]u = w. 

To prove the Lemma we introduce 

9 See [28]. 

10 DO shall always stand for the 8puce differentiation 

al m2 u3 
D I D 2 D 3 

11 Observe that the existence of t-derlvatlves of w is not 
assumed. 
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(47a) M(x,r,t)= 4~ i~i=1 w(x'+rn't) du n for x 6 ~3" r z O, 

tzO. 

Obviously M(x,r,t) is of class C 2 in x,r uniformly in t. 

By Darboux's identity in 3-space (see [I], p. 104) 

(47b) Mrr(X,r,t ) = A x M(x,r,t) 

On the other hand by (17c) 

t 
Lw(x,t) = ~ M(x,t-s,s) ds . 

0 

Obviously 

t t 
~-~ Lw(x,t) = M(x,O,t) + ~ Mr(x,t-s,s ) as = ~ Mr(x,t-s,s) ds 

O O 

t 
D k Lw(x,t) = f D k Mr(x,t-s,s) ds 

0 
2 

t 
Lw(x,t) = Sr(X,O,t) + ~ Srr(X,t-s,s) as 

0 

t 
= ~ M(x,t-s,s) ds = w + ~Lw. w(x,t) + ~x 

O 

We associate with a continuous function w(x,t) with do- 

main x 6 R 3, t Z O the function 

(48a) w(r,t) = sup lw(x,t) I 
x O 
Ix-x I=r 

defined for r Z O, t Z O. We can estimate Lw in terms of w: 

Lemma II: For ''Ix-xOl = r, t > O 

t r+t-s 1 
(48b) ILw(x,t) I ~ O f ds I r-t~+sl ~ w(~,s) dX = 

= f; ~-{ w(A,s) dAds 
R r,t 

Or 

(48C) L-W ~ PW 
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where P is the operator defined by (20). 

For the proof set 

v(x,t) = ~(Ix-x~ 

Then ]w I ~ v and thus also 

(48d) rLwl ~ Lv, L-w ~ L-~ . 

Since v(x,t) depends only on Ix-x~ and t and is non-nega- 

tive we have v = v (where v is defined by (18) with w re- 

placed by v). But with v also Lv is invariant under ro- 

tations about x O, as is evident from formula (17c) or from 

the invariance of the operator ~ . Thus also L-v = Lv'~. It 

follows from (48d), (19) that 

c-J 

L--Q ~ Lv = Pv = Pv = Pw 

Existence of a solution u of (46b) will be proved by 

iteration. For that we have to introduce a suitable norm. 

For functions u(x,t) which are continuous for x 6 ~3' t ~ O 

and have their support in F+(xO,-p), we define 

llull = sup pl-p (t+r+2p) (t_r+2p)p-2~(r,t) 
rzO 
t~O 

(49a) = sup p1-p (t+ix_xOI+2p) (t_ix_xOi+2p)p-2Iu(x,t)i 
x 

tzo 

The function u 0 and more generally the D~u O with lal < 3 

have finite norms. Indeed by (45d) we have for (x,t) in the 

support of u 0 

p1-p (t+ix_xOl+2p)(t_ix_xOl+2p)P-2 

pl-P(2t+3p) (3p)p-2 ~ 3P-1(t+p)p -I 

So that by (45c) 

(49b) l lDc~u~  < ~3 p-1 0 - +  N~ f o r  Iml = "+' < 3 

The next lemma gives the basic estimate for the 
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existence proof: 

JOHN 

Lemma III. There exists a constant c, only depending on p, 

such that 

(5Oa) IIT, lu lPl l  < cP 2 I l u l l  p 

for u(x,t) that are continuous for x 6 R 3, t Z O and satisfy 

(50b) u(x,t) = O for Ix-xOl > t + p . 

Applying the estimate (48b) to Llul p, inequality (5Oa) 

is proved if we can show that 

t r+t-s cC p pp+1 
(51a) f ds 1 uP(l,s)dl 5 -- 

O Ir-t+sl 2--~ (t+r+2p) (t-r+2p) p'2 

with a certain c depending only on p, provided we know that 

(51b) O ~ ~(l,s) 
C pp-1 

(s+l+2p) (s-l+2p)p-2 

and that (see (50b)) 

(51c) u(l,s) = O for I > s + p 

We first prove (51a) in the case where 

(52a) t - p < r < t + p . 

Then also 

s - p < t < s + p 

for (l,s) in the region of integration where u(l,s) + O. 

It follows from (51b) that 

Cp 
u(l,s) ! 2s+p 

and hence that 

t r+t-s ~ t 

O f ds I r-~+sl~ uP(x,s)d~ ~ C p PP Of(2s+P)-P k(s) ds 

where 
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k ( s )  = 2/s f ~ dX 
I 

and I is the intersection of the intervals [Jr-t+sl, 

r+t-s] and [Jr-t+s ,s+p]. Here for r > 2p by (52a) 

1 sTp (p+t-r)(2s+p+r-t) p(s+p) 
l dl = 

k(s) ~ 2r Jr-t+sJ 4r r 

2p (s+p) < 12p (s+p) 
(t+p)+ (r-2p) t+p 

while for O < r < 2p 

r+t-s 
I ~ I dl = t-s ~ t ~ (t-r)+r ~ 3p ~ 12p,(s+p) 

k(s) ~ 2-r Jr-t+sJ t4'p 

Thus 

t r+t-s 
ds ~ ~P(l s)dl 

O Jr- +sI ~-{ ' 

12cP p3 ~ 
(~+I) 1-p d~ 

t+p 0 

12C p pp+1 t 
(s+p) (2s+p) -p ds 

t+p 0 

36.3P-2 cp pp+1 (52b) 

(p-2) (t+r+2p) (t-r+2p) p-2 

We used here that p > 2. 

Consider next the case where 

(52c) O < r < t - p 

Set 

(52d) Q = p(p-2)-1 

Then Q > O because of our assumption p > I + /~. Intro- 

ducing the variables of integration e, 8 from (34) and 

using (51b), (51c) we have here 

t r+t-s 1 

ds r-f+sJ ~-{t uP(l,s) dl 
0 I 

cp pp(p-1) t-r t+r 

8r d8 f e-6 do 
-p t-r (e+2p) P(8+2p) p (p-2) 
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cp ~p(p-1) 7 d8 
8r -p 

t+r 
do 

t-r (e+2p) p-I (8+2p) Q+I 

cp pp+1 t+r 
f (u+2p) 1-p de 

8rQ t-r 
.  .2c p 

Q(p-2) (t+r+2p) (t-r+2p) p-2 

as is seen again by distinguishing the cases 

t-r+2p > �89 and t-r+2p < �89 This completes 

the proof of Lemma III. 

Definition (49a) for functions satisfying (5Oh) implies 

that 

(53a) lu(x,t) l ~ llull 

(S3b) II lulelvll-ell llull e llvll 1-e for 0 < (9 ~ I 

It follows then from (5Oa) that 

(53c) L(lulePlvl (1-e)p) ~ co 2 llull ep llvll (1-e>p 

for 0 ~ @ ~ 1 

Let now Z denote the linear space of functions u(x,t) 

for which the Deu(x,t) for lel ~ 2 are defined and con- 

tinuous in x,t for x 6 ~3' t Z O, and which satisfy 

(54a) u(x,t) = O for Ix-xOl > t+p 

(54b) I I D % I I  < | for I~1 ~ 2 

In particular u O 6 Z. 

If u 6 Z and I lul l  < I we derive from (43d), (53a), (53c) 

the inequalities 

(55a) ULr II ~ A I I L l u l P l l  ~ ac~ 2 I lul l  p 

IIDkL~'(u) II = IIL(~' (U)DkU)II = Ap IIL(lutePlDkUl(1-e)% 
(55b) < Apc02 llUll p-1 IIDkUl I 

(using 8 = (p-I/p) and 

IIDjDkL~(u) N = IIL(~' (u)DjDkU + ~" (u) (Dju)(DkU))II 
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Apcp2(llull p-111D3Dkul] + (p-1)llull p-2 I I ~ i ( D j u ) ( D k U ) i  1{ 2 

(ssc) ~ Apc~2(llull p-1 IIDjDkUll + (p-1)llull p-2 I IDjul I I IDkull  ) ,  

where for the second term we have used first (53c) with 

8 = (p-2)/p and then (53b) with 8 = I/2. In the same way, 

using (43c,e) one shows that for u,v 6 Z, Null < I, 

llvll < 1, and w(x,t) = Max(lu(x,t) I,Iv(x,t) I) 

(55a) I I ~ ( ~ ( u ) - ~ ( v ) ) l l ~ l l L ( p w P - l l u - v l ) l l ~ A p c p  2 llwltP-lllu-vll 

IIDjL(~(u)-~(v))II = IIL((%'(u)-~'(v))Dju + ~'(v)Dj(u-v~ I 
(55e) ~ Ap(p-1)cp211wIIp-211u-vIllIDjull + Apcp211~IP-IIIDj(u-v)ll 

IIDjDkL((~(u)-~(v)) II 

= UL[(~' (u)-~' (v))DjDkU+ 4 (v)DjDk(U-V) + ~"(v) (DjV)Dk(U-V) 

+ #" (v) (DkU)Dj (u-v) + (~"(u)-~"(v))(DJ u) (Dku)) III 

& Ap(p-1)cp211wIlP-2~IDjDkUIlllu-vll+}IDkUllllDj(u-v) II 

+ llDjvIlllDkCu-v) lll 
+ Apcp211wllP-lltDjDk(U-v)ll + Ap(p-1)cp211u-vllP-211DjullllDkull 

(55f) 

Here 

(56a) Ilwll = Max( Ilull , I l v l l )  

Relations (55a,b,c) imply that 

(56b) L~(u) ~ Z for u~z, llull < i 

We define the sequence of functions u n by 

(56c) u O u O O = , Un+ I = u + L~(u n) for n > O 

If here llUnll < I, we have by (55a) 

(56d) tlUn+ 111 ~ llu~ + Acp 2 I lunll  p 

Assume now that flu~ is so small that 
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I (56e) Acp 2 [[uOl] p-1 ~ ..! ]luO]] < 
p 2  p ' 

(by (49b) this will be the case for N O sufficiently small). 

We find by induction from (56d) that 

(5ef) llunll ~ 2 llu~ < 1 for n ~ 0 

In what follows Ci, C2, ... denote constants depending 

on A, p, p and the [[DeuO][ for ]e[ ~ 2, but not on n. It 

follows from (56e), (55b), (56f) that 

iiDkUn+lll ~ llDkuOii + Apcp2 ilunll p-1 iIDkunll 

IiDkuOII + �89 �9 

Hence 

(56g)  IIDkUnll ~ C 1 

Then by (55c) 

for n Z O 

[I DjDkUn+ I II < II DjDkuOll 

+ Apcp2( iiUnll p-1 iiDjDkUnll 

+ (p--l) llUn[ I p-2 llDjUnll llDkUnll ) 

=< IIDjDkuOII + Ap~p-1)c~22P -2 IluOII P-2C12 
1 + Apc~22P-llluOIIP-llIDjDkUnll ~C 2 + ~ IlbjDkUnll 

Hence 

(56h) IIDjDkUnll < C 3 

Then by (55d, e, f), (56a) with 

u = Un, v = Un_ I, w = Max(lUnl,lUn_11) , IIw[l < 2 IIuOIl 

we have for n > I 

llUn+1_Unl I & Apcp22P-1 lluOll p-1 llUn_Un_l~ I ~ �89 llUn_Un_ I II 

and thus 

(56i) IIUn+1-Unll < 2-nc4 for n ~ 0 . 
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Thus for n Z 1 

IIDj~Un+1_Un) ii~Ap(p_1)cp22P-2 iiuOll p-2 llUn_Un_1]lllDjuOll 

+ Apcp22P-1 iluOll p-1 llDe(Un_Un_1) i I 

I 
2-nc5 + ~ llUn-Un-111 , 

and thus 

(569) llDj(Un+1-Un) ll ~ n2-nc6 for n Z O o 

Finally for n a I 

llDjDk(Un+1-Un) II~Ap(p-1)cp22P-211u~IP-2~IDjDkUnlIIIUn-Un_III 

+ llDkUnll llDj(Un-Un-1)II + llDeUn-11111Dk(Un-Un-1)II 1 

+ Apcp22P-1 lluOll p-111DjDk(Un_Un_I) i I 

+ Ap(p_1)cp2 llUn_Un_ll I p-2 IIDjUnll iiDkUnll 

I (n2 -n + 2-(P-2)n)c 7 + ~ llDjDk(Un-Un-1) II 

where 1 < 2 p-2 ~ 2 by (43e). Thus 

(56k) IIDjDk(Un+1-Un) II ~ (n22 -n + n2-(P-2)n)c 8 

Relations (56i, j, k) clearly imply that the D~u n 
for I~ I ~ 2 converge uniformly for n + ~ towards functions 

Deu, which are continuous in x,t, where u is a solution 

of (46b). This completes the proof of Theorem II. 

Proof of Theorem III. 

The proofs of Theorems I and II given above easily lead 

to some upper and lower bounds for the time T at which 

blow-up occurs. To obtain however bounds of the correct 

order of magnitude some refinement of the estimates is 

needed. We restrict ourselves to the equation 

(57a) [~u = u 2 

with initial conditions of the form 
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(57b) u = f(x) = cF(x), u t = g(x) = EG(x) 

So Here F E C ~3 ) , G 6 CO~ 3) are prescribed functions with 

(57c) F(x) = G(x) = O for Ix-xOl > p , 

while e is varied. By Corollary II for ~ = 2 we are sure to 

have T < = unless F, G vanish identically. The aim is to 

prove that r lies between fixed positive bounds, depen- 

ding only on F, G for sufficiently small ~. One could 

further explore the dependence of these bounds on F, G; 

the lower bound derived for T will be seen to be actually 

of order iiuOll-2, while the upper bound involves lower 

bounds for luOl in a ball of sufficient size. However in 

order to keep things simpler we just study the dependence 

of T on c. 

Proving first existence of a solution u of (57a,b) for 

sufficiently small t we are led to consider for a positive 

T the class Z T of functions continuous in x,t for x 6 ~3' 

O $ t < T, for which 

(58a) u(x,t) = O for Ix-xOI > t+p 

The first aim is to find an estimate of type (5Oa) for Lu 2 

in terms of u for u 6 Z T. For this purpose it is appro- 

priate to work with a more complicated norm on Z T than the 

one furnished by (49a) for p = 2. 

We introduce (for fixed T,p) the function 

f 
p ( t +p )  -1 

Po t + r +_____PP (58b) z(r,t) = T-1/2 3/2r-11~ t-r+p 

and now define for u ~ Z T and 5 given by (48a) 

(ssc) Ilull-sup z- l ( Ix-x~ , t ) l u ( x , t )  I 
rZO 
O~t<T 

for t-p < r < t+p 

for O ~ r < t-p , 

for t+p < r 
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For I x-xOl = r, O ~ t < T 

t r+t-s 
' S ds 

o Ir- +sl 

(59a) ~ llull 2 t r+i-s f ds X z2 
O ir - +s I 2--{ (l,s) dl 

If here t-p < r < t+p, then also s-p < I < s+p, 

z(l,s) = p-l(s+p) in the region of integration, and (see 

(52b)) 

Lu2(x , t )  ~ 12 llull 203 ts (s+p) - las 12 Ilull 203 log t+P 
t+r P t+p 0 

(59b) ~ ~2 llull 2p2z ( r , t )  log r+p, 
P 

Let next O < r < t-P. Then using the variables of in- 

tegration e,8 from (34) 

llul{ 2 t-r t+r z2 
~'u2(x't) < T  S as S (~-B) (~,s) as = (x1+x2)ll~ll 2, 

-p t-r 

where by (58b) 

= p2 f t + r  
11 ~-{ d8 S (~-8) (e+8+2p)-2 do 

-p t-r 

3 t-r t+r )-1 (~+8) d~ 
I2 = 2rT p S d8 S (~-8 log 2 8+ p 

p t-r 

Here 

2 p t+r -2 
11 ~ 2~?r S dB S (~+~)(~+p) d~ 

-p t-r 

3 t+r+~ : p3/2T1/2 
(59c) : 2~r log t-r+p z(r,t) 

Introducing new variables of" integration a,0 in 12 by 

+ 0 = (t-r+p)q, 8 + P = (t-r+p)8o 

and setting 

A = t+r+p , B = t-r+p 

we have 
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I2 p3 B A/B i~o io 2e 
= 2r f do de 

1 2p/Bo l-e 

(A-B) p3 } lo~2e de ~ p3A loq(A/B)} lo~2e de 
2r~ O l-e 2rT O lle 

1 p3/2T1/2 } 1 0 ~  de z ( r , t )  
(59d) ~ 2 l-e 

o 

It follows altogether from (59b,c,d) that 

(60) llLu211 ~ CT1/2 p3/2 Ilull 2 , 

where 

1 } iog28 de + 12 Max ( -1/2 log(1+~)) 
(61) c = I + ~ O l-e ~>0 " 

From here on the existence proof is exactly the same as 

the one for theorem II, the only difference being that in 

the basic inequality (50a) taken for p = 2 we have to re- 

place c by cTI/2" p-1/2.- The essential restriction (56e) on 

u O becomes 

I (26) cp3/2 1 / 2  iluOll < 

2 
since ~" for ~(u) = u is uniformly H~Ider continuous. 

Obviously 

(63a) u 0 = eU 0 , 

where U 0 is the solution of 

(63b) []U O = O 

O G for t = O (63c) U O = F, U t = 

Condition (62) then reads 

(64a) 16c 2 p3T e 2 I lu~ 2 < I 

If T satisfies this inequality the solution u of (57a,b) 

exists for 0 ~ t < T. This implies the lower bounds Ae -2 

with 

(65b) A = (16c 2 p3 IIuOII 2)-1 
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for the time T at which the solution blows up. 

We next determine an upper bound for T~ Assume that u 

is a solution of (57a,b) for x 6 ~3' O ~ t < T. We exclude 

the trivial case where the solution U 0 of (63b,c) vanishes 

identically, which only leads to u = O. We make the further 

assumption that 

(66) uO(xO,t) ~ O for some t > O. 

(This is not an essential restriction since either F(x) or 

G(x) is different from zero at some x I with Ixl-x01 < p. 

If necessary we replace x O by x I and p by 2p in (57c), 

which does not change anything in the theorem to be proved) 

Take any T with O < T < T. Then u satisfies 

(67a) u = u O + Lu 2 for O ~ t < T 

Consider first the restriction of u to the set 

(67b) K T = {(x,t): t-p<Ix-xOl < t+p, O < t < T} 

For ( x , t )  6 K t h e  i n t e g r a l  f o r  Lu 2 o n l y  i n v o l v e s  p o i n t s  
T 

of KT, and  we f i n d  f r o m  ( 5 9 b ) ,  (58b) t h a t  

Lu2(x,t) ~ 12 Ilull 2 3 T p log T+p 
t+p p 

where for the restriction of u to K we define 
T 

= sup t+--m lu(x,t) T ; (67c) llullT K P 
T 

thus 

(67d) IILu211.c :~ 12p 2 ( 1 o g ( ' ~ ) ) 1 l U l l  2 

It follows from (67a) that 

2 
(67e) llull~ ~ lluOIIT + 12p2(log(~)llul] T 

For sufficiently small T we have 

< 2 flu~ c67f) IlullT 
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If T is the smallest value for which Ilull~ : 2 ' llu~ w e  

would find from (67e) that 

48p 2 log( !~) I lu~  ~ I, 

where of course.../ 

(67g) Ilu~ ~ flu~ : sup (~lu~ i) 
x 

tZO 

/ 
It follows that the restriction of u to K satisfies 

T 

(6Vh) Ilull~ ~ 2 llu~ 
= ~ 4802 (log(~-0-))Ilu~ 2 (6vi) Ilu-u~ IILu211T 

that is 

48 p3.1 (/_~)) 211u~12 (67j) lU(X,t)-uO(x,t)l ~t-~l og for (x,t)6K T 

as long as T is so small that 

(67k) 48 p2(log(/-~))e Ilu~ < 

We go over to the spherical averages u(r,t) of u, which 

by (27) satisfy 

(68a) u(r,t) Z P ~2 = ff 1 ~2 ~-~ u (l,s) dlds 
R 
r,t 

for O < r < t-p. Taking the spherical means of inequality 

(67j) we find that for t-p < r < t+p 

(685) lu(r,t)-uO(r,t)l ~ 48t+~P3 (log --~-)T+P'e2 I Iu~ 2 

32 32 
The function uO(r,t) as a solution of (-~-~--~)r U O=O 

~ uJ. 

(see (47a,b)) is of the form 

~O(r,t ) H(t+r) - H(t-r) 
= ........ ' 2 r ' 

I ~(s) I ~ ~(a) d~ H(S) = ~ - ~ o 

S 

where H(s) = 0 for s > P. Here 
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uO(xO,t) = uO(o,t) = H' (t) 

It follows from (66a) that there exists a t between O and 

p for which H'(t) ~ O. There exists then a ~ > O and a,b 

with O < a < b < p such that 

I H(s)l > ~ for a < s < b 

Then for t+r > p, a < t-r < b 

i ~O(r,t) l I H(t-r) I > - 2r = ~ for t+r > P, a < t-r < b 

and by (68b) 

E 
(68c) l u(r,t)I > ~ 

if 

3 2 2 4sp log +  flu~ > 
r p 

T+p ) 2 
(68d) 196e p3(log ~ I I u~  < u .  

Let now (r,t) belong to the set 

= { (r,t) : O < r < t-2p} 

identifying the t2,~ in (33a) with the present O,0. 

Then R contains the set 
r,t 

S ~ = { (~,s) : 2p < s+~, O < a < s-% < b < 0} 

in which 

lu( ,s)1 > 

It follows that for (r,t) E E 

2 2 b t+r de 
u(r,t) > ~ f d8 ; e-8 

a t-r 

2 2 
> # e (b-a) I 

16 .... t+r 

This is an inequality of the form (38a) with 

2 
q = 1 , a = b = O , C = U (b-a)1.6 c2 
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It leads to the inequality (41) where J, E are defined by 

(4Od), (42) and here 

C ~ C 2 
=6-7 

Then u(r,t) = ~ when 

(t-r-2p) 2 
J = E + log t-r - > O 

But here E differs from log (e 2) only by a constant. It 
2 

follows that u(O,T) = = when e T is sufficiently large. 

This is still entirely consistent with the restriction 

(68d) on T when e is sufficiently small. Hence T < Be -2 

with a suitable constant B for e sufficiently small, pro- 

ving Theorem III. 
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