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ON THE KORTEWEG-DE VRIES EQUATION 

Tosio Kato* 

Dedicated to Hans Lewy and Charles B. Morrey Jr. 

Existence, uniqueness, and continuous dependence on the 
initial data are proved for the local (in time) solution 
of the (generalized) Korteweg-de Vries equation on the 
real line, with the initial function ~ in the Sobolev 
space of order s > 3/2 and the solution u(t) staying 
in the same space, s = ~ being included~ For the proper 
KdV equation, existence of global solutions follows if s 
> 2. The proof is based on the theory of abstract quasi- 
~inear evolution equations developed elsewhere. 

i. Introduction 

The purpose of this paper is to strengthen the results 

given in the previous paper [I] on the Cauchy problem for 

the (slightly generalized) KdV equation 

(i.i) u t § Uxx x + a(u)u x = 0, t ~ 0, -= < x < =, 

(1.2) u(0,x) = g(x). 

Here all functions are real-valued, and a is assumed to 

be C ~ (though we do not always need it). 

In [i] a general theory of quasilinear equations of 

evolution was applied to (1.1-2), to deduce existence, 
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2 KATO 

uniqueness, and continuous dependence on the initial data 

for the solution, with the assumption that ~ ~ H s for 

some s ~ 3 and with the solution u obtained in the 

class 

(1.3) u ~ C([0,T);H s) h CI([0,T)~HS-3), 

where T depends on II~II s. (Here H s = HS(-~, =) is the 

Sobolev space of order s of L2-type, with the norm 

denoted by II II s. ) 

Similar results have been obtained, independently, by 

Bona and others [2D3] for any s ~ 2 and any T > 0 for 

the proper KdV equation (in which a(u) = u), and by Saut 

and Temam [4] for s > 3/2 and sm~ll T except for the 

continuous dependence in H s. Since the methods used by 

these authors are quite different from ours, it would be 

worth while to show that the method used in [I] is also 

applicable to s smaller than 3. We shall indeed show 

that s > 3/2 suffices for the existence, uniqueness, 

and continuous dependence in H s on the initial data for 

the local solution. We shall also show that global 

solutions are obtained if there exists a certain global 

estimated which is the case with the proper KdV equation. 

(We note that recently Cohen Murray [5] proved the exist- 

ence of global solutions for certain discontinuous initial 

data.) 

More preciselyD our theorems read. 

THEOREM I. (a) Let s > 3/2 (not necessarily an inteqer). 

Fo r any ~ ~ H s, there is a unique solution u t__oo (1.1-2) 

in the class (1.3), with T havinq a lower bound dependinq 

only on ll~)11s. 
(b) The map ~ t-~ u(t) is continuous in the HS-norm. 

More precisely9 if ~n ~ Hs' n = 1,2D..., with [l~n-~II s 

--> 0 and T' < TD the solution u n for Un(0) = ~n 

exists on [OPT'] for sufficiently larqe n add 

llUn(t)-u(t)ll s --> 0 uniformly in t ~ [0,T']. 
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~TO 3 

(c) T may be chosen independent o_~f s in the followinq 

sense~ If u is a solution satisfyinq (i.3) and if u(0) 

= ~ ~ H s' for some s' ~ s, s' > 3/2, then (1.3) is true 

also with s replaced by s' and with the same T. In 

particular, ~ ~ H ~ =/~H s implies (1.3) with s = -. 
s 

In order to obtain global solutions, we introduce 

CONDITION (G). There are real numbers s I ~ s o > 3/2 and 

a monotone increasinq function q on [0, ~) to itself, 

such that for any T > 0 and any function u 

C([0,T);H sl) satisfyi~q (i.I) one has 

(1.4) Llu(t)lJs0 <_ q(tlu(0)lls0), t ~ [0,T). 

As is well known, Condition (G) is satisfied by the 

proper KdV equation with s o = 2. Here s I may be chosen 

sufficiently large that the formal derivation of the 

inequality is justified (say s I = 4). We need no further 

estimates to deduce global existence for all s ~ s O . We 

have namely 

THEOREM II. Assume Condition (G). 

is true with T = ~. 

If s ~ s O , TheOrem I 

For the proper KdV equation, Theorem II shows that a 

global solution exists whenever ~ ~ H s with s ~ 2, and 

stays in H s. Theorem I shows that a local solution 

exists if ~ ~ H s with 3/2 < s < 2, but we do not know 

whether or not it can be extended to a global solution. 

2. Local solutions 

We shall first prove parts (a), (b) of Theorem I by 

applying the general theory of [i]. Before doing soj we 

make a preliminary transformation of the unknown by 

-tD 3 
(2.1) u(t) = P(t)v(t), P(t) = e , D = d/dx, 
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4 KATO 

where the space variable x is suppressed in u(t) = 

u(t,x), etc. Note that D 3 is skew-adjoint in each H s 

so that [P(t)] forms a strongly continuous unitary group 

on H s . 

Substitution of (2.1) into (1.1-2) yilds a quasilinear 

equation of evolution for the unknown v = v(t)! 

(2.2) dv/dt + A(t,v)v = 0, v(0) = ~, 

where A(t,y) is a linear operator depending on t and 

y ~ HSl 

(2.3) A(t,y) = P(-t)a(P(t)y)DP(t). 

Here a(P(t)y) is the operator of multiplication by the 

function x ~-> a((P(t)y)(x)). 

(2.2) belongs to the class of quasilinear equations 

of evolution for which the theory of [i] is applicable; it 

is simpler than (i.i) in that A(t,v) is an operator of 

"first order," although it is not a differential operator 

or a pseudo-differential operator in familiar classes. 

To apply the algorithm of [i] to (2.2), we choose the 

basic spaces 

(2.4) X = H 0, Y = H s. 

Let W be the open ball liylls < R in Y. According to 

[i], the parts (a)~ (b) of Theorem I will follow if we 

verify the following lemmas. (In these lemmas it is 

assumed that t > 0, y, z ~ W; note that W c CI/~ L ~ 

due to s > 3/2.) 

LEMMA 2.1. A(t,y) ~ G(X,I,~ ) with ~ dependin q only on 

R. In other words~ -A(t,y) is the qenerator of a C 0- 

semiaroup on X satisfyinq 

X co 
(2.5) (A(t,y)w,w) x _> -~LLwll , w ~ c o . 
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PROOF. Since P(t) is unitary on 

that (2.5) holds for the operator 

If,Section 8]){ one can take 

X, it suffices to note 

a(P(t)y)D (of. 

2# = suplla(P(t)y)xll r = suplla(y)xll~!Msuplla(Y)xlls_ l 
y~W y~W y~W 

because s-i > 1/2. (M is a constant.) 

< 

LEMMA 2.2. Let S = A s, where A = (I-D2) I/2. 

isomorphism of Y onto Xj and 

(2.6) SA(t,y)S -I = A(t,y) + B(t,y), 

S is an 

(2.7) llB(t,y)ll x ~ ~ = ~(R), 

(2.8) l{~(t,y) - B(t,z)ll x ! ~(R)lly-ZIiy, 

where ~(R), ~(R) are constants dependinq 9nly on R 

and a. 

PROOF. To prove (2.6), it suffices to verify that 

(2.9) [S,A(t,y)]S -I = p(-t)[S,a(P(t)y)]DS-ip(t) c B(t,y) 

is a bounded operator in X. ( [ , ] denotes the commu- 

tator~ This is true because [S,a(P(t)y)]DS -I is 

bounded, as is seen from Lemma 2.6 given below, together 

with the estimate (2.7). (2.8) can be proved in the same 

way. 

L EMMA 2.3. We have, with another constant /~s 

( 2 . 1 o )  l { A ( t , y )  - A ( t , z ) { i y ,  x <_ ~ , (R ) [ {Y -Z I I  x �9 

P/ROOF. Since P(t) is unitary on X and Y, (2.10) 

follows from {{a(P(t)y)D - a(P(t)z)Dl{y, x < const{IY-Zl} x 

= constllP(t)y-P(t)ZI{x, which is proved in [l,Section 8]. 
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6 KATO 

LEMMA 2.4. t ~-~ A(t,y) ~ B(Y~X) i_ss strongly continuous. 

PROOF. Since D is bounded on Y to X and since 

P(t) is a strongly continuous unitary group on X, it 

suffices to note that the multiplication operator a(P(t)y) 

B(X) is strongly continuous in t. This is true even 

in the norm-topology, since P(t)y ~ H s is continuous in 

t. 

'REMARK 2. 5 . To apply the general theory of [I]~ we would 

need norm-continuity in Lemma 2.4 rather than strong con- 

tinuity. Fortunately, it has been shown that strong con- 

tinuity is sufficient. This fact, essentially a problem 

for linear evolution equations, follows from the results 

of Darmois [63. Darmois's thesis has not been published, 

but similar results are contained in a recent paper by 

Da Prato and Iannelli [7]. Another proof was recently 

given by Kobayashi [8]. 

With this remark, the theory of [i] can be applied to 

(2.2), yielding a unique solution v ~ C([0,T)~HS). Then 

the transformation (2.1) gives a solution u of (1.1-2) 

in the class (1.3). This proves the parts (a), (b). 

We conclude this section with a technical lemma, 

which was used above and will be used later too. 

LEMMA 2.6. Let f ~ Hr(R m) for some r > m/2 + i. Then 

llA-s[As+t+l,Mf]A-tll ~ cllgrad fllr_ I, Isl,ltl ~ r-l, 

where A (i-~) I/2 = , Mf is the operator o_~f multipli- 

cation by f, and the norm II II on the left is the oper- 

ator norm in L2(Rm). 

The proof is identical with that for Lemma A2 in [i] 

(which is a special case) and may be omitted. 
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KATO 7 

). The i nterval of existence 

We now prove part (c) of Theorem I. Suppose that u 

is a solution of (1.1-2) satisfying (1.3). It suffices to 

consider the case s' > s, since the case s' < s is 

obvious from uniqueness. As is seen from the following 

proof, this is essentially a linear problem. 

We return to equation (2.2) for v and apply the 

operator D 2, obtaining the following linear evolution 

equation for w(t) = D2v(t), 

(3.1) dw/dt + A(t)w + B(t)w = f(t), 

(3.2) A(t) : DP(-t)a(u(t))P(t), 

(3.3) 

(3.4) 

B(t) = 2P(-t)a'(u(t))Ux(t)P(t), 

f(t) = - P(-t)a"(u(t))Ux(t)3 , 

where 

(3.5) u ~ C([0,T);H s) 

is regarded as a known function. (Subscript x in (3.3) 

and (3.4) denotes differentiation in x, and a' and a" 

denote the derivatives of the function a.) 

We already know that w ~ C([0,T);H s-2) because v 

C([0,T)~HS). Furthermore, w(0) ~xx ~ H s'-2 = because 

~ H s'. It is our purpose to deduce w ~ C([0,T);HS'-2), 

which will imply v ~ C([0,T);HS'), hence the same for u, 

completing the proof of part (c). To this end, we have to 

study the linear evolution equation (3.1) in more detail. 

In particular, we are concerned with the evolution oper- 

ator [U(t,T)] associated with the family {A(t)). 

DEMMA 3.i. The family [A(t)] has a unique evolution 

operator {U(t,T)] associated with the spaces X = H h, 

Y = H k in the sense of [i], where 
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8 KATO 

(3.6) -s < h < s-2, l-s < k < s-i, and k �9 h+l. 

I__nn particular, U(t,T) 

-s < r < s-i. 
m 

maps H r into itself for 

PROOF. The proof parallels that of Theorem I, consisting 

of verifying three conditions. First we show that A(t) 

GCx,I,~), which is less trivial than before since h is 

not zero in general. We have to show that (ACt)z~z) h 
2 

-~llzll h, where ( ' )h denotes the inner product in H h. 

In view of the unitarity of P(t)~ this is equivalent to 

(3~ a -  {l^h ll 2, 

where ( , ) = C , )0 and II II = LI II 0. 

If we write 

(3.8) Aha(u(t)) = a(u(t))A h + [Ah,a(u(t))], 

the contribution of the first term to (3.7) can be dealt 

with by the standard technique of integration by parts, 

yielding an estimate of the desired form. The contri- 

bution from the commutator in (3.8) can be estimated by 

Lemma 2.6~ to yield the same estimate. 

Second, we have to take the isomorphism S = A k-h of 

Y onto x and verify that B(t) D [S~A(t)]S -I = 

DP(-t)[S,a(u(t))]S-ip(t) is uniformly bounded on X. This 

is equivalent to that hhD[Ak-h,a(u(t))]A -k is (uniform- 

ly) L2-bounded, which again follows from Lemma 2.6. 

Finallyj it is easy to see that A(t) ~ B(Y,X) is 

strongly continuous in t. For the sufficiency of strong 

continuity for our purpose~ see Remark 2. 5 . 

This proves the existence and uniqueness of the evo- 

lution operator {U(t,Tg] for the family {A(t)]. A 

priori, [U(t,~)] may depend on the choice of X and Y. 

Actually we have a unique one for all X = H h and Y = 

H k with h, k satisfying (3.6), due to the uniqueness 

theorem for the evolution operator (see [9]). 
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LEMMA ).2. We have 

/o t ( 3 . 9 )  w ( t )  = u ( t , O ) w ( O )  + U ( t , r ) [ - B ( ~ ) w ( ~ ) + f ( r ) ] d r  . 

PROOF. In Lemma 3.1, choose h = s-3 and k = s-2 (whiCh 

satisfy (3.6)). Since w ~ C([0,T) jY) /% CI([0,T)~X), as 

is easily verified by (3.5), we can carry out the stand- 

ard computation 

dU(t,T)W(T)/dr = U(t,T)[dw(T)/dr + A(T)W(r)] 

= U(t,T)[-B(T)w(T) + f(r)] 

and obtain (3.9) on integration in T ~ [0,t] (see e.g. 

[93). This is essentially a uniqueness proof for the 

solution w of (3.1) in the class C([0,T)~HS-2). 

LEMMA 3.3. w ~ C([0,T)~HS'-2). 

PROOF. We have w(0) ~ H s'-2 as mentioned above. Also 
S'-2 (3.4-5) imply that f ~ C([0,T)~H s-l) c C([0,T)~H ) if 

s' < s+l, since u is in the same class and s-i > 1/2. 
-- x 

For the same reason, (3.3) shows that B(t) ~ B(H s'-2) is 

strongly continuous in t ~ [0,T) if s' ~ s+l; note that 

HS-l.HS'-2 c H s'-2 by s-i > 1/2. Since the family 

[U(t,T)] is strongly continuous on H s'-2 to itself 

(see Lemma 3.1), the required result follows from (3.9)~ 

we have only to regard (3.9) as an integral equation of 

Volterra type, which can be solved for w by successiVe 

approximation. 

This proves the lemma under the additional condition 

s' ~ s+l. If s' > s+l, we obtain the result by repeated 

application of the above argument. 

~. Global solutions 

We now prove Theorem II. 
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LEMMA 4.1. (1.4) is true for any solution u i__nn 

C([0,T);H s0) , not necessarily i_~n C([0,T);HSl). 

PROOF. Let u be such a solution with u(0) = ~ ~ H s0. 

Let ~n ~ HSl' n = 1,2,..., be a sequence such that ~n 

-@ ~ in H s0, and let u n be the solution of (i.i) with 

Un(0) = ~n" Given any T' < T, we have u n ~ C([0,T');H s0) 

for sufficiently large n, with Un(t) --~ u(t) in H s0, 

by part (b) of Theorem I. On the other hand, part (c) 

shows that u ~ C([0,T'~HSl). Thus (1.4) holds for u 
n 

replaced by u n. Since Un(t) -~ u(t) in H s0, (1.4) 

must hold also for u. 

Once Lemma 4.1 is proved, the standard argument can 

be used to continue any solution u ~ C([0,T);H s0) to all 

time t > 0 in a finite number of steps, since the local 

solution exists for a time interval depending only on 

ll~li s . The same is true for any s > s o , due to part (c) 
0 

of Theorem I. The continuous dependence, so far proved 

only locally, can be extended as usual to all t > 0 step 

by step. This completes the proof of Theorem II~ 
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