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ON THE KORTEWEG-DE VRIES EQUATION
Tosio Kato*
Dedicated to Hans Lewy and Charles B. Morrey Jr.

Existence,; uniquenesss and continuous dependence on the
initial data are proved for the local (in time) solution
of the (generalized) Korteweg-de Vries equation on the
real line, with the initial function @ in the Sobolev
space of order s > 3/2 and the solution u{t) staying
in the same space, s = ® being included. For the proper
KdV equation, existence of global sclutions follows if s
> 2. The proof is based on the theory of abstract quasi-
linear evolution equations developed elsewhere.

1. Introduction

The purpose of this paper is to strengthen the results
given in the previous paper (1] on the Cauchy problem for
the (slightly generalized) KdV eguation

(1.1) u, +u + a(u)ux = 0, t > 0, > < x < ®,
(1.2) u{0,x) = #(x).

Here all functions are real-valued, and a is assumed to
be Cm (though we do not always need it).

In [1] a general theory of quasilinear equations of
evolution was applied to (1.1-2), to deduce existence,
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2 KATO

uniqueness, and continuous dependence on the initial data
for the solution, with the assumption that @& e H® for
some s > 3 and with the solution u obtained in the

class
(1.3) u e c(lo,m:uS) N ctlo,T);u5),
where T depends on HﬁHS. (Here H® = H¥(-»,») is the

Sobolev space of order s of Lz—type, with the norm
denoted by || HS.)

Similar results have been obtained, independently, by
Bona and others [2,3] for any s >2 and any T > 0 for
the proper KdV equation (in which a(u) = u), and by Saut
and Temam [4] for s > 3/2 and small T except for the
continuous dependence in H®. Since the methods used by
these authors are quite different from ours, it would be
worth while to show that the method used in [1] is also
applicable to s smaller than 3. We shall indeed show
that s > 3/2 suffices for the existence, uniqueness,
and continuous dependence in H® on the initial data for
the local solution. We shall also show that global
solutions are obtained if there exists a certain global
estimate, which is the case with the proper KdV equation.
(We note that recently Cohen Murray [5] proved the exist-
ence of global solutions for certain discontinuous initial
data.)

More precisely, our theorems read.

THEOREM I. (a) Let s > 3/2 (not necessarily an integer).
For any # & u°, there is a unique solution u to (1.1-2)

in the cglass (1.3), with T having a lower bound depending
only on gl .

(b) The map #& +» u(t) is continuous in the H®-norm.
More precisely, if £ H%, n = 1,2,..., with |2, -2l
~» 0 and T' < T, the solution u  for un(O) =8,
exists on [0,T'] for sufficiently large n and
lu,(t)-ult)l|, - 0 uniformly in t & Lo,T*].

s
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KATO 3

(c) T may be chosen independent of s in the following

gsense. If u is a golution satisfying (1.3) and if u(0)
t

=geu® for some s'+ s, s' >3/2, then (1.3) is true

also with s replaced by s' and with the same T. In
particular, £ < H =M §° implies (1.3) with s = =,
s

In order to obtain global solutions; we introduce

CONDITION (G). There are real numbers S; 289 > 3/2 and
a monotone increasing function gq on [0,®) to itself,

such that for any T > 0 and any function u &
— T _s1. - I
c([0,T);H 1) satisfying (1.1) one has

(1.4) hato)ig < allutodig ) t e [0,T).

As is well known, Condition (G) is satisfied by the
proper KAV equation with Sg = 2. Here 54 may be chosen
sufficiently large that the formal derivation of the
inequality is justified (say sy = 4). We need no further
estimates to deduce global existence for alli s > sp. We
have namely
THEOREM II. Assume Condition (G). If s > s;, Theorem I

is true with T = =,

For the proper KdV equation, Theorem II shows that a
global solution exists whenever £ < H® with s > 2, and
stays in H®. Theorem I shows that a local solution
exists if @ e H® with 3/2 < s < 2, but we do not know
whether or not it can be extended to a global solution.

2. Local solutions

We shall first prove parts (a), (b) of Theorem I by
applying the general theory of [1]. Before doing so, we
make a preliminary transformation of the unknown by

3
(2.1) ult) = P(e)v(t), P(t) =e P, b= a/ax,
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L KATO

where the space variable x is suppressed in u(t) =
u(t,x), etc. Note that p’
so that {P(t)} forms a strongly continuous unitary group

is skew-adjoint in each H®

on HS.
Substitution of (2.1) into (1.1-2) yilds a quasilinear

equation of evolution for the unknown v = v{t):
(2.2) av/dt + A(t,v)v = 0, v(0) = 4,

where A(t,y) is a linear operator depending on t and
yGHSI

(2.3) A(t,y) = P(-t)a(P(t)y)DP(t).

Here a(P(t)y) is the operator of multiplication by the
function x > al((P(t)y)(x)).

(2.2) belongs to the class of quasilinear equations
of evolution for which the theory of [1] is applicable; it
is simpler than (1.1) in that A(t,v) is an operator of
"first orders"” although it is not a differential operator
or a pseudo-differential operator in familiar classes.

To apply the algorithm of [1] to (2.2), we choose the
basic spaces

(2.4) x = u°, Y = H°.

Let W be the open ball HY“S < R in Y. According to
[1], the parts (a), (b) of Theorem I will follow if we
verify the following lemmas. (In these lemmas it is
assumed that t > 0, y, z @ W; note that W< Co A L™
due to s > 3/2.)

LEMMA 2.1. A(t,y) € G(X,1,8) with P depending only on
R. In other words, -A(t,y) is the generator of a Cy-

semiqroup on X satisfying

(2.5)  Alty)wwy, 2 -BlW2, wec.
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PROOF. Since P(t) is unitary on X, it suffices to note
that (2.5) holds for the operator a(P(t)y)D (cf.
[1,Section 8]); one can take

2p = ;éf,”a(P(t)Y)xHL‘” = supHa(Y)xHLwSM;égl\a(y)x\\s_l <e

because s-1 > 1/2. (M is a constant.)

LEMMA 2.2. Let S = AS, where A = (l—Dz)l/z-

igsomorphism of Y onto X, and

(2.6) SA(t,y)S_1 = A(tsy) + B{t,y),
(2.7) HB(tQY)“x < A= A(R),
(2.8) B(tsy) - Bltsz)lly < m(R)y-zllys

where A(R), M (R) are constants depending only on R

and a.
PROOF. To prove {2.6), it suffices to verify that
(2.9) [S:A(tsy)]s™t = P(-t)[S,a(P(t)y)IDs 1P(t) < B(tsy)

is a bounded operator in X. ( [ , ] denotes the commu-
tator.) This is true because [S,a(P(t)y)]DS—1 is
bounded, as is seen from Lemma 2.6 given below, together
with the estimate (2.7). (2.8) can be proved in the same
way.

LEMMA 2.3. We have, with another constant A4 (R),

(2.20)  [lalt,y) - Altsz)ly y < M(R)ly-zlly -
PROOF. Since P(t) is unitary on X and Y, (2.10)

follows from |la(P(t)y)D - a(P(t)z)DHY’x < constl[y—z“x
= constHP(t)y-P(t)sz, which is proved in [1,Section 8].

93



6 KATO

LEMMA 2.4. t +» A(tsy)  B(Y,X) is strongly continuous.

PROOF. Since D 1is bounded on Y to X and since

P(t) is a strongly continuous unitary group on X, it
suffices to note that the multiplication operator a(P(t)y)
e B(X) is strongly continuous in t. This is true even
in the norm-topologys since P(t)y « H® is continuous in
t.

‘REMARK 2.5. To apply the general theory of [1]}, we would
need norm-continuity in Lemma 2.4 rather than strong con-
tinuity. Fortunately, it has been shown that strong con-
tinuity is sufficient. This fact, essentially a problem
for linear evolution equations,; follows from the results
of Darmois [6]. Darmois's thesis has not been published,
but similar results are contained in a recent paper by

Da Prato and Iannelli [7]. Another proof was recently
given by Kobayashi [8].

With this remark, the theory of [1] can be applied to
(2.2), yielding a unique solution v = c([0,T);H®). Then
the transformation (2.1) gives a solution u of (1.1-2)
in the class (1.3). This proves the parts (a), (b).

We conclude this section with a technical lemma,
which was used above and will be used later too.

LEMMA 2.6. Let f « HY(RM) or some r > m/2 + 1. Then

IATSIAS*E M IATY) < cllgraa €] Islafel < -1,

r-1’
- 1/2 . .o
where A = (1-4) ’ Mf 1s the operator of multipli-
cation by £, and the norm || || on the left is the oper-

ator norm in LZ(Rm).

The proof is identical with that for Lemma A2 in [1]
(which is a special case) and may be omitted.
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3. The interval of existence

We now prove part (c) of Theorem I. Suppose that u
is a solution of (1.1-2) satisfying (1.3). It suffices to
consider the case s' > 5, since the case s' < s is
obvious from uniqueness. As is seen from the following
proof, this is essentially a linear problem.

We return to equation (2.2) for v and apply the
operator D2, obtaining the following linear evolution

equation for w(t) = Dzv(t)x

(3.1) dw/dt + A(t)w + B{t)w = £(t),

(3.2) A(t) = DP(-t)alu(t))P(t),

(3.3) B(t) = 2P(-t)a'(ult))u (£)P(t),

(3.4) £(t) = - P(-t)a"(u(t))u ()7

where

(3.5) u & c([o,T);u%)

is regarded as a known function. (Subscript x in (3.3)

and (3.4) denotes differentiation in x, and a' and a"
denote the derivatives of the function a.)

We already know that w & C([OsT);HS_2
e ¢([0,7);8°). Furthermore, w(0) = g < 15’2 pecause
geu. It is our purpose to deduce w & C([O,T);HS'_Z),
which will imply v & C([O,T);HS'), hence the same for u,
completing the proof of part (c). To this end, we have to
study the linear evolution equation (3.1) in more detail.
In particular,; we are concerned with the evolution oper-
ator {U(t,T)} associated with the family {a(t)}.

) because Vv

LEMMA 3.1. The family {A(t)}] bhas a unique evolution
operator {U(t,T)} associated with the spaces X = HD,

Y = g* in the sense of [1], where
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(3.6) =-s <h < s-2, l-s <k < s-1, and k > h+l.

In particular, U(t,T) maps H' into itself for
-s <r < s-1.

PROOF, The proof parallels that of Theorem I, consisting
of verifying three conditions. First we show that A(t)
€ G(Xs1,p)s which is less trivial than before since h is
not zero in general. We have to show that (A(t)z,z)h >
-—ﬁllz”i, where { , );, denotes the inner product in H'.
In view of the unitarity of P(t), this is equivalent to

(3.7)  -(APalu(t))z,0A%2) > - plIAPz)|?,

where ( 5 ) = ( , )0 and | || = | “0-
If we write

(3.8) APa(u(t)) = alu(e)A? + [ADalu(t))],

the contribution of the first term to (3.7) can be dealt
with by the standard technique of integration by parts,
yielding an estimate of the desired form. The contri-
bution from the commutator in (3.8) can be estimated by
Lemma 2.6, to yield the same estimate.

Second; we have to take the isomorphism S
Y onto X and verify that B(t) o [s,a(t)]s™t
DP(-t)ES,a(u(t))]S—lP(t) is uniformly bounded on X. This
is equivalent to that AMMIAFP,a(u(t))IA® is (uniform-
1y) Lz-bounded, which again follows from Lemma 2.6.

Finally, it is easy to see that A(t) & B(Y,X) is
strongly continuous in t. For the sufficiency of strong

1

Ak—h of

continuity for our purpose, see Remark 2.35.

This proves the existence and uniqueness of the evo-
lution operator {U(t,T)} for the family {aA(t)}. A
priori, {U(t,T)} may depend on the choice of X and Y.
Actually we have a unique one for all X = Hh and Y =
B with hy k satisfying (3.6)s due to the uniqueness

theorem for the evolution operator (see [9]).
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LEMMA 3.2. We have

t
(3.9)  w(t) = U(t,0)w(0) +/0 U(t,t)[-B(T)w(T)+£(T)]ar .

PROOF. In Lemma 3.1, choose h = s-3 and k = s-2 (whi¢h
satisfy (3.6)). Since w e c([0,T);¥Y) N Cl([O,T);X), as
is easily verified by (3.5), we can carry out the stand-
ard computation

du(t,T)wl(T)/atT = U(t,T)lawl(T)/at + A(T)wir)]
= U(tsT)[-B(T)wlT) + £(7)]

and obtain (3.9) on integration in T  [0,t] (see e.g.
[9]). This is essentially a uniqueness proof for the
solution w of (3.1) in the class C([O,T);Hs-z).

_2).

LEMMA 3.3. w e c([0,T);HS
PROOF. We have w(0) « HS'"2 as mentioned above. Also
(3.4-5) imply that f£ e c([0,1);85}) < c(lo,1);85 %) if
s' < s+l, since u is in the same class and s—1'> 1/2.
For the same reason, (3.3) shows that B(t) e B(ES %
strongly continuous in t € [0,T) if s' < s+l; note that
HS_l-HS'_2 cus'2 by s-1 >1/2, Since the family
{u(t,T)} is strongly continuous on '™ to itself

(see Lemma 3.1), the required result follows from {3.9);
we have only to regard (3.9) as an integral equation of
Volterra type, which can be solved for w by successive

) is

approximation.
This proves the lemma under the additional condition
s' < s+l. If s' > s+l, we obtain the result by repeated

application of the above argument.

4. Giobal solutions

We now prove Theorem II.
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10 KATO

LEMMA 4.1. (1.4) is true for any solution u in
c([0,T);u°0) , not necessarily in c([0,T);H5L).

PROOF. Let u be such a solution with u(0) = & & H"O,
Let ¢n e 81, n =1,2,..., be a sequence such that ﬂn
= g in H0, and let u  be the solution of (1.1) with
un(O) = ¢n. Given any T' < T, we have u, € c([0,T*);u"0)
for sufficiently large n, with un(t) — u(t) in =0,
by part (b) of Theorem I. On the other hand, part (c)
shows that u & c([o,T%HE%L). Thus (L1.4) holds for u
replaced by u_. Since un(t) = u(t) in HS0, (1.4)
must hold also for u.

Once Lemma 4.1 is proved, the standard argument can
be used to continue any solution u & ¢([0,T);H0) +to al1
time t > 0 1in a finite number of steps,; since the local
solution exists for a time interval depending only on
Hﬁﬂs . The same is true for any s > s, s due to part (c)
of Theorem I. The continuous dependence, so far proved
only locally, can be extended as usual to all t > 0 step
by step. This completes the proof of Theorem II.
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