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Abstract. In order to provide a mathmatical framework for the process of making 
repeated measurements on continuous observables in a statistical system we make a 
mathematical definition of an instrument, a concept which generalises that of an observable 
and that of an operation. It is then possible to develop such notions as joint and condi- 
tional probabilities without any of the commutation conditions needed in the approach 
via observables. One of the crucial notions is that of repeatability which we show is impli- 
citly assumed in most of the axiomatic treatments of quantum mechanics, but whose 
abandonment leads to a much more flexible approach to measurement theory. 

§ 1. Introduction 

It is well known  that Ko lmogorov ' s  measure-theoret ic  formulat ion 
of  classical probabi l i ty  theory [1] can be expressed in a way which 
emphasizes its similarities with yon N e u m a n n ' s  Hilbert space formula-  
t ion of  quan tum  theory (see for example [2]); the 'observables '  of prob- 
ability theory are the r a n d o m  variables and the 'states' are the prob-  
ability measures. M a n y  at tempts  have been made to extend the statistical 
interpretat ion of quan tum  theory by trying to construct  analogues of 
more  complicated objects of  probabi l i ty  theory, such as joint  probabil i ty 
distributions and condit ional  expectations. The difficulty with these 
approaches  is that  it invariably turns out that  the relevant objects exist 
only in very special circumstances;  joint  distributions in the sense of  
Urban ik  [3] and Varadara jan  [-4] exist if and only if the observables 
commute ;  a condi t ioning in the sense of Umegaki  [5] and N a k a m u r a  
and T u r u m a r u  [6] exists if and only if the observable has discrete spec- 
trum. 

* At present on leave from the University of Oxford, Research supported by N.S.F. 
grant GP-7952X and A.F.O.S.R. contract no. F 44620-67-C-0029. 

** At present on leave from Brasenose College, Oxford. Research supported by 
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An alternative approach to statistical concepts in quantum theory 
is provided by von Neumann's ideas on repeated measurements [-7], 
Accepting that a measurement of an observable causes a transformation 
of the state and that it is possible to perform a sequence of measurements 
on a state, a major problem is the difficulty of determining the possible 
transformations of states associated with the measurement of an obser- 
vable. We show that von Neumann's repeatability hypothesis is too 
restrictive and that this is connected with his difficulties over the conti- 
nuous spectrum. At the same time we generalise to continuous ob- 
servables the notion of operation, described for discrete observables by 
Schwinger [8], for example, and introduced in the context of algebraic 
quantum field theory by Haag and Kastler [9]. The theory is developed 
at a level of generality which allows both the Kolmogorov theory and 
the von Neumann theory to be considered as special cases. 

We would like to thank M. Kac, E. Nelson, M. Gerzon, F. Holroyd, 
R. Haag and the referee for helpful discussions, encouragement and 
advice concerning the paper. 

§ 2. Probabilistic Concepts in Quantum Theory 

In the standard formulation of quantum theory a state is a positive 
operator such that trace [~] is finite, on a complex Hilbert space 0~ 
An observable is a self-adjoint operator A on Yf or, equivalently by the 
spectral theorem, a projection-valued measure a(.) on the a-field of 
Borel subsets of the real line IR, related to A by the formula A = .I 2a(d)~). 

The probability P(O, A, E) that in the state Q the observable A should 
take values in E is given by 

P(Q, A, E) = trace [oa(E)]/trace [~]. 

According to yon Neumann [7, p. 220] an observable A can be measured 
with absolute precision if and only if its spectrum is purely discrete; 
for such observables it is straightforward to give an operationally moti- 
vated account of conditioning and joint distributions within the yon 
Neumann theory. 

Let A be a self-adjoint operator with purely discrete spectrum 
{xl, x 2 . . . .  } and associated projections t}1, Pz . . . .  so that a(E)= ~ Pi 

xi~E 

for all E ~ IR For any eigenvalue x i it is conventionally supposed that 
a measurement which gives the value x~ transforms the state ~ into the 
state P~I~. If xi is non-degenerate this follows from the repeatability 
hypothesis [7, p. 214] while if x~ is degenerate some extra principle of 
least interference [10-12] is also needed. From the elementary transfor- 
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mations o~--,PiQP i we can build up the transformation ~o ~ Q~= ~ PioP~ 
i = 1  

which describes what happens when A is measured but the fractions in 
which the various values xl ,  x 2 . . . .  occur are not separated [7, p. 347]. 
Nakamura  and Umegaki [13] point out that the mapping ~ 0  ~ is a 
conditional expectation in the sense of Umegaki [5] and hence is a 
generalisation of the classical conditional expectation. In the same 
spirit we can define the conditioning of the observable B = S 2b(d2). 
Defining a 

b*,(F) = ~ P~b(F) P~ 
i = 1  

we have trace [0 b~ (F)] = trace [ ~  b (F)] so F-~ trace [0 b~ (F)]/trace [~] 
is a probability measure on IK We call b ~ (.) the observable conditioned 
by the measurement of A. Notice that b~(.) is a positive operator-valued 
measure which is not projection-valued unless A and B commute, in 
which case b~(.) = b(.). Thus the introduction of the concept of condi- 
tioned observables requires an extension of the class of positive operator- 
valued measures considered as observables. 

An operationally motivated definition of the joint distribution of A 
and B can be given when A has purely discrete spectrum as above. 
The map 

F x E ~ c ( F  x E)= ~ P,.b(F)P i 
xi~E 

can be shown to extend to a unique positive operator-valued measure 
on IR 2, which we call the joint distribution of b(.) following a(.). This 
measure has marginal distributions 

c(IR x E) = a(E), c(F x IR) = b ~ (F). 

In this connection we note that a joint distribution of a(.) and b(.) in 
the sense of Varadarajan [4] exists if and only if A and B commute; 
in this case b = b ~ and c is a projection-valued measure on IR 2 which 
coincides with the joint distribution in Varadarajan's sense. It is con- 
venient to introduce the notation 

xiEE 

For each E____IR the mapping ~o~d~(E)~) is a linear mapping sending 
states into states and satisfying 

(i) trace Ida(E) ~o] = trace [~a(E)] ; 
(ii) for every countable disjoint family of Borel sets 

E l ,  E2 . . . .  ~ E i Q = (~(Ei) Q. 
i = 1  
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The adjoint maps on the observables are given by 

C(E)*B= ~ P~BP~ 
x ~ E  

for all bounded operators B. In terms of ~ we have the formulae 

Q~ = E(IR) e, b~(F) = oQIR)* b(F), 

c(F x E)= E(E)*b(F). 

The constructions we have used above depend crucially on the assump- 
tion that the spectrum of A is purely discrete. If we were not interested 
in observables with continuous spectrum or were content to adopt von 
Neumann's device [7, p. 220] of approximating continuous observables 
with step-function operators having purely discrete spectrum we need 
go no further. However, there is evidence for believing that notions of 
conditioning are particularly interesting when the observable has con- 
tinuous spectrum [14; 15]; moreover yon Neumann himself was not 
entirely satisfied with the step-function device and regarded it as a 
temporary expedient [7, p. 223]. 

The basis of the measurement theory we have used up to this point, 
and the source of the difficulties concerning the continuous spectrum, 
is the repeatability hypothesis [7, p. 214]. 

(M.) If the physical quantity is measured twice in succession in a 
system S then we get the same value each time. 

To begin with we abandon this hypothesis completely. Given an 
observable a(.) an arbitrary family C(.) of linear mappings which send 
the states into themselves and which satisfy (i) and (ii) above is called an 
instrument which determines the observable a(.) and it is used to define 
a conditioning and a joint distribution. 

We make essential use of the following facts. The space of self-adjoint 
trace class operators on Y~ forms a real Banach space V under the trace 
norm [16] and the states form a positive norm closed cone K in V. 
The Banach space V* dual to V can be identified with the space of 
bounded self-adjoint operators on • and the dual cone K* is the set of 
positive operators. The identity operator 1 defines a functional on V 
such that for all states ~o z K, (1, ~} = ]l~tJ- With this example in mind 
we start the general theory. 

§ 3. General Theory 

A state space (or complete base norm space [17]) is a triple (V, K, r) 
consisting of a real Banach space V, a closed cone K which generates V 
and a linear functional ~c on V such that (z, v) = Hv[[ for all v ~ V; we 
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also suppose that for all v ~ V 

[Iv]l--inf{llvll[ + [lVzrl " v =  vt - vz, vl ~ g ,  v2 e g }  . 

V is endowed with a partial ordering by putting v < w if and only if 
(w - v) s K. A linear functional (p on V is said to be positive if (~o, v> > 0 
for all v e K. Every positive linear functional on a state space is neces- 
sarily continuous and the set of all positive linear functionals forms a 
closed cone K* in the Banach dual space V* endowed with the weak* 
topology. A linear mapping T: V ~  V is said to be positive if T(K) <= K. 
A positive linear mapping on a state space is necessarily bounded [-18] 
and the set of all positive linear mappings forms a closed cone S + (V, V) 
in the topological linear space 5P(V, V) of all bounded linear mappings 
of V into itself, endowed with the strong operator topology. 

A state v is a non-zero element of K. An observable is a triple (X, d ,  a) 
consisting of a set X with a a-field d of subsets of X, and a mapping 
a: d ~ V* satisfying 

(i) 0 __< a(E) < a(X)  for all E e d ;  
(ii) a(X)  = r; 

(iii) for each countable family {Ei} of pairwise disjoint sets in d ,  

a E~ = a(Ei), where the right-hand side converges in the weak* 
i i = i  

topology of V*. The BoreI space (X, d )  is called the value space of the 
observable. An instrument is a triple (X, d ,  g) consisting ofa  Borel space 
(X, d )  and a mapping g :  d ~ ~ +  (1~ V) satisfying 

(i) (z, ~f(X) v) = (z, v} for all v ~ V; 
(ii) for each countable family {Ei} of pairwise disjoint sets in d ,  

g Ei = g(Ei), where the right-hand side converges in the strong 
i i = 1  

operator topology. The instrument (observable) is said to be discrete 
if its value space is discrete. 

Theorem 1. To every instrument • on the value space (X, d )  there is 
a unique observable a(.) such that 

O, ~(E) e> = <a(~, e) 

Jot all ~ E V and E e d .  Every observable a(.) on (X, d )  is determined in 
such a way by at least one instrument. 

Proof. For each E e d the above formula defines a(E) as a positive 
linear functional on V, that is as an element of K*. It is easy to verify 
that E ~ a ( E )  is a measure. On the other hand given any observable 
a(-) on (X, d )  choose any countable partition {E~} of X into pairwise 
disjoint Borel sets and any sequence {vi} of states such that (z, vi) = 1 
17 Commun. math. Phys., Vol. 17 
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for i = t, 2 . . . .  It is easy to check that the formula 

#(E) v = ~, (a (EnEi )  , v) v i 
i=l 

defines an instrument g whose associated observable is a(-). 
We recall that a standard Borel space is a Borel space which is Borel 

isomorphic to a Borel subset of some complete separable metric space. 
Most of the value spaces which arise in physical applications are standard 
Borel spaces and their properties have been studied extensively [19]. 

Theorem 2. Let # and o ~ be instruments on the standard Borel spaces 
X and Y. Then there exists one and only one instrument ~ on X x Y such 
that N(E x F) = #(E) ..~(F) for all Borel subsets E <__ X and F c= E 

Note. The instrument N is called the composition of g following 9 7 
and :is denoted by # o ~ .  

Proof. By the classification theorems for standard Borel spaces [19] 
every standard Boret space is Borel isomorphic to some zero-dimensional 
separable compact Hausdorff space, and so there is no loss of generality 
in supposing that both X and Y are both zero-dimensional separable' 
compact Hausdorff spaces. 

We denote by N(Z) the Banach space (under the supremmn norm) 
of all bounded real-valued Borel functions on Z, by C(Z) the space of 
continuous real-valued functions on Z, and by d the dense sub-algebra 
of C(Z) consisting of functions taking only a finite number of distinct 
values. 

As Z is compact and zero-dimensional, every f in can be written in 
at least one way in the form 

f ( ' )  ~- ~ O~rZAr(') )~Br(') 
r = l  

where the Borel sets ArC__X and Br_<_ Y are all open and closed sets; 
if f > 0 we can choose c~ r > 0 for all r. It is easy to show that there is a 
well-defined positive linear map T from ,4  to 5¢(V, V) given by the formula 

T f  = ~ ~&#(A~) ~(B~).  

From the definitions of the norms on the two spaces it follows that T 
is-continuous with 

[IZll = IIr(1)[[ ~ [IC(X)II II~(Y)i[ ~ 1, 
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and so T has a unique extension to a positive continuous linear map 
(which we also denote by T) from C(Z) to 5¢(E V). Now for each v e V, 
cp e V*, the formula 

Qp, (Tf) v5 = i f (x)  #~o:(dx) 
X 

defines a bounded measure #~,v on Z with 

t1~,~11 ~ I1TI111~oll Ilvil ~ t1~oI1 I]vll, 

and so the same formula defines a positive linear map 

T ' : B ( Z ) ~ Y ( V ,  V**) with IIT'tl <1 

such that T' extends T. We have to show that the image of ¢3(Z) under 
T' lies in 5¢(V, V). 

Let {f.} be an increasing sequence of functions in B(Z) having a 
pointwise limit f eB (Z ) ,  and let v e V be such that (T'fn)ve VC= V** 
for all n; then as {(T' f . )  v} is increasing and bounded in norm it converges 
in norm to some v' e V. Then for all ~0 e V* 

<~o, (T' f )  v) = ~ f(x) #o,~(dx) 
X 

= lim (to, (T'f,) v) = (co, v'), 
n--~ oo 

so that (T ' f )v  = v'e V. Therefore for each v e V the family o f f  in N(Z) 
such that ( T ' f ) v e  V is a monotone family containing C(Z), and so is 
equal to B(Z). Thus Tmaps B(Z) into ~Z~(V, V). We now define N on Z by 

N(G)= T'(ZG ) for each Borel set G c z ;  

we see that ~ is an Y +  (V, V)-valued measure on Z such that for all 
open and closed sets E __c X and F c y 

N(E x F) = T0~)@) = N(E) oN(F). 

The validity of this formula for all Borel sets E c X and F c y now 
follows from the monotone properties of •, ~ and N. 

The uniqueness of the map N having these properities follows from 
the fact that the sets in Z of the form E x F generate the a-field of all 
Borel sets in Z. 
17" 



246 E.B. Davies and J. T. Lewis: 

The structure we have described has a statistical interpretation in 
terms of ensembles. It is also natural to interpret it in terms of filtering 
operations performed on a beam consisting of non-interacting copies 
of a system. A state v corresponds to a beam and (r, v) is a measure 
of the strength of the beam. An instrument g measuring a physical quan- 
tity taking values in X corresponds to a family of filters indexed by the 
subsets in a family d ;  the filter corresponding to 8(E) allows a copy 
of the system to pass if its observed value lies in E and in doing so trans- 
forms the input state v into the output state E(E) v. The various filters in 
the family are related by the additivity condition: if E1 and E 2 a re  disjoint 
the output state g(EtwE2)v is the same as the mixture of g(E1)v and 
E(E2)  v. For each g and v the mapping E ~ ( z ,  g(E) v)/(r, v) is a prob- 
ability measure on X; the right hand side is the ratio of the strength 
of the output beam to the strength of the input, and hence can be inter- 
preted as the probability that in the state Q the physical quantity observed 
takes values in E. Successive application of two families of filters corres- 
ponds to the composition of the instruments. 

Let (X, g) be an instrument which determines the observable (X, a) 
and let (Y, Y) be an instrument which determines the observable (Y, b), 
where X and Y are standard Borel spaces, and let (Y x X, ~,~ o g) be the 
composition of f f  following & The V*-valued measure F-~N(X)*b(F) 
is an observable, which we call the observable b(.) conditioned by the 
measurement of a(.) with the instrument & The probability measure 
M - ,  ~z, (~o g) (M) v}/(z, v} on Y x X is that of an observable c(M) 
= (f f  o S)(M)*~: which we call the joint distribution of ~ following g. 
We have the following generalisation of the results of the previous section. 

Theorem 3. Let C and Y be instruments on the standard Borel spaces X 
and Y with associated observables a(.) and b(-), respectively. Then the 
joint distribution of ~ following g is an observable c(.) on Y x X whose 
marginal distributions satisfy 

c(Y x E) = a(E), c(F x X) = N(X)*b(F) 

Pro@ Existence of c(-) follows from Theorems t and 2. Since 
~c(Y x L3, ) = ~-~, ( g o  ~) ( y  × ~) v) 

= (z,  . ~ ( I0  ¢(E) v) = (z, g(E) v) = (a(e) ,  v) 

and @(E x X), v} = (z, 3*-(F) g(X) v} 

= (b(F), o~(X) v} = (C(X)*b(F), v} 

the marginal distributions have the stated properties. 
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It is clear that in general the compositions do. ~ and ~ o do will have 
quite different properties; when they happen to be equal we say that d ° 
and ~ are compatible. Generalising the repeatability hypothesis (M.) 
to arbitrary value spaces we now say that any instrument (X, g) is 
weakly repeatable if 

(R) ('c, do(E) do(F) v) = (~, do(E~F) v) 

for all Borel subsets E, F ~_ X and all v ~ V. We say do is repeatable if 

(R') do(E) do(F) v = do(Ec~F) v for all Boret subsets E, F _c X and all v e V. 

The existence of repeatable instruments is doubtful even in the case of 
standard quantum theory, but we can show quite generally that given 
a non-discrete observable there exists an instrument which determines 
it and which satisfies an approximate repeatability condition. Further 
results of this type are contained in [14]. 

Let do be an instrument on a separable metric space X with metric d. 
Let E be a Borel subset of X and for each e > 0 let E~ denote the Borel 
set {x ~ X:  d(x, E) < e}. We say that do is e-repeatable if for all v e K and 
for all Borel subsets E c X we have 

(ER) ('c, do(E~) do(E) v) = (z, do(E) v ) .  

In order to formulate the existence theorem we make some defini- 
tions concerning observables. 

Let A be an observable on a Borel space X. We say that a Borel 
subset E of X is of A-measure zero if ~A(E), v) = 0 for all v ~ K. A state v 
is said to be concentrated on E2__X if (A(E),v)=~z,v). if v~ are con- 

E centrated on E~ respectively ( i=  1, 2 . . . .  ), where { i}i:l is a sequence 
of pairwise disjoint sets covering X;  then 

and 

so that 

( A ( E 3 ,  vi)  = (~, vl)  , 

( A ( X ) ,  vi)  = (~, vi)  , 

(A(Ei) ,  vi)  = 0 for  al l  i+j. 

In the Hilbert space case a projection-valued measure A on a separable 
metric space X is such that for each Borel set E which is not of A-measure 
zero there is at least one state which is concentrated on E, namely 
v = ~ ® ~  where ~ is a unit vector in the range of A(E). The example 
A(E) =/~(E) 1 where 1 is the identity operator and # is a probability 
measure on X shows that this is not true in general. 
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Theorem 4. Let A be an observable on a separable metric space X 
which is such that for each Borel set E which is not of A-measure zero 
there is at least one state v concentrated on E. Then for each e > 0 there 
exists an e-repeatable instrument which determines A. 

Pro@ Given e > 0 put X = ~) En where {E.} is a sequence of pair- 
n = l  

wise disjoint Borel subsets of X having diameters less than e. Let {v.} 
be a sequence of normalised states such that v. is concentrated on E. 
for all n for which E. is not of A-measure zero. Put 

N(E) v =  ~ (A(Ec~E.), v) v. 
n = J .  

for all v ~ K and every Borel subset E of X. Then 

(%C(E) v)= ~ (A(EnE.) ,v )  ( % v . } = (  ~ A(EnE,) ,@ 
n = l  n = l  ! 

= (A(EmX), v) = (A(E), v) 

so that g determines A. Furthermore 

(z, g(E 3 g(E) v) = Z ~ (A(E~mEm), v.) (A(EnE.) ,  v) 
m n 

rn n 

since the E. have diameter tess than e, and so 

v> = v>. 

§ 4. Classical Probability Theory 

It is interesting to look in some detail at the particular case of the 
Kolmogorov model of probability theory. Suppose the sample space 
(£2, Sd) is a standard Borel space and let V denote the space of real 
bounded Borel measures on ft. If we define K as the cone of positive 
measures in V and z as the functional (z, #)  =/~(£2) then (V, K, T) is a 
state space. There is a natural one-one embedding of the space ~(£2) 
of bounded Borel functions on f2 into V* defined by 

( f ,  #) = ~ f(w) I~(dw) 

for all # ~ V. This embedding takes positive functions f to positive ele- 
ments of V* and takes the function which is constantly one to the element 
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of V*. Since V* is a very abstract space we restrict our interest to the 
measurable observables, which we define as those taking their values 
in ~(f2). 

A random variable is defined as a Borel map e : l? ~ X where (X, d )  
is a Borel space, often the real line. We define the associated measurable 
observable (X, d ,  a) by putting a(E) = Z~ 1E for all E ~ d .  This observable 
is multiplicative in the sense that a(E)a(F)=a(E~F) for all E, F s d ,  
and indeed this property characterises the observables associated with 
random variables, provided (X, d )  is a standard Borel space. For any 
normalised state (probability law)/~ on f2 the image law is defined in the 
Kolmogorov model as the probability measure v on X given by v(E) 
= # ( ~ - I E )  for all E e d ;  in our notation this is just (a(E),#) which 
is precisely the distribution of the observable a(.) in the state #. 

We next examine the instruments. If(X, d )  is a value space we define 
a kernel P as a positive real valued function such that P(M, E, w) is 
defined for all M e ~ ,  E ~ d and w s f2, such that 

(i) P(f2, X, w) = 1 for all w e f2; 
(ii) E--,P(M, E, w) is a-additive for all M e d / /and  w e f2; 

(iii) M~P(M,  E, w) is a-additive for all E e ~ and w ~ f2; 
(iv) w ~ P ( M ,  E, w) is Borel for all M ~ dg and E ~ sO. 

Theorem 5. If  P is a kernel the formula 

(N(E) #} (M) = ~ P(M, E, w) #(dw) 

defines an instrument ~ on the value space X. We call such instruments 
measurable; their observables are also always measurable. 

Proof. By (iv) the integral is welt defined and by (iii) the map 
M--, {g(E)#} (M) is a measure, so g(E)pe V for all # e V and E s d .  
By (ii) E--* g(E) is a-additive and by (i) <r, g(X) #> = (-c, #) for all # e V. 
If for each E e d we define a(E)~ N((2) by a(E)=P(f2, E, w) then a(.) 
is a measurable observable and for all v E V 

('c, E(E) #> = ~ P(f2, E, w) #(dw) = (a(E), #) 
o 

so a(.) is the observable determined by & 
We say that N is factorisable if it is measurable for a kernel P can 

be written in the form P(M, E, w)= A(E, w). B(M, w) where A and B 
are functions satisfying 

(i) E~A(E,  w) is a-additive for all w s £2; 
(ii) M ~ B ( M ,  w) is a-additive for all w ~/2; 
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(iii) w-~A(E, w) is Borel for all E ~ z¢; 
(iv) w ~ B ( M ,  w) is Borel for all M e d g ;  
(v) A(X, w)= B((2, w)= 1 for all w e Q .  

Theorem 6. Let # be a factorisable instrument and let a(.) be its 
associated observable, Then there exists a positive linear map T: N(Y2) ~ N'((2) 
satisfying 

(i) T(1)= 1; 
(ii) if ~o, is an increasing bounded sequence in J3((2) converging point- 

wise to ~o then T(q~,) converges pointwise to T((p). g is determined by the 
equation 

(q~, #(E) #) = (a(E), T(q~), #) 

valid for all # ~ V, # ~ d and (p ~ ~(f2). 

Proof. For each E ~ ~¢ we define a(E)~ 2(f2) by a(E)(w)=A(E, w). 
Then for all # ~ V and E ~ 

(z, #(E) #) = ~ P(f~, E, w) #(dw) 

= ~ A(E, w) B(a, w) #(dw) 

= ~ A(E, w) #(dw) 
F~ 

= (a(E), #) 

so a(.) is the observable determined by & For q ~ ( ~ ? )  we define 
Tq0 E ~ ((2) by 

(Tgo) (w) = ~ ~o(a) B(da, w) 
0 

so that T()~M ) (W)=B(M, w).It is easy to show that T is a linear map 
from N(Y2) to ~(Q) satisfying (i) and (ii). Finally 

= ~ ~ A(E, w) B(da, w) cp(a) #(dw) 

= S (T(p) (w) A(E, w) #(dw) 
f~ 

= ~ (To) (w) a(E) (w) #(dw) 
f~ 

= (a(E)-T(qO, #) 
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In accordance with Moy [20] we now say that a linear map 
T:~(£2) ~ ~(£2) is a conditional expectation if it satisfies (i) and (ii) above 
and also (iii) for all (p, ~p e ~(£2), r(q~ r0p)) = (rq)) (rtp). Moy shows that 
it is possible to construct a conditional expectation given a sub-a-field 
of J// and also a particular probability measure on £2. The following 
theorem shows that random variables and conditional expectations are 
closely related to repeatable decomposible instruments. 

Theorem 7. Let g be a decomposible instrument on the standard Borel 
space (X, ~¢). Then ~ is weakly repeatable if and only if its observable 
a(.) is determined by a random variable ~ : £2~ X and T ( G - l e ) =  G-1~ for 
all E ~ d .  ~ is repeatable if and only if its observable is determined by a 
random variable ~ : O ~ X and 

T{G- ,E T(q~)} = Z~-~ T(q~) 

for all qo ~ N(f2) and all E ~ ~4. 

Proof. (z, (~(E) $(V) #)  = (a(E), g ( f )  # )  

= (a(F).  T(a(E)), # )  

while (z, C(E c~ F) #)  = (a(Ec~ F), # )  

so N is weakly repeatable if and only if 

a(F) . T(a(E)) = a(E~ F) 

for all E, F e d .  This equation is equivalent to 

T(a(E))=a(E) and a(Ec~F)=a(E) .a(F)  

for all E, F e ~¢. Since X is a standard Borel space the second condition 
is equivalent to a(.) being determined by a random variable a :£2~X.  
Similarly repeatability is equivalent to the condition 

a(Ec~F). T((p) = a(F). T{a(E) T(q))} 

for all E, F e d and all ~0 ~ ~(f2), which is itself equivalent to the pair 
of conditions 

a(E (~ F) = a(E) a(F) 

T{a(E). T((,o)} = a(E). T((p) 

for all E, F ~ s¢ and ~0 ~ N(£2). 
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Corollary 8. g is repeatable if a is determined by a random variable 
c¢: £2 ~ X and T is a conditional expectation associated with a sub-a-field 
o f / d  containing the a-field ~ - l ( d ) .  

§ 5. Conditional Expectations on von Neumann Algebras 

Conditional expectations on yon Neumann algebras have been 
studied extensively in [5, 6, 13] as generalisations of Moy's conditional 
expectation and it is evident that they are closely connected with the 
probabilistic interpretation of quantum mechanics. We now show how 
to make this precise in the appropriate probability theory 

Let d be a yon Neumann algebra on a Hilbert space ~ and let V 
be the space of setf-adjoint ultraweakly continuous linear functionats 
on d .  Let K be the cone of positive linear functionals in V and let 
be the linear functional r(v)= v(1). Then (V, K, z) is a state space, K is 
just the set of normal positive linear functionals on d and V* may be 
identified with the set of setf-adjoint elements of d ,  [21]. 

A normal conditional expectation on d is a self-adjoint positive 
linear map T: s~--, d such that 

(i) T(1)= 1. 

(ii) If {B.} is a monotone net of elements of d converging ultra- 
weakly to B e d then {T(B)} converges monotonely and ultraweakly 
to T(B). 

(iii) For  all B, C e d ,  T(T(B) C)=  T(B) T(C)= T(BT(C)). 

If T is a normal conditional expectation then T 2 = T and N = T ( d )  
is equal to {B e d : T(B) = B} and is a von Neumann subalgebra of d .  
Let P be a projection-valued measure on any Borel space X whose 
range is contained in d and call 

{B ~ d : BP(E) = P(E) B for all Borel sets E} 

the relative commutant of P(.) in ~ .  

Theorem 9. Let T be a normal conditional expectation on d whose 
range is the relative commutant of P(.) in d .  Then the equation 

<C(E) cp, B) = (P(E) T(B), (p) 

where (p e V and B e ~ defines an instrument ~ on X. E is repeatable, 
P(.) is the observable determined by C, and T is the adjoint of the linear 
map g(X): V-~ V. 



Quantum Probability 253 

P r o @  For  each go E K and E _c_ X the right hand side defines a no rma l  
positive linear functional  of B so there exists ~ ~ K such that  

(P(E) T(B), (o> <~, B> 

for all B e d .  Defining g(E)  go = ~ one easily verifies that  (g is an instru- 
ment.  The  observable  A determined by # is given by 

(A(E), go> = r [ # ( E )  go] = (d~(E) go, i> = (P(E), go) 

for all g o e V  so A(E)=P(E) for all Ec=X. If E, Fc=X and g o e V  and 
B e d  

( E(E) E(F) go, B> = ( #(F) go, P(E) T(B) > 

= <go, P(F) T{P(E) T(B)}> 

= (go, P(F) P(E) T(B)) 

= <go, P(E~F) T(B)> 

= go, B> 

so #(E) E(F) = # ( E ~ F ) .  Finally for all go ¢ V and B ~ o~¢ 

<#(X)*B,  go> = <#(X) go, B> = (P(X) T(B), go> 

= < T(B), go> 

so o~(X)*(B)= T(B). 
In the special case d = ~(0;4~), V is the space of self-adjoint trace 

class opera tors  on H.  if P is a project ion-valued measure  on the discrete 
space X then the formula  

T(B) = ~ PxBPx 
x ~ X  

defines a no rma l  condi t ional  expecta t ion on 2.~°(~,~) whose range is the 
c o m m u t a n t  of {Px: x ~ X}. The  cor responding  ins t rument  E, defined by 

c(E, v) = PxvPx 
x~.E 

is easily seen to satisfy the following axioms. 

(SR 1) #~,#yV = 5,,y#~,v for all x, y ~ X and v E V. 

(SR 2) If <z, G~v> = <r, v)  then #xv = v. 

(SR 3) I f B  ~ K* and (B, 5~xv) = 0 for all x ~ X and all v ~ K then B = 0. 
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A discrete instrument which satisfies these conditions is said to be 
strongly repeatable, and we note that, unlike the axioms for conditional 
expectations, each of these axioms has a direct physical interpretation. 
(SR 1) is the repeatability hypothesis. (SR 2) is a principle of minimum 
disturbance, similar to that discussed by Liiders and others [10-12]. 
(SR 3) is a non-degeneracy condition and would be violated if for example 
the range of the instrument lay in a super-selection sector. 

Theorem 10. Let V be the space of setf-adjoint trace class operators 
on a Hilbert space Y f  and let X be a discrete value space. Then the formula 

#(E) v = ~ P~vPx 
x~E 

sets up a one-one correspondence between the discrete projection-valued 
measures P on X and the strongly repeatable instruments g on V. In partic- 
ular a strongly repeatable instrument is uniquely determined by its 
observable, which is a projection-valued measure. 

Proof. Given x ~ X let ~ C K be the set {v ~ K:  #~v -- v}. Then F~ 
is convex and closed in the trace-norm topology and we show that it 
is extreme in the sense that if v l , v : ~ K  and there exists ~ such that 
O<c~< 1 and ~ x v l + ( 1 - a ) v z ~ F  x then vl,v2~F~,. 

Since # is an instrument 

and as 

we have 

and by (SR 2) 

0 < (Z, #~Vi} < {1:, Vi} , (i = 1, 2), 

(~:, g~vi) = (Z, vi), (i = 1, 2), 

Gvi = vi, (i = 1, 2). 

If Y~ G4 ,®~ ,  ~ F~ then 4,®~,  ~ F~ for all n since F~ is extremak Also if 
4i ®~i e F~(i = 1, 2) then (41 + 42) ® (41 + 42)- ~ F~ since 

(41 + 42)® (~1 + 42)- + ( ~ -  42)@(~- ~2)- = 2G@ ~1 +2G@~2 ~ G. 

It follows that the set L~= {4 E Yf: 4®~eFx} is a closed subspace of 
and L =  { v e K : P ~ v = v P ~ = v } .  
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If x , y  are distinct points of X then L ~ ± L  r For let G,  r/y be two 
unit vectors, G e L x and t/y e Ly, and let 

be the bounded sesquitinear form on Yg x 9f<. This form determines a 
bounded self-adjoint operator S on 2~; in fact S satisfies 

0 N S N 1 .  

Since 

we have 

On the other hand, 

('~, t / ,® ~',> = <'~, G(~ ,® G);> < ('~, G(t / ,® rT,)> 

+ ('~, G(~,®@;> 

< ('r, ? ( x ) ( t / ,®G) )  = (-c, t / , e G )  

so that (z, g*(G ® G))  = 0 and G(t/y ® G) = 0 which entails (St/y, t/y) = 0. 
By the spectral properties of S it follows that (t/~, t/y) = 0. 

Let Q be the projection onto the orthogonal complement of @ Lx; 
x e X  

then if v is any state in K and x ~ X we have by (SR 1) 

G(Gv) = Gv 

so Gv  ~ F~ and P~(Gv) = (Gv) P~= Gv.  It follows that Q G v = 0  and so 
(Q, g~v) = t race(QGv ) = 0 for all x ~ X, v ~ K and from (SR 3) it follows 
that Q = 0. Hence 

Y:= @L~. 
x~X  

It remains to determine explicitly the form of the map v--,gxv. The 
set G x c K given by Gx = {v e K : gxv = 0} is again a closed convex ex- 
tremal set and so there exists a closed subspace Kx of ~ given by 
K x = { ~ e c g g : & ( ~ ® ~ ) = 0 } .  Let Qx be the projection onto Kx; then 
Gx = {v ~ K : Q :  = vQ~ = v}. We showed above that K x __3 Ly for all y # x, 
and as K x ~ L x = O  so K~=L%. Now let ~1,~2 be unit vectors, 41 ~L~ 
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and ~ 2 .  g2 e k~, for any ~ ,  ~2 in (12 we have 

OXax{(0{1 ~1 @ 0{2~2)® (0{1~ -~" 0{2 ~-2)- } -I- ~x {(0{1 ~ 1 --0{2~2)® (0{1~ I -- 0{2~2)- } 

= 20{*~1G(~* ®~-,)+ 20{2~2 dex({2 ® ~ 2 ) =  20{1~1 ( t  @~1 

and so 

0 --~ O~x(((Xl ~1 n 1- 0~2~2)@ (0~1 ~ 1 q- 0{2~2)- } 

Hence Cx {(c~ 1 ~ 1 + 2~2 ¢ 2) ® (~ 1 ¢ 1 + 0{2 ¢ 2) - } = 7 (31 ® 70  for some 7 s 'N. It 
follows by polarization that for each ~ ,  0{z, f l , ,  fi2 ~(I2 there exists 7 ~lE 
such that 

where (cq, 0{2), (fi~, f ia)~7 is given by a selfadjoint operator T on iE e. 
Since 0 =< trace ( ~  v) < trace v. for all v E K, so 0 < T_< 1. Since (T(1, 0), 
(1, 0)) = 1 and (r(0, 1), (0, 1)) = 0, so (1, 0) and (0, 1) are eigenvectors of 
T and 

~'ax {(0{1 ~l + 0{2 ~2) @ (/~1 ~1 -}- /~2 ~2) -- } = 0{1 ~1 (31 @ ~1)" 

Thus for all ¢ ~ 

#x(~ ® ~') = (P~ ~)®(P~ ~)- = P~(~ ® ~) P~ 

and hence for all states v ~ K 

Exv=P~vP~. 

It follows that for all states v and sets E C X 

x e E  xeE  

We now consider instruments whose value space is not discrete. 
Since it is known that if N is a maximal Abelian von Neuman algebra 
on a Hilbert space .~  with no discrete part, there does not exist any normal 
conditional expectation on 2 ' ( i f )  whose range is the commutant of N, 
we cannot expect to be able to construct repeatable observables with 
continuous value space in this model. As all discussions of this difficulty 
have implicitly assumed repeatability most of the results obtained have 
been essentially negative. We will show elsewhere [14] that by abandoning 
strict repeatability it is possible to construct explicitly interesting families 
of instruments on continuous value spaces which have strong properties 
close to the repeatability property. 
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§ 6. Material Implication 

At various times von Neumann considered alternative verbal formula- 
tions of the relation of material implication in a physical setting. In this 
section we translate three such formulations into mathematical terms 
and examine some of their properties. 

Birkhoff and yon Neumann (p. 109 of [22]) pointed out that in a 
theory in which the mathematical representative of an experimental 
proposition is a closed subspace of a Hilbert space the following condi- 
tions on two experimental propositions are equivalent: 

(i) For any statistical ensemble of systems, the probability of P is 
at most the probability of Q. 

(ii) P implies Q - that is whenever one can predict P with certainty, 
one can predict Q with certainty. 

In an unfinished manuscript written about 1937 and reviewed by 
Taub in [23] yon Neumann described the relation of "implication" 
( P <  Q) as follows: 

(iii) P < Q means this: I fa  measurement of P on S (the physical system) 
has shown P to be true, then an immediately subsequent measurement 
of Q on S will certainly show Q to be true. 

The three notions of material implication can be formulated in our 
notation as follows: 

Let g, ~,, ... be instruments on a two-point space X = {0,1}; then (i), 
the most commonly used of the three, becomes 

d ° ~ l Y  if and only if (~:,g(1)v)<(z,Y(1)v) forall  v~K 

and (ii) becomes 

eg-~2@ if and on ty i f  (z, ~ (1)  v) = (z, v) foralt  v 

for which (z, ~ ( 1 ) v ) =  (z, v), while (iii) becomes 

g-~3 ~ if and only if (-c, ~,~(1) N(1) v) = (z, 4(1) v) for all v ~ K.  

In the beam model of probability which we used to motivate our defini- 
tions we saw that there was a correspondence between physical qualities 
and observables and between pieces of apparatus and instruments. Now 
material implication is usually conceived of as a relation between physical 
qualities rather than between pieces of apparatus, and so ~3  is suspect 
on the grounds that it refers to the instrument 4, whereas ~ i  and ~ 2  
refer only to the observables which the instruments determine. There 
are other objections to ~3  in the general situation; there are two proper- 
ties of material implication as it occurs in ordinary discourse which are 
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extremely important: 

(MT 1) ~ 4 j  
(MI 2) ((~-~ J )  and (~--~ if)) entails (g 4 ~). 

It is clear that 4 1  and 4 2 satisfy (MI 1) and (MI 2); in general there 
is no reason why 4--, 3 should satisfy either condition although we do 
have the following 

Theorem 11. Let ~, ~,, ~ be instruments on a two-point value space. 
Then 

(i) /f ~ satisfies (SR 1) then ~ ' 4 3 ~ ;  
(ii) if J ;  satisfies (SR 2) then ~ 4 3 ( g  whenever ¢ 4 3 ~  and J~ 43(~. 

Pro@ (i) Suppose ~ satisfies (SR 1) then ~ ( 1 ) J ( 1 ) v  = Y ( 1 ) v  for 
all v so that 

(~, g(1) g(1) v} = (~, g(1) v). 

(ii) Suppose N satisfies (SR2) and that g '~3  ~ and - '~- '3 N. Then 
(z, ~ (1 )  N(1) v) = (z, g(1) v) for all v ~ K~ and by (SR 2) W(1) d~(t) v 
= g(1) v for all v ~ K. But (z, N(1) ~ (1 )  w) = (z, Y(1) w) for all w ~ K. 
Put w = g(1) v so that (z, N(1) W(1) g(1) v) = (z, ~ (1)  d~(1) v) and hence 
(z, if(l) C(1) v) = (z, g(1) v} for all v. 

However, for strongly repeatable instruments we see that 4 2 and -~3 
are equivalent: 

Theorem 12. Let g, ~ be instruments on a two-point space. 

(i) I f  C satisfies (SR 1) then (g 4 2 ~ )  entails ( ¢ 4  3 .,~). 
(ii) I f  g satisfies (SR 2) then ( g 4  3 ~ )  entails (~ 4 2 Y) . .  

Proof. (i) Suppose g satisfies (SR 1) and g ~ 2  ~ Then, by (SR 1), 
for all v ~ K  (z ,E(1 )  g ( 1 ) )  = ( z , g ( 1 )  v) and since g ~ 2  
(z, Y(1)  g(1) v) = (z, g(1) v) for all v. 

(ii) Suppose g satisfies (SR 2) and g 4  3 Y. Then if v is such that 
(~, ~ ( 1 ) v ) =  (z, v) we have N(1 )v=v  by (SR 2); but since g 4  3 W we 
have 

(z, W(1) d~(1) v} = (z, d°(1) v} for all v 

and so (z, 0~-(1) v) = (z, v) whenever (z, g(1) v) = (z, v>. 
In standard quantum theory where the observables are taken to be 

projection-valued measures the three forms of implication which we 
have considered are equivalent on the strongly repeatable instruments 
which are uniquely determined by the 'yes-no' observables. If we admit 
arbitrary positive-operator-valued measures we are left with the problem 
of choosing between three inequivalent candidates for material implica- 
tion. The verbal description of --+~ fails to do justice to the conceptual 
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content of the relation as it occirs in ordinary discourse. We have 
seen that -~3 is unsatisfactory except when it is equivalent to -+2- We 
propose therefore to adopt ~2.  This agrees with the choice of Pool [24]. 

Mackey [2] assumes that the set of 'yes-no' observaNes is an ortho- 
complemented lattice. The set of 'yes-no' observables in our sense is a 
lattice if and only if V* can be identified with the self-adjoint part of a 
commutative C*-algebra (this follows from the work of Kakutani [25] 
on M-spaces). However in quantum theory this never happens. It is 
also interesting to note that in our setting Mackey's relation of dis- 
jointness, 6, does not have the properties one would desire and seems 
not to be a useful notion. 
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