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Abstract. We prove the existence and uniqueness of a center-of-mass line as well 
as a center-of-motion line, the latter due to G. Dixon% 1964. The validity of the 
theorems depends on some assumptions listed in § 2, whose most restrictive ones 
(in the sense of physics) state a certain weakness of the gravitational field. In the 
concluding paragraph we give some eorrolaries and a very simple application to 
the problem of motion. 

1. Motivation 

To determine the motion of a finiSe number of material  particles one 
needs three sets of equations: (I) the field equations, (II) the equations 
of motion and (III) the supplementary equations. By  (III) we mean all 
equations (if necessary inequalities too) tha t  determine the problem 
uniquely, e.g. equations of state. By  (II) one usuaUy means a set of 
differential equations giving as solution timelike curves in the space 
t ime V ~ (V ~ meant  as solution of (I)), such tha t  the curves are uniquely 
at tached to the particles. Up to now it  is unknown whether there e~dst, 
solutions gas(X) of (I) such tha t  the support of the mat ter  field isab(x) 
is a finite set of timelike lines. We therefore take the point of view tha t  
Tab (x) means a collection of extended sources (we make it precise in § 2). 
Now two problems arise : (a) To find a timelike curve uniquely defined by  
the given mat te r  distribution; (b) EI~CST~I~S classical problem, to derive 
from (I) the equation of motion (II) for the curves already found in (a). 
Obviously (b) makes sense only when (a) has been solved. This paper is 
devoted to the problem (a). 

Up to now an answer to (a) was given either by  taldng over the center- 
of-mass line of Special Relat ivi ty to curved space time, which works 
for weak fields in connection with a suitable approximation method 
(t~OCK, 1939, et al.); or by  taking singular sources and taking as the 
required timelike curve the support  of T ab (x) (Er~s~EIZ¢, I~FELD, tIos~ ,- 
~ N  ~, 1938; TAUB, 1964; I~FELD, PL~BA~'SKI, 1960 et al.). Taking the 

* Essentially this work has been done during the authors stay at the Seminar 
f. Allg. Relativit~tstheorie, Univ. Hamburg. 

x Here the sources are singular in the mathematical treatment. 



Center-of-Mass 107 

second point of view, for the reason of uniqueness one has to introduce 
supplementary conditions. Many of them have been proposed but  
G. DIxoN, 1964, was the first, who found an algebraic equation fixing ~ 
the timelike line without using the equations of motion in its formulation; 
he explicitely states the logical independence of (a) from (b). 

Because of the independence of the spacetime geometry of the 
material field the center of mass line may be introduced in Special 
Relativity using mainly T~bll b = 0. If we want to include gravitational 
phenomena we need the whole set of field equations and not the inte- 
grability conditions alone, as will become explicit below. All assumptions 
restricting the generality of V 4 are listed in § 2. Having in mind the use 
of the center-of-mass line in approximation methods, we demand it to 
be an extension of the center-of-mass line in Special Relativity; (regard- 
ing classical mechanics as the "low velocity"-timit of Special Relativity 
it is even an extension of the classical center-of-mass concept). We 
therefore devote § 3 to the problem in Special Relativity; we show two 
possibilities to define the center-of-mass --  one due to StaGE, 1935; 
5{OLLE~, 1949, the other is an improvement of the idea of LA~czos, 1929; 
PAPAPETaOU, 1939; the theorem 3.1 states their equivalence. In the rest 
of the paper we t r y  to take over both definitions to General Relativity: 
First we construct a timelike unit vectorfield in a sufficiently large region, 
containing the particles under consideration, by the condition, tha t  it  
makes the real valued function (4.4) minimum. With the aid of this 
unique vectorfield (4.14) defines a mapping of complete normed space of 
continuous time like curves into itself. This mapping is contractive. By 
the Banach-fixpoint-theorem there exists one and only one line mapped 
into itself. We call it the "center-of-mass" line of the particles s. 

DixoNs condition also fixes a unique "center-of-motion"-line which 
wilt be proved essentially by  reduction to the proof sketched above. But  
now, in curved space time, both lines are different in general. Finally, in 
§ 5 we give some properties of the center-of-mass so defined. 

2. Basic Assumptions 

In  this paragraph we list all assumptions needed in the following. In  
some cases it  would be too cumbersome, to give the exact formulation 
here; we give it in the context below. 

The most important  quanti ty will be the matter  distribution de. 
scribed by the symmetric tensorfield T ~ (x) with the properties: 

Dixon did not prove this but he proposed a procedure that can be extended 
to a proof as has been shown by W. Kvl~t)T (Sere. Hamburg 1965). 

3 A more detailed outline of the proofs was given at the London Colfference 
1965 [1]. 
8* 
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(2.1) T~bvb is timelike for all v ~ timelike or null. 

(2.2) Ta~ll b =~ 0, where differentiation is meant with respect to the 
metric in (2.7). 

By T we denote the support of T a ~ (x) in V 4, where V 4 is the I{ieman- 
nian manifold with the metric (2.7) of signature - 2 .  Then: 

(2.3) T is timelike and differentiable; i.e. there exists a congruence 
of timelike, differentiable curves of infinite length with support T. 

(2.4) T is space-compact; i.e. the intersection of T with any space- 
like hypersurface is compact in the topology induced by the metric 
topology of V a on the hypersurface. 

(2.5) T is spaee-equibounded; i.e. there exists D > 0 such that  the 
geodesic distance between any two points of T spacehke to each other 
is less or equal to D. 

(2.6) T c ~ ( T )  and e21 is diffeomorphie on N(T) ;  N(T)  is the t{ie- 
mann-convex hull of T defined as follows: Take all the timelike vector- 
fields v~(x), i ~ I x E T and construct the geodesic surfaces Fi,~ ortho- 
gonal to v~(x); then: ~ ( T )  ~ U U e o/c{e~ -1 o ( I ' ~ , ~  T)}. e~ is the 

i~I xEI 
exponential map of the tangentspaee at x into V ~ and/c means the con- 
vex hull in the usual sense. Obviously ~ ( T )  contains the geodesic- 
convex hull of T and (2.6) implies tha t  the space-sections Fi,~ ~ T are 
covered by  a Riemannian coordinate frame. Assumption (2.6) is very 
strong and we will weaken it in the concluding paragraph of this paper. 

(2.7) The metric used ~n this paper is meant to be the solution of 

Einsteins field equations R ~b - ~ R g ~ =  T ~b, where the right hand 

side is the mat ter  tensor discussed above. 

(2.8) gab is of class ~ ,  s ~ 3 in ~' and therefore T~b(x) is of class 
~ , r  => 1 in ~. 

(2.9) Take any timelike curve ~ in T and take the assembly of all 
spacelike geodesic starling at/c;  then this assembly taken as a point  set 
shou]d cover T. 

This condition is a consequence of (2.6) ~ but  is considerably weaker 
and will be sufficient for the basic definitions needed below. It, just 
guarantees that  the whole of T ~ ( x )  eon~ibutes to the center-of-mass 
line. 

(2.10) V ~ is regular in ~ ( T )  in the following sense: suplF~(~) t < 
< S~  < oo. The sup is taken over all Riemannian coordinate fremes 
adapted to v ~ (x) (v a = d~) - v a (x) varies over a compact region of the 
unit mass-hyperboloid -- and over all ~, where ~ is a point in the region 
of T covered by all these coordinate frames. 

4 It  follows a, lso from (2.3), (2.4). 
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(2.11) Condition (4.12) is valid. We need this condition to get 
lemma 4.3 but i t  would be to cumbersome to make it explicit here. 

(2.1.2) pa(x) ,  Pa~(x) are the total momentum quantities (see appen- 
dix A) respective to the observers v a (x), v~(x) w i th  lira va~ = v a. Then 

2.-+0 
we assume for small ~ that :  

v~, f 2I '(d Tb) ~ d x  ~ y .  y~(~) ClAy),  0 <= 7' < 1 
~(~) 

where 

7~ (2.) -<_ + v~v~ (~(i - -  v" v~o) + 1)~ 
and K ()0 is the wedge "between"/~(~) and Fv~(x). ~ This condition looks 

very technical. Physically it  assures, that  the difference in the totM 
momentum quantity measured in the restframe of the two observers 
goes to zero faster than the difference in the total mass quantity; this is 
meant in the limit of ~, i.e. relative veloeit.y, goes to zero. 

In the terminology of appendix A the upper limit Y0 of y is of the 
order of ~0; i.e. <1,  as can be seen by the estimates of appendix B. 

= 0 in flat space-time (see § 3). 
(2.13) The weak field conditions made precise in the appendix. 
Weakness of the fields is meant in the follm~4ng sense: Measured in 

the Riemannian coordinate frame adapted to u~(x) (resp. p~(x)) - -  
timelike veetorfields defined in § 4 (resp. § 5) -- and given in e.g. CGS- 
units, the fields should be numerieMly small. Because the units are 
adapted to other physical (e.g. electrical) fields, I/'~c! < 1 means, that  
the gravitational field is small compared to the above (electrical) field 
measured by the sa.me observer. In this sense we use weakness in appen- 
dix B. 

We gave all assumptions very explicitly and in course of the proofs 
we x~dll refer to the numbers in this paragraph. I t  is worth to note, that  
most of the above assumptions are fulfilled by general physical consider- 
ations. Just  the assumptions (2.6), (2.11)--(2.12) are somewhat restric- 
tive and of a very technical character. Except of (2.11), which has to 
be verified in any special problem, they state, that  the fields are "not to 
strong". In appendix B we give some numerical estimates, that  show, 
that  in practical eases they are physically not very restrictive. 

Throughout this paper the system T is free from nongravitational 
exterior forces and, for simplicity, T = ~ (T) in §§ 3--5. 

3. The Center-of-Mass in Special Relativity- 

In (2.7) we replace the solution of the field equations by the Min- 
kowski-metric; then (2.6)--(2.13) are fulfilled automatically. 

The integral and the quantities ~, F are defined in § 4. 
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I t  is well known (e,g. S~GE,  1956) that  the total momentum vector 

P~ ~ f T a~ d ~  ~ is timelike (see (2.1)) and independent of the special 
x 

choice of the spacelike s u r f a c e ~  (because of (2.2), (2.4)). We redefine that  
quantity:  

pa(x,  V(X)) ~- f T ab d~c b (3.1) 
l"~(x) 

where v a (x) C J f~  ( d l  is the set of all timelike unitvectors at  x pointing 
in the future) and/'~(~) is the hypersurfaee spanned by the geodesics in 
x orthogonal to v a (x). Then the above statement says that  Pa(x, v (x)) is 
independent of x, v a (x) ; i.e. a constant vectorfield ou M ~ × S ~ .  

Next  we define the minimal vectorfield ua(x), ua(x) :gl 1 6 ~ ~, by the 
condition: rain v~(x) pa(x,  v(x)) = : ua(x) P~(x, u(x))  for all x ~ M a. The 

vE3C~ 

constancy of pa and the hyperbolic character of the metric gives 
immediately: u a (x) is a constant vectorfielcl on M ~ and u[ a p~] = 0. This 
involves two statements: 1. The total mass M (x) = us (x) pa(x, u (x)) is 
constant. 2. For all x' ~/'~(~) ~ - / ~  we have F~ = / ~ , .  

We define a map ~ : M ~ -+ M a by:  

x~ '~, x~M = (u, f T ~ d~)  -~ ub f ~ T b° d*o ÷ x a (3.2) 

where ~a E/'~; i.e. ~ is in the tangent space T~ at x fulfilling there 
u~ (x)~a _ O. Physically (3.2) means: Calculate the center of mass in the 
inertial-frame of an observer in x, who measures minimal total rest-mass 
(or equivalently: who measures P~---0, ~ = 1, 2, 3) --  we call him 
u~-observer. To (3.2) we apply a theorem well known in classical me- 
chanics: The center-of-mass of a positive (see (2.1)) measure with com- 
pact support (see (2.4)) normed to unity on a locally convex, positive 
definite vectorspace (here /'x) lies in the convex hull of the measures 
support; i.e. x M E T.  

We may enlarge our map ~f in a natural manner to timelike curves 

x (8) by applying ~o pointwise such getting the curve x~ (s), the center- 
o]-mass.line of the given matter  distribution T a b (x) L I t  lies in the convex 
hull of T; and because of the statement 2 above xM (s) is independent of 
the x (s) we were starting with e (the Lebesgue-measure dxa is translation- 
invariant!). This, together with (2.3), (3.2) involves: s ~ XM(S) is di~er- 

8 X(u, v, w) be the parameter representation oi the 3-surface 2?; then 
, ~ x  ~ ~ x  ~ 0x ~ 

d Xa = V~ (~a~a Ou ~V Ow du A dv A dw; 6~b~isthe alternating Kronneeker- 

tensor. 
The definition via the inerti~l-~rames shows: x~ (8) is ~ preferred line (because 

ol ~he minimum condition defining u(x)!)in the centroid of 0. LA~czos, 1929; 
A. PmeA]?~o~,  1939 ; see J.  S ~ ,  1956. 

s Consequently it  is unique and completely fixed by the given T~(x) .  
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e~#iable. We calculate its tangent vector t~  : (d T ~ u a T ab d~o, ~ is the 
U 

Lie-derivative in ua-direction) 

f dx~ 1 d 1 ~ ~ d T + A a =-M"  ua d T =  ua. 

The vanishing of A a is most easily seen in the u~.inertial-frame at x a (8): 

A~ = f ~T°° ,o  d~x = - f ( ~ T ° % d ~ x  + f T°~d~x = f T "  d* = P ~ =  0 
r~ r~ r~ r~ 

where we were aware of (2.2), (2.4), u[aP b] = O. Such we get tM[aU b] -~ 0 
and therefore tM[aP b] = O. 

We gave the procedure leading to the center-oLmass line in con- 
siderable detail out of ~wo reasons: 1. I t  contains all the physical ideas 
serving ]a~eron as a background for the generalisation to gravitational 
theory, 2. Essentially, the much more complicated proofs in § 4 follow 
the same outline given here. 

Various authors (J. SY~o~, 1935, 1960; G. MOLL~, 1949; C. P~YCE, 
1949) proposed a different definition of the center-of-mass. They define 
the total angular momentum jab with respect to x 0 E/~(~) (p~(x)-~ 

(prpr ) - l /2  pa(x) ,  F~(~) is the 3-surface orthogonal to pa(x) at x; 
because of u[ap b] -- 0 it  is identical w i t h / ~ )  by: 

J~b(x, xo) ~ S~b(x) -- 2(x0 -- x)[aP b] (3.3) 
where S ~ ~ is the spin quanti ty 

Say (x) ~ f ~[" Tb] ' d * , .  (3.4) 
r ,  

Evidently, jab (x, xo) is independent of x ~ Ix0. On the other hand, there 
exists a preferred x o --  we call it the center-o].motion x B - -  defined by: 

j , b  (x~) P~ = 0 .  (3.5) 

By  this we get a map 5z~ : x -~ x~. Again we enlarge it  to timetike curves 
x (s) -> XB (S). The above says, tha t  it  is independent of the special choice 
of x (8). A simple algebraic calculation combining (3.3)--(3.5) shows: 

x~(s) = (p~ f T ~  d*~)-~ pb f ~ T b ~  d~c~ ÷ s p  a . (3.6) 

i.e. x~ (s) exists uniquely, i~ is a timelike geodesic with tangentvector 
t% parallel to pa (see J. S Y ~ ,  1960). Comparing the properties of 
x~u (s), x~ (s), especially (3.2), (3.6) we proved 

Theorem 3.1. I n  fiat space the center-o/-mass line is identical with the 
center-o/-motion line. I t  is a timelike geodesic lying in the convex hull o/ T ; 
the vectors pa, u a, and t ~  are parallel to each other. 

Lateron we will show (theorem 6.1, 6.3, 6.4) tha t  in curved space- 
time this theorem is no longer valid exept for special cases. 

For tie differentiation of an integral see e.g. S c ~ o v ~ ,  J.A., 1954, p. 111. 
The slight, generalisation used here can be found in I)~xo~, G., 1964. 
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4. The Center-ol-Mass in Curved Space-Time 

1. The minimal  vectorfield on T 

In  the tangent space T~ at x C T we define the vector-valued 3-form 

~ ( ~ )  ~ H o Ta.(e~(~)) 1 -/~g~g(e.(~)) ~*.. (~.:) 
For d~r see § 3 ; / / o  T ab means a tensor at x one gets by parallel pro- 
pagation of T~b(e~(~)) from e~(:) to x along the geodesic g(ex($), x) wi th  
initial direction ~a and length lg(e~(~), x)l = t~!.  Using the product 
integral of SCt:LESI~GE~, 1931, we may express it explicitly (see also 

z 

appendix A): 11 o t~(e~(~)) = t~(e~(~)) f (8% ÷ T~(s)ds~) ~°. Whenever 
e~(~) 

~ is a differentiable form, a simple calculation using (2.2) leads to the 
A-form: 

dcox~(~) = - H o  (Frt T~' ÷ _F:tT ~) ( e , (~ ) )d : .  (4.2) 

The form (4.1) gives the integral (see G. DE 1 ~ ,  1955) we will use 
throughout this paper; we introduce the notation 

f o.~ ~ ~ f Tab d * , .  (4.3) 
Z X 

I t  is a vector a~ x well defined by ~ and the matter  distribution T ~ b (x). 
With its aid we define 

/~. (v) := vo (x) f T~ b d *b (4.4) 
T~ 

a real valued function on :~f~. #~(v) ~ 0 because o~ (2.1) and #~(v) = 0 
ff and only if Tab -~ 0 almost everywhere on e~(/~). As v a approaches the 
light cone,/~x (v) increases. We are interested in the minimum of #x (v) 
and therefore we restrict our arguments on a compact 11 domain K 
suitably chosen in S ~ .  

Because of (2.2), (2.9), (2.8), (2.4) #x : 5(lx -~ R+ is continuous (see 
also KoBA¥~snz, N o ~ z v ,  1963, proposition III ,  8.1). Therefore /~(v) 
takes its minimmn on K in say u a (x). We prove: 

Lemma 4.1. u ~ (x) is unique in Yi~. 
Without ~ loss of generMity we choose K such tha~ 

/ ;  := {.~ Iv ~ K , .  ~ n+}  
becomes a convex cone. We define by ~ (v): = #~ a continuous 

function: ~ : ~ --~ R+. We show that  ~ is strictly convex; i.e. 

@~(2v + ( 1 -  2 ) w ) <  2@, (v )+  ( 1 -  2)@,(w); ( 0 < 2 < 1 )  (4:.5) 

for all v, w ~ ~ not eollinear to each other. If so, @~ takes its minimum 

~0 R. BICEIL~IE, B. S. DE WITT, 1960; G. D~xo~, 1964, called the product inte- 
gral the bitensor of pa~allel propagation; it reduces to 6~ in fla~b space time. 

n We take the topology induced by Euclidian topology of T,. 
*~ In the proof we omi~ the coordinate indices, if no confusions m~y arise. 
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in exactly one ray, whose intersection with d ~  we call u (x). By con- 
struction u ~ K and 

/z~(u) < / ~ ( v )  for all v ~ u, v C ~/~x. 

I t  suffices to take v, w ff K in (4.5). Than (4.5) is equivalent to (v (2) := 
= ; . v  + (1 - ~ ) w )  

(~v f T S ~ + ( 1 - ; O w  f . . .) < ;.v f . . . + (1-  Z)w f . . . 

"with lV (J~)l = ( va ()~) Va()*)) 1/2, 

+ [the same 

1 < Iv()~)f < ~ .  This means: 

replacing ~ -* (1 - 2), v -+ w] < O. (4.6) 

This is trivially true ff the second summand (s.s.) in each bracket is 
0 (e.g. fiat space time); we therefore assume it to be > 0. Using Stokes 

theorem (see also SCHLESINOEI~, 1928) and (4.2) we calculate for (s.s.): 
x 

(s.s.)x= -v. f ~{(r~oT0b+ r~0Tr~) (~(~)) f (~;+ r~d~)}. (4.7) 
]~().) e~(~) 

Where K ()~) the section of the suppor~ of o~ a "between Z~ (~) and Xv". For  
(s.s.)n in the second bracket we get an analogous result,. Obviously (4.6) 
is true if 

([v(~)l- 1)~(v) 
> 1 .  (4.s) (8- ~)x 

Bat  (4.8) is fulfilled because of assumption (2.12). The same argument 
holds for the second bracket. 

We remark, that  all our valuations are made in a fixed t~iemann. 
normal-coordinate frame adapted to any vector oi K chosen once for 
ever. Then everything is well defined, because of the compactness of K, 
the compactness of the rotation group SO 3 and our regularity assumption 
(2.10). Obviously the special choice of our coordinate frame affects not 
our result, so we proved the lemma. 

The above construction applied to all x gives us a uniquely defined 
timelike unit vectorfield u~(x) in V 4. We set # ~ ( u ) = :  M(x)  in the 
following and call it  the "mass quanti ty".  The set of all points lying on 
the geodesics starting from x orthogonal to u a (x) is called F~; it  is a 
hypersurface in the neighborhood of x, where the exponential map is 
diffeomorphic (e.g. EISENg~T, 1949; KOBAYASm U. No~Izv, 1963). 

Lemma 4.2. u a (x) is continuous in T.  
Proo]. For a stfitablc neighborhood N~ of the zero vector in T~ e~ is a 

diffeomorphism (KoBAYASm u. NO~tzv, 1963). Assumption (2.6) implies: 
Taken as a mapping of U N~-* V 4 the exponential map is a diffeo. x¢T 
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morphism,  and furtheron,  t h a t  the  suppor~ of ~Ox ~ lies in N~ for all x C T. 
Then,  as a consequence of (2.4), (2.8), (2.9), (2.10), ~e(x, v) is cont inuous 
for  all x E T t aken  as a mapp ing  of the  principal  fibre bundle  
~ : = ~ ( T )  × d ~  into  R+. (Obviously the  s t ructure  group Lf~ (proper 
or thochronous Lorentzgroup)  acts  t rans i t ive ly  on the  fibre). B y  t e m m a  4.1 

(x) : x - ~  (x, u (x)) defines a cross section on ~ .  We have  to prove,  t h a t  
is cont inuous on T. 

Be x o C T and {x~} -~ x 0 a converging sequence in a suitable neighbor- 
hood ~[(xo), and  be ~(x) a cont inuous cross section over  ~(xo)  vAth 

(x0) = a (x0). For  any  k there  exists a g~ E ~ defined b y  g ~  (x~) = a (xk), 
and  our  r emark  to  l emma  4.1 shows, t h a t  the  {g~} lay  in compac t  domain  
of z Q ;  i.e. {g~} ~ go. We se t / (~)  ~ s (z ,  ~(z)), w~eh  is a continuous 
funct ion into R +  with the  p r o p e r t y / ( x e )  >= #(x  k, gtj:(x~)) > O. This and 
the  uniqueness of the  m i n i m u m  of ~ imply :  

therefore g° = e and  finally a(x~) ~ a(x0). 
As a consequence we get  
Corollary. M (x) is eontinous on T. 
Remark. I n  flat  space t ime  u a (x), M (x) are cons tant  and  defined all 

over  M a. I n  this case M(x)  is the  to ta l  rest  mass,  which justifies the  
te rminology "mass  quan t i t y" .  

Wi th  the  aid of l emma 4.2 we are in posit ion to  prove  
L e m m a  4.3. u ~ (x) is di~erentiable in T. 
Pro@ Le t  U (x 0, v0) be a neighborhood of (x o, %) C U' X S ~ ,  U' open 

in T, fixed once for ever  and v 0 ~ u (x0). I n  an  a rb i t r a ry  fixed coordinate  
f rame  covering U'  let v a =  (v °, v 1, v 2, vS). We have  to  prove,  t h a t  the  
fuact ions  u ° (x) . . . . .  u a (x) are differentiablc in T. Because of the defini- 
t ion of the  min imum vectorfield u(x),  those functions have  to fulfill: 

(a) g~b(x) u~(x)  u ~ (x) = 1 
(4.9) 

(b) (x, v) -> ~ux(v) b e c o m e s m i n i m M  for v =  u(x) ;  x C T .  

Se t  ( f T °b d 'b)  gut(x) ~ ~)~(v° . . . .  , v'3; x). Then  (v °, . . . ,  v a) -~ 
/~v(x) 

-~ ~b~ (v . . . . .  v s) is of class ~s  for  all i = 0, 3 because of assumpt ion  
(2.6) (2.8); lu r ther  x -~ qS~ °, .... v~ (x) is differentiabte. To see this, one has 
to set  v ( x ' ) =  ~:(x'), x ' ~  U', where v(xo)= ~:(xo) and ~ is the  cross- 
section re la ted to  the  parallel  propagat ion.  Then  x -->/'~(~) is of class ~fs 
in x ~ T. Because of (2.8) we see x - >  ~b~(x) is of class ~ r  (r ~ l t )  in T. 

I n  the  above  t e rmiao logy  we m a y  replace (4.9) b y  

(a) P ~ ( v  °, . . . ,  v ~) = 1 
a (4.~0) 

(b) ~ ( v  °, v ~) = ~ v ~ ¢ ~  (v ° • ' ' ,  i~ , . . . , v  ~) minimal  
i = 0  
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We have to look for the minimum with respect to v for fixed x ~ U'. I t  
is the solution of: 

3 

~ ( v  o . . . . .  vS) + ~ v ~ ( v O  . . . .  , v~) - ) ~  ~ a~(x,  v) = 0 (4.11) 
k = 0  

a px where I is a Lagrangian multiplicator, Q~ : =  ~ a polynomial in 

0 
v ° . . . .  v s and ¢~k : = - ~ - ~ .  By  the preeeeding arguments we know: 

x -> Gi (x, v) is differentiable and so is v -~ Gi (x, v) because of (2.8). By 
lemmata 4.1 and 4.2 we know, there exists a continuous and unique 
solution va= ua(x) (a = 0 , . . . ,  3) of (4.11). An elementary calculation 
shows 

au~ 

where (D~)r,(Dv) -lr* = 11 and (D~)r, (a = x, v) is the re-component of the 
derivation matrLx of G ~ with respect to ~*. Therefore the four functions 
u~(x) are differentiable if and only if det(D~)~, 4= 0 in T. This means: 

3 

d e t ( 2 ¢ ~  + ~ uk¢0~.ks + 2Q~a) =~ 0 (4.12) 
k = O  

5 where ~ e s  ~- ~ ~ ,  and Qr~s -~ Q~. Our assumption (2.11) eondu- 

des the proof. 
We remark tha t  (4.12) is true in flat space-time and in the Schwarz- 

schild-solution filled with a perfect fluid, on the central line of spherical 
symmetry ~. 

Corollary. M (x) is di~erentiable /or x ~ T. 

2. The Space Z (T) 

We cM1Z' (T) the set of all timelike, differentiable c~rves k ( ~  x(s)) in 
T 15. With the aid of our ua-field we define a distance function on Z' (T): 

<k', k"> ~= sup sup Ig(F,(s) f~ k',/'~cs) ~ k")[ .  (4.13) 
x(s)EZ'(T) sER 

Obviously <~,, It"> --- <It", It'>, 0 ~ <It', ~"> < 0% because of (2.5) and 
lemma 4.2 and <k', k"> = 0 ~ k' = k". (Be k' 4: ~" then there exists 
x'(so) with Ig(F~(s0)~ k',/~(s~) ~ k")l > 0, which implies <k', k"> > 0!) 
For the geodesic distance (g spaeelike !) we have the inequality ]g (x, y)] + 
+ tg(Y, z)l > [g( x, z)l which leads immediately to <]d, k> + <k,/c"> _-> 

13 In flat-spacetime (D~) ---- O, (D~) -1 ,~ ~/.b and consequently u~(x) is constant 
affirming our result in § 3. 

~ Whenever all the other of our assumptions are fulfilled, which is true in the 
Sehwarzschild-fidd of not to large rest mass, then (4.12) is a consequence of differ- 
entiability of u (x); but the latter is true, u (x) being the tangentvector to the (geo- 
desic, timelike) central line defined covariantly by the spherical symmetry. 

15 1~ ~ e,(F~(~)), where/'~(,) ~ T~ as described in § 3. 
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-->_ @', k") .  All the properties stated above show, that  ( , )  is a metric 
on Z' (T). By Z (T) we mean the completation, with respect to this metric, 
of Z' (T). Then Z(T)  is a complete, no~zned space. Because of (2.4) all its 
elements are continuous curves in T. 

3. The Center-o/-Mass Line 
For any point x C T we define the map 

e~{M-l(x) u,.(x) f ~ 4 ( ~ ) } .  (4.14a) X > X M ~  
l~u(x) 

In the following we will use the symbolic notation: 

sp M-l(x)  ur(x) f ~T~sd~v~ (4.t4b) X ~ X M ~  

The real valued 3-form M-l(x )ur (x  ) co~(~) defines a positive, normed 
measure with compact support ((2.1), (2.4)) on Fu(~). We may identify 
I~u(~) with 1R a and then it is well known, tha t  this measure has a center- 
of-mass and that  the latter lays in the convex hull of its support. This 
means in our case: 

Lemma 4.4. x M in T, whenever x C T. 
We extend (4.14) to x(s) CZ(T) defining x(s)-+ XM(S) pointwise (i.e. 

for each s E R)  by (4.14). This extended map also will be called Sf and 
we prove 

Lemma 4.5. ~ is a mapping o /Z ' (T)  into Z' ( T). 
Pro@ Be x(s) ~ Z'(T);  the composition s ~  x(s)->xM(s ) together 

with lemma 4.3 shows, that  XM (S) is a differentiable curve; lemma 4.4 
d 

_ _  a shows that  xM (s) C T for all s C R .  I t  remains to prove, tha t  t~ := ds xM 

is timellke. To do this we need some preliminary steps: 
a) The lc-map. (2.6), (2.8) assures the existance of a neighborhood 

2V (s) covering T ~ B (a), where B (a) is the sandwich "be tween" / ' s  and 
/~+~, such that  -1 ex (~) : N -~ T~ (s) is diffeomorphic. In  T~ (~) we introduce 
an orthonormal te t rad ei(s), ( i  = 0, 1, 2, 3), with eo(s ) = u(s) and pro- 
pagate it  by a generalized Fermi-transport along x (s)~8, namely: 

d a - r~du  ~] 
-d-~ei -~ 2u ~ g b ¢  + ubN~¢) ei c * 0 (4.15) 

where2~c~(~--~ua) u , u ~ - 2 u a  (-~s u(b ) u~) (i.e. ua is transported into 

u a and so is its orthogonal space). We relate those points o f / ~  and F.~+~, 
whose corresponding vectors ~(as) , ~s + ~) have the same components in 
the (4.15)-related tetrads; all points related to ~(s) lie on ~ curve ~(s).  
Because of lemma 4.3 /c~(s) is differentiable. If (r is small enough the 
curves/Q (s), ~ E I'x(~) f5 T do not intersect and therefore they constitute 

~ G. Dtxo~ [4] already used this propagation with ~ somewhat different 
meaning of u% 
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a one-to-one map  of F , ~  F~+. (a > O) called the k-maplL We find 
always a positive a - -  (2.13) - - ,  such tha t  the above is true; so our map 
has meaning in a finite slice conta in ing /~  for all s. The tangen~ vectors 
to the k-map give a continuous vectorfield in the above mentioned slice. 
Using (4.15) and remembering, tha t  ~ depends on x(s) as well as on 

du D 
C F~(s) we get: ka ($) = Xa ~( u~ --f[" ~b - ~gtt~ t~) (4.16) 

dx a 
where t~ - ds and X% is a tensor at  x (s) constructed as follows: Pro- 

pagate ~ parallely along g(x(s), $) and differentiate the vector so ob- 
tained with respect to x r (~). This gives a tensor, whose inverse parallely 
propagated along g(~, (xQ) to x(8) is X%. We observe tha~ k s (0) = t% 
k o ( s ) =  x (s), which shows - -  together wi~h lemma 4.3 - -  tha t  k a is a 
timelike vectorfield. In  flat space-time (4.16) immediately gives k a == t a, 
as i$ shonJd be, according to the prescribed meaning of the k-map. As 
parameter  on the k-lines we use the induced-one by  the/"a-layers,  i.e. 
induced by  s in x (s). 

b) Now we are in position to prove our statement.  To do this we 
calculate t~  explicitely ( ~  means Lie-derivation in k-direction): 

d XaM(8)=[ d M  1 1 dur f ~aTr s d~vs _~ t ~  = -dT d-T" - F  x~(s)  + M g~ 
r~ (4.17) 

q---M--1 ~a~k T~sd*s +--M -u~ ~::~ -~ ~%=[t~]+taz" 
r~ G 

Obviously t~u~ = 0, i.e. t~ is spacelike and = O in fiat space-time. The 
following we calculate in the ~(s ) - sys tem used in appendix A. The 

estimates given there show tha~ i~l G 2 D ( %  ÷ ~ )  ~ [  ~ A 0 ~ ; i t  

means ]t~] < A - ~ -  with 0 < A ~ 1 and A o is the upper limit of A. The 

numerical value we have to expec~ is roughly estimated in appendix B. 
I t  remains to discuss t~. By  definition of the k-map we see imraedia~ely 

t'~ = f k~(~) dT,  where d T  = M-~u~ f (6~ ÷ F~ ds ~) Y ~ d*~ for ab- 
G x(s) 

breviation. Using (4.16), (A.3) we calculate in the ~(s)-systemiS: 

k s (~) = ~ + 1 - F ds + 5 P(s)  F(s')  d8 ds' + • • • 

( ; j"f ); H-I~(~) × 1 + F d s  + y F( , )  F(s')  ds  ds' + • . .  
0 0 0 

((~ ~) u~ + tO 
17 I t  has the important property that 9(x(s), $(8)) ---> g(x(s + ~), ~e(~ H- ~)) 

where ~(s A- or) is the k-picture of ~(s). 
is We use the matrix notation of appendix A and set (g~(~)~b)~ ~ I~1- 
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where 

which gives explieigely: 

): ): 
o o 

+ '° f re* ÷ f f r(*', o + " ° "lo " 

B y  a simple calculat ion we find 

0 t 

and therefore 

Wi th  no ta t ion  of appendix  A we get  

[as(~)l ~ supla,(~)[ ~ HOll (1 + IIF[ID) 
r,  

leading immedia te ly  bo the  inequal i ty :  (D [IFII ~ c) 

IHg(~) - ~gl =< (co - a) (1 + o) + ~(1 + II~ll (1 + c)~o) = B o ~ .  

Therefore  we are allowed to  wri te:  

k"(~) = ~ + h%(u) t b + (ut) U a + Z ' a  (4.18) 

where h%(u) is the  project ion on bhe u-restspace in x(s). The  vec tor  z 'a  
depends on /'~c and  vanishes in fiat spaeed ime;  to  give its explicib 
fo rm would be cumbersome and fo r tuna te ly  we do nob need lb. 

Going back  ~o (4.17) we get  

i f ,  l M a = u a + ~  - z a ( ~ ) + t ~ u a + z  a . (4.19) 
15 

We have  normal ized ~he p a r a m e t e r  8 such thab u b tb = 1 and  have  used 
the fact  bhat  h% (u)t ~ is a fixed vector  in I s. 

Using the  resul~ we have  gob for  t~M, bhe second statemen~ of appen-  
dix A and the  inequal i ty  for IH(~) - 11 we get  ~° 

lzal < ~ (A o + B o + ~ D )  = C o . 

x9 For the examples estimated in appendix B we get, Bo ~ a; a is tabulated 
there. 

s0 Looking at ~he estimates in gppendix B we see, that Go is of ~he same order 
of magnitude as As. 
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Then it  is easy to see that  ta~xtM~ > O, i.e. t~  is timelike, such proving the 
lemma. 

At  this stage of our investigations we are in position to say what we 
mean by the center-of-mass line of a given matter  distribution T a b (x). 
We define it, being the line x (s) E Z (T) with XM (s) = x (s); in other words: 
it is characterized by  the fact, that  in its ~(s)-system x ~ ( x ) =  0 for 
all s. 

To prove the existence of such lines, we construct by  (4.I4) the con- 
tinuous vectorfield x~(x), x E T. Each of those vectors is spacelike and 
therefore vanishes if and only if its projection on a spacelike hyper- 
surface vanishes. As such a surface we take/ 'x ,  (x0 fixed in T) and project 
x~(x ' ) ,  x' C1~o~ T onto Fx0. So we get a continuous vectorfield on 
]'xo f~ T. Assuming T being geodesic convex and calculating x~(x" ) ,  
x"  E {surface of/ 'xo ~ T} we see that  x~  (x") points to the interior of T 
and therefore the projection points to the interior of F~0 ~ T. So, 
finally we have a closed 3-domain and on this domain a continuous 
vectorfietd pointing into the interior everywhere on the surface; then, by 
B~OvwE~s fix-point-theorem, we get: I t  exists at  least one point in 
/~xo ~ T where our veetorfield vanishes. This means by our argument 
above that  x~  = 0 at those points, such proving our statement, when we 
replace x o by a differentiable curve xo(s ) ~ Z' (T). 

This proof (given by J. MADo~ 21) obviously shows a bit more, 
namely: 

Lemma 4.6. The center.el.mass line exists and lies in the geodesic hull 
o/ the support o] T a ~ (x). I t  is a continuous timelilce curve. 

The last statement is almost obvious remembering that  Z ( T )  con- 
sists of timelike, continuous curves. 

Up to now nothing is said about uniqueness and it still might happen 
that  we have several center-of-mass lines, the number of which is com- 
pletely undetermined. We want to get rid of this ambiguity and prove: 

Lemma 4.7. The map : 7 : Z ' ( T ) - - > Z ' ( T )  is contractive with respect 
to the norm given in § 4.2. 

Take 16/c' EZ ' (T )  and take the parameter s induced by /¢ for all 
curves of interest in the following. We have to estimate 

r - - 1  ]XM(s) -- x i ( s ) l  = I f ~ dT~(~) - ex(~)oe~,(s+~) o f ~,a dTx,(~+o)] 
r~(~) rx,(s +~ ) 

where e~(~) is the exponential map Tx(s) ~ V a and x' (s + a) is the point 
on k' defined by:  Zfx'  (s + a) = x~ (s). Without restriction to generality 
we may assume that lg(x(s),x'(s))t-~ IAxl is small (but > 0!). For 

~ Oral communication via W. E r u p t  1966. 
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abbreviation we set a '  ~- Ig@(s), x ' (s  ÷ a))] and x'(s ÷ a) ~- x ÷ a ' ;  then 

IxM- f a r x~II -- M(x  + a') ~ d Tx(~) + 
r~ 

I+ ¢) f ~odT~+ o,)} + ~4(x a ~ (d T~ - 
r~ 

where the generalized Fermi-propagation 

o v ~ = v ~ + a' dv~ ~'~ d~v ° 
ds + 2 d~ ~ + ' ' "  

and 
~ V a 
- d [  ~- --u~vb u~ ll~t~ ÷ U~li~t~ub v~ 

with t ~ tangent to g(x(s),  x ÷ a'). Using the estimates of appendix A and 
collecting the powers of a'  we get: 

I'~(s) , F~O), are spacelike, u s is differentiable; then because of (2.5) we 
get for IA x] small enough: 

In the exponential we replace a' < D by D which leads to the inequality: 

lx~ - ~ l  g J~LD(1 + ~;D) {~0,, + 2 llvli e ~l~H + 
(4.20) 

+ 411 - llOll[ e°'-~t-'~°l-~r°rt}l~ x [ -  ~0laxI 

i.e. ]x~(s) - xj~(s)[ ~ ~lAx[,  where 0 ~ ~ < 1 and Y0 is the upper limit 
of ~. We made this estimate in.dependently of s and therefore we get 
finally: ( ~ k ,  S~k ' )  <~ ~ @ , / z ' )  with the above ~, such proving our 
temma. 

Estimates of appendix B applied to Y0 show that  Y0 ~ A0, i.e. ~ 1  in 
practical cases (with [Pt -~ M). 

Appb4ag the Banach fixpoint4heorem to 5~ :Z  ' (T)-~ Z'  (T) we get 
the main result of this paragraph: 

Theorem 4.1. A space-compact, extended timelike matter.distribution 
T a~ (x) in a Riemannian  mani/old V ~ obeying Einsteins field equations 
G ~ = Tab, possesses one and only one center-o]-mass line. I t  is a continuous, 
timelike curve lying in the geodesic-convex hull o] the support o] T a~ (x). 

We hin~ at the fact, ~ha~ the center-of-mass line has not to be differ- 
entiable in the general ease. 

~ We may Mmost identify [x~-- x~l in T,(,) with ]e(xm x~) t because of 
(2.13). 
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5. The Center-of-Motion Line in Curved Spaeetime 
G. DIXON, 1964, proposed to take over condition (3.5) into curved 

space-time using it  as definition of the center-of-motion line XB (s) of T. 
In  fact this can be done and will prove it  by reducing the problem to § 4. 

Any timelike unit vector v ~ at x ~ T gives raise to the total momentum 

quanti ty pa(x, v)-~ f T ab d~b, the latter being a timelike vector in x. 

Lemma 5.1. There exists one and only one timelike unit vector p~ (x) 
]ulfilling pi~(x) Pb](x,p) -= /or any x E T. 

To see this we construct ¢,he sequence {Pk}~=l,2 . . . .  at x C T by the 
following procedure (it is an improvement of an idea of DIXON proposed 
by W. KUNDT) : Choose any timelike v~ and construct P~ (re) ~--/)1 ; then 
define v ~  P~/IPli which gives raise to P~(vx) ~ P~ etc., such leading 
to the sequences (Pk} and {/'v~ ~-/ 'e}. Estimating 

[P~ - P i+l t  = I f  T~b d * b -  f T~b d*bI = 12 f F(b~Tb)"d*l = ~b  Pb 
/'k-~ /'~ K(ILb--1) 

_ a with 0 ~ e < 1. as in appendix A; we get easily v~+ lvk~ ~ e 'vkv~- la  
The upper limit s 0 of e is of the order of magnitude of % and e = 0 in 
flat-spacetime. Taking as a complete, metric space the unit-mass hyper- 
boloid in x we get by the Banach fixpoint-theorem our lemma. 

Because of this lemma we get a timelikc unitvectorficld p~ (x) on T 
replacing the u-field in § 4. In  consequence, we replace/ '~  (~} b y / ~  (~). 
The same procedure as in § 4 shows the continuity of the p-field in T. 
Starting with a differentiable veetorfield vo(x ) in a suitable neighbor- 
hood U (x0) we see as in § 4 that  each Pe (x) of the above sequence depends 
differentiable on x E U. The sequence is equieonvcrgent on T and there- 
fore pa (x) is differentiable in T. 

We define the spin quanti ty (see (3.4)) by: 

S~(x )  =- 2 f ~[~ Tbl ~ d*~ 
r~ 

and the total angular momentum quanti ty Jab with respect to xB E / ~  (~) 
(see (3.3)): 

Then by  a purely algebraic calculation we get: 
Lemma 5.2. The condition Ja b (x, xB) 19b (x) = 0 is equivalent to 

* 1 ~aTb~d* ~ (5.1) x~ = (p,(x) f T*~ dx~)- pb(x) f 

such defining a map 5P B : x ~ xz. 
Replacing (4.14) by  (5.1) we follow step by  step the arguments given 

in § 4. So we get: 
9 Commun. math. Phys., Yol. 5 
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Theorem 5.1. Theorem 4.1 is also true, i /we  replace the word "center- 
of.mass" by "center.of.motion". 

Here the "center-of-motion" fine is defined as the fixpoint of the 
map : !~  extended to a map Z' (T) -> Z' (T). The terminology is chosen 
because this line originates from the momentum quantity and usually 
one associates momentum with motion in physics. 

6. Various Consequences. Concluding Remarks 

The statements in this paragraph are formulated as theorems, 
although they have more the character of corollaries to §§ 4, 5. 

Because of the uniqueness property we are able to speak of the total 
spin SaMb(S), the total momentum P~(s)  and the total mass M~(s) with 
respect to XM(S ) of the matter distribution Tab(x) at (eigen)time s; 
namely:  

S~(x)==- f ~[sTb]cd~o (6.t) 
r~ (8) 

P~(s) ~ f Tsb d~ b (62) 
rx~O) 

M (s) =-- u s (x~ (s)) P ~  (s). (6.3) 

They constitute continuous tensorfields on xM(s). In strict analogy we 
get saBb(s), P~(s) and M~(s) replacing XM(S ) by x~(s) and %a by pa. 

Theorem 6.1. We have in general uiS PbiM(S ) 4= O. 
This is seen by a variation of uaP~l with respect to u s resulting in 

8~(u~P~) = u~ f 2F(b~Tb)~ dx # 0 
K(~u) 

where K(Ou) is the wedge "between" I~, flu+on- But we see in ilat space- 
time and in fields of high s)nnrnetry u a and P ~  are parallel to each other. 
Rather trivial is ~hc following 

Theorem 6.2. u~S~ = O. 
An obvious, but very important consequence of the preceeding 

theorems is 
Theorem 6.3. In  general x M (s) and x~ (s) do not coincide. 
This is different to fiat spacetime. Physically it  means that  an ob- 

server moving parallel to the total 4-momentum (PM or P J  does not 
measure minimal total mass. To see, that  the same is true for an observer 
sitting on the particle, we assume for the rest of this paragraph that  
x~t(s) is differentiable with tangent vector t~;  (similar for x~(s), ta~). 
Then (4.19) shows 

Theorem 6.4. u[atblM(S ) 4= 0 in general. 
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Theorem 6.5. In  a matter distribution o] spherical symmetry (e.g. 
Schwarzschild fluid-ball) the center-o]-mass line coincides with the center- 
o]-motion line and u[at~(s) = O. XM (S) is identical to the central line defined 
by the symmetry o/ the problem; as a consequence xM(s ) is a timelike 
geodesic. 

Tacitely we assumed that  no exterior sources are present; the proof is 
straight forward. 

We use this result to get an information on the mass concept (6.3). 
For simplicity we restrict the following to the static case. Using the 
metric ds ~ --- -e~(~) dt 2 - e~(~) dr 2 - r 2 dQ ~ and setting t ~ x ° we get: 

M=e~(c) f T ° o e x p ~ ( u  ÷ v) ( r ) ) r~s in~d~dq~dr .  (6.4) 
t ~ COnSt 

In case of timedepending gab the expression becomes more compheated; 
but  even in the simple ease (6.4) we see, that  the mass introduced 
in (6.3) is different from the mass used by S. A. EDDr~aTOI~, 1924, 
(-~ f T°oeu/2r2sinv~dz~d?dr) and different from the mass used by 
H. BoI~I)I, 1964 (= f T o 4ur  2 d~ dq~ dr) 23. 

A detailed inspection of the proofs given in §§ 4, 5 and appendix A 
shows, tha t  we can weaken assumption (2.7). As long as the "weak 
field" assumptions remain valid we may interpret the metric gab as 
solution of G ab = T ~ ~- T ~ ,  where ~ab describes any exterior sources 
(~- support of Tab) fulfillh~g T f~ ~ = 0 or ~bll b = 0. Just  in theorem 
(6.5) we have still to exclude exterior sources except they have very 
high symmetry;  otherwise they would split x i and xB. 

Using the wider interpretation of the field ga~ (x) we define a test- 
particle Tab(x) by the condition that  IF~c(~)t ~ 0, ~ E T, w h e r e / ' ~  is 
calculated in the Riemannian coordinate frame adapted to u a (s) (resp. 
pa(s)) at XM(8 ) (resp. X~(S)). Then we get: 

Theorem 6.6. A test particle moves along a geodesic line in the total 
field generated by T a b + ~C a b; XM (S) and xB (s) coincide. 

t[~u bl = 0 follows from (4.19); the rest is a mere consequence of 
(A.9)--(A.11) and the proof to theorem (6.1). 

Obviously this results of an approximation method assuming that  
the field is almost constant all over the particle. We have not to split 
eigenfield and backgrotmdfield as it  would be necessary if speaking of 
theorem 6.5. as an approximative solution to the motion of bodies of 
spherical symmetry. The advantage in our test-particle-approach is, 
that  it is absolutely consistent (and covariantly defined) in EI~STEr~S 
theo1:y; especially it  is free of the logical inconsistency discussed in § 1. 
First i t  solves exactly (a) and then --  if the test particle condition is 

~3 They have a somewhat different physical meaning: total rest-mass, total 
baryon-number, total effective mass. 
9* 
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satisfied to high accuracy -- answers (b). Nothing is assumed on the 
shape or the inner structure of the particle; such we get geodesic motion 
as "leading te rm" in the motion of particles built by human technique, 
which affirms the heuristic ansatz in EI~sTEI~s, 1916-paper in the flame- 
work of the final theory. 

I t  is almost obvious how to fit the A. PAP~ETaov-approximation 
method (1951) into the center-of-mass concept; (here it seems more 
appropriate to use x B(s) !). I t  has been elaborated for the quadrupol- 
particle elsewhere (W. BEmLS6CK, Dissertation Hamburg 1965). Just  
to enlighten somewhat more the meaning of our total  mass concept (6.3), 
we cite the result ~4: 
dM ( 3 . .  1 ) d Q "  

(6.5) 

where the "quach~upol moment"  Qab -- M = uc f ~a~ Tc~ d*d and 4 ~ ----- u~libu b. 

I t  states mass conservation in fiat spacetime and shows, that  the spin 
(6.1) does not contribute to the emmission of gravitons. The result differs 
from this one given by  A. H. TAra3, 1964, in Florence, where he used a 
center-of-mass concept (and therefore a mass) bearing the difficulties 
discussed in § 1 ; his formula shows change of total restmass even in the 
speciM relativistic limit. 

By  theorem4.1 (resp. 5.1) XM(S) (resp. x~(s)) lie in the geodesic. 
convex hull of T ( ~  h(T));  our methods demand, that  F~(~) ;~ h(T) is 
covered by  the Riemannian normal coordinate system adapted to v' (x), 
where v, v' are timelike unitveetors in the neighborhood of u (x) for M1 
x C h (T). Using this as assumption we already weaken (2.6) considerably. 
But  often we can do more. I t  might happen, tha t  the demanded co- 
ordinate condition is not tulfitled for points "near the surface of h(T)", 
but works in the tube T t C h(T)2s. Then our definitions make sense for 
all x C h(T) but  u(x) need not to be continuous outside TI. But  if 
6a'(h(T))-> T t (resp. Sf]~) (n < oo may depend on x!), then we can apply 
our method restricting Z'(T)  to Z¢(TI). This makes our method appli- 
cable even to rather strong fields, if --  for instance --  the matter  distri- 
bution is ':almost a ball" i n / ' ~  (~). 

Using parallel propagation in the defim'tion of the integrals seems at 
the first sight somewhat superfluous. But  it has the advantage of being 
absolutely covariant; so we can calculate all quantities in any coordinate 
frame and avoid to introduce Riemannian coordinate frames explicitely, 
which is a laborous task in most practical cases. 

~* Reported by the author at the Physikertagung 1965, Frankfurt-l~Iain. 
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Appendix A 

In ~he following we are dealing with a purely gravitationally inter- 
acting system T ab . 

1 ~ statement: ~ < etPat, where 0 < o: ~ 1. 

Here Pa(s) is the "total  momentum quant i ty"  Mth  respect to x(s) 
defined by  

pa(s) ~" f T a~ d*~. (A.1) 

I t  is a four-vector at x(#) and because of Lemma 4.3 it is differentiable 
with respect to s whenever 8 -+ x (s) is a differentiable curve. We start  
with a sandwich B (a) defined as the section "between" F x (s) and / ' x  (s+ o); 
because of (2.6) it  is guaranteed that  B (@ • T is covered by  the Rie- 
mannian normal-coordinate-system in x (s) ( ~  (s)-system). 

For any ~ ( B (a) we assume the geodesic triangle 2s 

(x(s), 7, x(s + zl, 

to be triangulated by small local lassos at ~ ( A,. The usual definition of 
R%c a by  parallel transport  leads for the finite A, by summation over all 
lassos to the formula (see (4.1)) 

x(s + a) 

~(s) (A.2) 

A 

x(# + a) 

where the product integral [17] f 0 S  + r o(s) is the operator of 
x(0 

parallel propagation along gi(x(s), x(s 4-@). The integral at the right 

hand side means: transport  Rbast(~)d*x s~ to x(s) along g($, x(s)) and 
multiply the tensor so obtained by ¢%a(s)(~), finally sum up over all 

(A , .  For  abbreviation we call this integral (R ~o)~ o)(N). 

We proceed with our arguments in the ~2(8)-system adapted to 
u(x(s))~ i.e. ua(x(s)) = 6%. The definition of the product integral leads 

~6 I t  makes no difference in the following to replace g(x(s), x(s A- a)) by the 
section of x (s) between the two points in consideration. 
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immediately to ~he formula 

£ y 

Y Y  

f . . . .  

Using the matrix notation: /'ge(s) ds ° ~ F(s) ds and substituting 
8*2 

Fgo(s) = e' dFg¢(s) + -~-dd/~b~(s) + '  " ' ,  where dT'go(s ) ~ Fg, ld  e, t ~ 

beeing the tangent vector to x (s), we get: 
z(s+ o) 

f 04 6 ~ (1 + F ds) = 1 + d I ' ( s ) - ~  + ddI~(s)vat  + o(a 4) . (A.4) 
x(s) 

With the aid of (A.2), (4.2) and theorem of GauB we get easily: 

e l  + ,) - e:(,+) = f &o:<:)(v) + f (R+>:<:,(,) d ,  + 

m.) B(~) (h.5) 

+ f f + . . .  
/~ (s + m B (a) 

To proof the inequality of our 18 t statement we start with an estimate of: 

l~(S)̂  t ~ )  \ 

a n 

We seg P(~)  - sup IF(s)[ and use  (A.3)  t o  get: 

A n 

w e  use R % ~  d*o~ ~ R(~) g ~  and introduce IZI, = sup IZ(~, x(*))t, 

f l ,  ~ sup/0(~) ,  tRI, - -  sup IR(~)I 
~EA~/ ~EA n 

i(Ro~)~(,) (~)1 < Irog(,)(~)l iRIn e~Ial'lfl" f d ~  • (A.6) 
A n 

Assumptions (2.5), (2.10) guarantee that  ~he right hand side is finite, so 
(A.2) was reasonable. 

(4.2) gives: 
z (s) 

B(r 0 B(c 0 rl 

=~ This is valid for any path x --> y ia V ~. 
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Analogous to the procedure scetched above, we get: 

I f deo~(s)(~])/~ 2 [lrlt~ ee:I~l~llr,o I f Ts* d*l 
B (~) B (a) 

where [IgH~ -~ sup Ig(~, x(s))l, IIF[t~ ~ sup IPl,r Using the k-map denned 
nEB(z) nEB(~) 

in § 4.3 and (2.8)we replace Z Ts~ d* b y t h e  integral f dari?n)ds T"t(8, U) 
B (o) /'s 0 

- - f  d~Vff(~)T"t(V), where the f ds is meant along the k-lines and 
r~ 0 

r a  

Tst(U) stems from the application of the mean value theorem on the 

path-integral. Obviously ~-,0-1im a(V)a = 1 and f Tstda~ < 4{pa{ because 
r~ 

of (2.1). Finally our considerations result in 

lim 1 fd~(~)(v) = fl%pb (A.7) 
o-->0 (:¢ 

B(~) 

where {#°bl -~ 8 Ilrll ~,1~1 ({{gII < D because of (2.5)!). (A.5), (A.6), (A.7) 
result in 

I dp~ = ~-,o P~ (s + (r) - -  P~ (s) -g < (8{]FIl+ DIlRi{)eeDilrllIPal-zco{Pa { (A.8) -d;-  

l i~  1 f =< D as is easily seen. where HRII ~- sup IRln and because of -~ 
~EP~ An 

So we proved our f irst statement wi th  an upper bound % for ~. The 
formula (A.8) shows that  ~ = 0 in flat space-time in agreement with the 
result in § 3. 

In  appendix B we give the order of magnitude of ~o by numerical 
calculation. 

2'~ statement: l-~s < £ ,  where O < o:' ~ l.  

In  the N(s)-system we have I '¢c(x(s))= 0 and therefore we get 
du ~ au ~ 

t ~ where t ~ is the tangent vector to x (s). We use the formula ds = -gZ  
Ou ~ _ 

derived in § 4.1 for the partial derivatives ~-~-and we get: 

du° t b = ~  ( 2 ~ ~ ~ ~ 2~g~)  - i  u Ov~Ov~ P gar Ox ~ g:~EJ- P~ + - -  + 

0 ~r  O 

a a ~ s ~ ) + u  ~ Ov ~ ~s  P "gb~÷ 2,~u -~s gb~ 
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Simultaneously for all a -- 1, 2, 3, 0 we estimate (v ~ --= v): 

lira (s T0u = f f (8:+ (,) a-->O O" 
K(o) n 

where K(a) is the wedge "between" F,(~) and Pu(s)+ ~v(~) Considera- 
tions analogous to the above ones lead to (see (2.12)): 

~ -  ~ 4 Hrll el!Drt! 1p~I = 7o 1P~I ~s 
(A.IO) 

a~ P~ < (4 tlrJf) , e~D~l~lllP°l Ov ~ Ov b = 

I t  is very simple to see that :  

~ a o ~  -<- Izg~(or~)o lltol ~_ 2 IIOtl Hrll 

where IIOH ~ sup [gab(~)[. 
~Er8 

Using 2~gasVS==~Jas(Ps+u ~ 0 ) _~_ p8 for fixed a, we find by  (A.10) 

[Pa I < 22 =< (1 + ~7) ]pa] as an estimate for the Lagrangian multiplier 
introduced in (4.11). Observing that  the leading term in (D+)ao is ga~ we 
find easily see ((A.8)): 

d u  a r 

where ~ is an upper bound for £ .  Again ~ = 0 in flat space-time as it 
should be. Numerical estimate of ~ is given in appendix B. 

It will turn ou~ that  for practical purpose 4 tIFl[ is the leading term in 
a 

the second braker of ~0. I t  stems from the estimate o f - ~  gab and if 

necessary we can diminish it by  assuming, tha t  the field (resp. T ~b) does 
not vary very much in time i.e. one may replace 4 IIFII -+ 4 e Ilrll where 
0 =< Q " ~ I .  

dM < ~,,tpa] ' where 0 < a"  ~ 1. 3 ~a statement: d8 = = 

This is an immediate consequence of the P* and 2 *a statemenk An 
! 

upper bound for £ '  is a~' = a0 + a0. 
Finally we remark that  the inequality ~ 1 in all of our three state- 

ments is valid under one of the two assumptions: 

1 o (8 IlrIl + D IIRII) e ~,~rH < 1 .  (A.12) 

2 ° a) The field varies slowly with time i.e. 1/3~I =< 8~' IIrlle D',trll 

- ~ g ~  - 2q IIOil IlrtI where 0 < e , e ' < l  and (A.13) 

b) (8 e' HT'H + D IIRI]) e 2Dtiril < 1 .  

1 
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I n  the  a p p e n d i x  B we give a numer ica l  e s t ima te  ~hat makes  clear  t h a t  
somet imes  i t  will  be wise to  use a s sumpt ion  2 °. This  gives She precise 
fo rmula t ion  of (2.13). 

Appendix  B 

To ge t  an  impress ion  of t he  order  of magn i tudes  of the  quant i t i es  we 
are  dea l ing  wi th ,  we give some numer ica l  d a t a  in a s implif ied model .  W e  
assume the  Schwarzschi ld-perfect - f lu id  and  assume,  t h a t  t he  field 

radius [km] 
has  the  surface-value  all  over  the  bal l  of r ad ius  R, where R - 

3 . 10  ~ [km]" 
8 x~?~ _ m 29 

F o r  the  field quant i t i es  we t a k e :  IIRl/~ ~ / t ~ - ,  II/~fl ~ 8 7 ~  . The 

crucial  quant i t i es  will be a -  2RIIFII, b ~ 2R/IRH; wi~h the i r  a id  we 
ca lcula te  t he  fol lowing t a b l e :  

-R- /~ a b ~0 ~ A0 

Artificial 10 - ~  10-" 10 -~a 10 -14 5-10 -14 1.4.10 -I~ 2.10 - ~  
satellite 

Earth 6.7-10 -G 2 . I0  -~ 1.7.10 -s  9.10 -7 4.5.10 -~ 1.3.10-5 2.4.10-~ 
Sun 2.1-10 -6 2.33 5.5.10 -5 2.3.10 -~ 1.2.10 -4 2.7.10 -~ 1.6.10 -2 
Dwarf I0 -a 5-10 -~ 2.5.10 -8 5.10 -~ 2.5.10-~ 7.10-~ 9.10-~ 

(Sirius B) 
Gian~ 10 -~ 10" 2.5-10 -~ 2.5.10 -~ 1.3.10 -s  3.5-10 -~ 9.4-10 -~ 

W e  h in t  a~ the  fac t  t h a t  the  leading  t e rms  in  ~0 resp.  ~ are  5 b  resp.  
14b bo th  s t emming  from calcula t ions  concerning the  t ime  var ia t ions  of 
field quant i t i es .  Tak ing  in to  account  t h a t  our  Schwarzschi ld-f ie ld  is 
s ta t ic ,  t hen  we ge t  ~o, ~ of the  o rder  of magn i tude  of ~ b ~, which  means  
t h a t  ~ '  ~ 1 as  demanded .  Bu t  we see f rom the  above  t ab le  t h a t  the  in t ro .  
due t ion  of t he  add i t i ona l  a s sumpt ion  " the  field should  v a r y  in  t ime  
s lowly"  is superf luous in mos t  p rac t ica l  cases. 
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