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Abstract, A time dependent scattering theory for a quantum mechanical particle 
moving in an infinite, three dimensional crystal with impurity is given. It is shown that 
the Hamiltonian for the particle in the crystal without impurity has only absolutely con- 
tinuous spectrum. The domain of the resulting wave operators is therefore the entire 
Hilbert space. 

I. Introduction 

In the time dependent approach to potential scattering theory, one 
endeavors to establish the existence and completeness of wave operators 
(2+ = s-lime i tme -"H acting in a Hilbert space ~ ,  where H is the 

Hamiltonian operator for the free evolution of the system and H 1 is the 
perturbed Hamiltonian operator for the system with interactions. Here 
completeness means that the ranges of ~2+ coincide with the absolutely 
continuous subspace of ~ with respect to //1. The unitary scattering 
operator S is then given simply by S = ~2'+ ~2 [1, 2]. 

Mathematically rigorous results asserting the existence and com- 
pleteness of f2+ have been given in the particular case of single particle 
potential scattering in which - H = A is the Laplacian acting in L z (IR3), 
and I t l  = H +  W(x) ,  where W(x)  is a short range potential, e.g. 
W ( x ) s L I ( 1 R 3 ) n I ) ( I R  3) [2-4]. It is a natural question to ask whether 
these results may be modified to accommodate the situation in which 
both H and H 1 are altered by the addition of a periodic potential V(x), 
that is, where H and H 1 are given by H = - A + V(x), Hx = - A + V(x) 
+ W(x)  and V(x) = V(x + a) = V(x + b) = V(x + c) for three linearly inde- 
pendent vectors a, b, c. The modification would constitute a theory of 
scattering from an impurity W(x)  in a crystal, with the rote of free 
Hamiltonian played by H = - A + V(x) [5]. 

We show that such a modification is indeed possible assuming that 
V(x) is square integrable over a unit cell (Theorem 3, Section III). In 
fact this modification is almost immediate except tbr one technical 
point: since the domain of the resulting wave operators is only the 
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absolutely continuous subspace Wa.c. of ~¢f with respect to /4, it is of 
course desirable that this domain be non-empty so that the scattering 
theory is non-trivial. Thus Section II gives a spectral characterization 
of H = - A  + V(x) showing that ira.c. = Y  F, i.e. H has no normalizable 
eigenfunctions, and the continuous spectrum of H is absolutely con- 
tinuous. 

These spectral properties are not surprising. The non-existence of 
normalizable eigenfunctions in one dimension is well known from 
ordinary differential equation arguments, and the absolute continuity of 
the spectrum is not hard to deduce from the resolvent [6, 7]. But a proof 
of these spectral properties becomes more difficult in higher dimensions. 
Since they are fundamental to the time dependent theory of scattering, 
the principal part of this article is devoted to a discussion of just these 
properties. For additional spectral properties see [8-10]. 

II. Spectral Properties of Hamiltonians with Periodic Potentials 

It will be convenient to work in momentum space. Let H be the self 
adjoint operator acting in W - - L ;  (1113) defined by 

(Hq))(p)=pe~o(p)+ ~ vqtp(p+q), p~lR 3 
qEF 

(1) 

where F is the reciprocal lattice, and vq are the Fourier coefficients of 
the (real) potential V(x). It is assumed that ~ [vql2 = v 2 is finite, which 

qeF 

corresponds to V(x) being square integrabte over a unit cell in con- 
figuration space. (We follow the notation of [11].) Let k be any point 
in the first Brillouin zone B, and set Fk = {j e tR 3 l j  = k + q, q ~ F } .  Denote 
as t~ the Hilbert space of square summable functions {~o k} defined on 
F k with norm (O k, Ok)k= ~ gk(j)ok(/). We obtain a direct integral 

j~ rk ® 

decomposition of ~ which we write ~ = .f ~ d3 k. As is well known, the 
B ~9 

point of this decomposition is that it reduces H; if q~ = .I q ~kdak, then 
B 

H q~ = .[ H (k) (pk da k (2) 
B 

with H(k) acting in t ~2 defined by 

(H(k) q~k) q) = ((T(k) + V(k)) ~o k) q) =j2 ~pk(j) + ~ V3_q cpk(q), 
q~Fk 

(7(k) ~)  q) =/~( j ) ,  j ~ F~. 
(31 



Scattering from Impurities 337 

A study of the spectral properties of H is then effected by a study of 
those of H(k). 

In [1 lJ, it is shown that the operators ( z -  T(k))- 1 and V(k) ( z -  T(k))- 1 
are Hilbert-Schmidt for z not in the spectrum of T(k). Also, the resolvent 
R(z, H(k)) = (z - H(k))-i  = (z - T(k))-l. (t - V(k) (z - T(k)) 1)-1 is Hil- 
bert-Schmidt for z not in the spectrum of H(k). The spectrum of H(k) 
consists of (real) isolated points of finite multiplicity. Given any R 6 IR, 
only a finite number of eigenvalues of H(k) are less than R. 

Let Uk:(~ ~ fg k ~ B be the unitary map defined by 

(Uk q~k) q)= q)kq + k), j s r . (4) 

Then we can define the operator Hk(O) acting in y2 to be 

Hk(O) = UkH(k ) Uk 1 = H(O) + 2k.  P + k 2 (5) 
with 

(P~0°) (j) =ji  q~° q), i = l , 2 , 3 ,  j ~ F .  (6) 

Hk(O) is thus unitarily equivalent to H(k). Although Hk(O) was defined 
for k ~ B, we can extend the definition of Hk(O) in k throughout the 
complex plane (I; 3 by the right hand side of (5). Because the domain 
~(Hk(O)) = ~(H(0)) = ~(T(0)) = N0 is independent of k and Hk(o) ~o ° is 
a holomorphic function of k for ~o°E ~o [Hk(0) is a closed operator 
which is self adjoint for k real], it follows that Hk(O) is a self adjoint 
type A holomorphic family in each of the variables ki, i = 1, 2, 3 ([2], 
pp. 375, 385). We elaborate on the analytic behavior of the eigenvalues 
of Hk(0) as functions of k. Assume that coordinates are chosen so that 
the k3-direction is perpendicular to one of the faces of the Brillouin 
zone B. 

Lemma 1. Let kl, k 2 be held constant and real. Then each eigenvalue 
2,(k) of Hk(O) and its corresponding projection pk(o), regarded as func- 
tions of  k 3, may be taken to be hotomorphic in a neighborhood of the real 
axis. 2,(k) is not constant as a function of k 3. ({n} is a numbering of the 
eigenvalues, including degeneracies.) 

Proof. A proof of the holomorphy of the 2,'s is given in [8]. We 
remark that the holomorphy of the eigenvalues and projections is a 
consequence of Hk(O) being a self adjoint type A hotomorphic family 
with compact resolvent ([2], p. 392). Finally, suppose to the contrary 
that 2,(k)= 2, is constant in k3, for some kl, k 2 and n. Let Tk(O) acting 
in f~ be defined by Tk(O) (0 ° = (T(0) + 2k- P + k 2) (po (po E ~@o. Set 
D = {k a etET(2,-  Tk(0)) -1 is bounded}. Since 

( 2 .  - Hk(O)) -1 = ( 2 .  - -  Tk(o)) -1 ( t  - -  V ( 0 )  ( 2 .  - -  T k ( 0 ) )  1 ) - 1  
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is not bounded for k 3 in a neighborhood N of the real line, 1 must be 
an eigenvalue of the compact operator V(0)(2,-Tk(0)) - 1 for k3 in Nc~D 
and hence throughout D ([2], Theorem t.9, p. 370). But this is impossi- 
ble; for ]imka] sufficiently large, and rek3 so that inf l rek3+j3]>0 

j E F, we obtain tJ V(0) ( 2 , -  Tk(0))-~lj < t. In particular, the Hilbert- 
Schmidt norm of this operator may be made arbitrarily small, lira k3r~ oQ. 
(See Lemma A- 1 of the Appendix.) [] 

Remark. Although the 2,'s can be chosen holomorphic in any one of 
the variables k~, they will not in general be single valued as a function 
of all three variables k~. Typically, there will be curves running through B 
such that 2,(k) wilt experience a discontinuity as k passes in a loop about 
a curve. Hence the labeling {n} of the eigenvalues will be discontinuous. 
For the sake of definiteness, choose 2,(k~, k 2, k3) to be an analytic con- 
tinuation in k 3 of 2,(lq, k2,0), where the 2,(lq, k2, 0) are ordered according 
to magnitude. 

Lemma 2. Let Bx = {k ~ B I2 is an eigenvalue Of H(k)}. Then I~(Bx) = 0 
where l ~ is Lebesgue measure in B. 

Proof. Equivalently, B~= {k ~BI2 is an eigenvalue of Hk(0)}. Let 
q ~ ~gB~, the complement of B;~ in B. For some e > 0, 2 will not be an 
eigenvalue of Hk(0), I k -  qt < e; hence cgB~. is open and B;~ is closed. Thus 
B~. is measurable. Let f(k) be its characteristic function. Then by Fubini's 
theorem ([12], p. 190), we have #(B~) = ~ f (k)  dk 3 dk~ d k  2 s o  that/~(B~) = 0 

B 
if ~f(k) dk 3 =V(k~o k2)=0. But F(k~,kz)= ~ dk3 where S(k~,k2) 

S(kl,k2) 
= {kalA is an eigenvalue of Hk(0)} = {k312-2 , (k)=0 for some n}. 
(Only a finite number of 2~'s need be considered since for n sufficiently 
large 2, > 2 + 1. See Lemma A-2 of the appendix.) Thus by Lemma 1, 
S(kl, k2) is the zero set of a finite number of non-constant holomorphic 
functions in k3, which clearly has measure zero. [] 

Although the proof that H has no normalizable eigenfunctions is 
contained implicitly in the proof of Theorem 2 below, it is easy to give 
a separate proof of that fact here. 

Theorem 1. The spectrum of H is pure continuous. 

(9 

Proof. Let (H - 2) (p = .((H(k) - )~) q0kd a k = 0. Then (H(k) - 2) ~0 k = 0 
B 

almost everywhere in B. (pk vanishes almost everywhere for k ~ CgBx. On 
the other hand, by Lemma 2 /~(Bx)=0 implying ~0 k = 0  a.e. in B. [] 

We next prove that the continuous spectrum of H contains no 
singular continuous part. 
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Theorem 2. The spectrum of H is absolutely continuous. 

Proof. It suffices to show that (q~(z-H)- lq)}  has continuous 
boundary values in z as z approaches any bounded interval I of the 
real axis, for ~p in some dense set @z C ~ .  In this case, the quantity 

t 
2hi !i:~mo {(q)(2 - is - H) - t  q)) - (q)(2 + is - H) -1 (p)} is continuous in 

2 ~ IR. But this limit is just the Radon-Nikodym derivative of (~oE(2) (p} 
with respect to Lebesgue measure, where E(;[) is the spectral family of/4. 
This shows that the spectral family E(2) is absolutely continuous in ! 
and, since I is arbitrary, in the entire real line ([2], Chapter 10). 

Let @0 consist of finite linear combinations of the function 
~o=e -p~2-p22-p~2 and its translates in ~=LZ(IR3). ~o is dense in ~ .  
It is clear that (p rk ~ ~2k if q) ~ ~0 If q ~ I~ 3 and (p e ~0, (Pq(P) = q)(q + P) ] 
E L2(IR 3) and qoqk= q)(p + q)lr~ E (k 2. Note also that if ~k~ ~k2, (~k, (pqk}k 
will be holomorphic in q ~ (E 3. The function 

( q)k, P.(k) (pk}k = ( Uk ~O k, Uk P.(k) Uk - ~ Uk ~Ok}o 

= (Uk~o k, P,k(O), Ukgk)o ~o ~ ~o,  

regarded as a function of k3, will have a holomorphic continuation in 
a neighborhood of the real axis since both P,,k(0) and Ukq) k are 
holomorphic. 

Next we define NI. Let I be a bounded interval. There exists a finite 
N > 0 such that if n > N, dist (2,(k), I) > t for all k E B. (See Lemma A-2 
of the Appendix.) Then we set J¢~ = Fr No where Ff is a bounded positive 
symmetric operator defined by 

g(k) f i  F~ q) = ! N(kl ' k2 ) 2i(k) (pkd3 k (7) 

where g(k) is a C 2 function, 0 < ~ < 1, which is non-zero at every interior 
point of B and vanishes on the boundary ~B. N(k~,k2) is just a nor- 
malization defined by 

N ( k ~ ,  k2) = ..~= 1 + i=0 S --~3 + SUPk3 
k~B k~B 

k~B 

N(kt, k2) -~ will be piecewise continuous and non-vanishing in B. Since 

g(k) ~c~- )~i vanishes only on a set of measure zero, F~ ~0 + 0 for 
i=1 
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(p #: O. The normalization insures that F I is bounded. Finally, if ~ # 0 is 
in ~ ,  <~p, Ficp)= <F~,  (p) # 0 for some ~0 ~ 9o which implies ~i = F i fo  
is dense in o~. 

Let z lie in the resolvent set of/4. For any ~0 e :~, we have 

Qp(z - H) -I ~o) = .f ~ (q)k P"(k) (ok) 
B , Z-- 2.(k) d3k 
N 

,=1 , z-2.(k) , ,>N z-,~.(k) 
The latter term will be a bounded analytic function of z in a neighborhood 
of L since dist (2,, I) > t for n > N. It only remains to show that the first 
term has continuous boundary values in z for q~ = Fxq) o E NI, i.e. ~0o ~ ~@o. 
But the first term is just 

J(z)= ~ S d~k 
QpkPff!Cpk> 

, , z -  2dk) 

d3kg2(k) (~  0 )4 (q)~ P.(k) p~> 
=~, ! N2(kl, k2) - i=I ~ 2i z-J.n(k) 

(9) 
N d 3 k  c~ 

= ~  ! N2(kl, k2 ) ln(z-2,(k)) Dk3 

) 

where we have integrated by parts in k3, and used the fact that g = 0 on 
c?B. Integrating by parts once more in k3, we obtain 

N d3k c3 
J(z)= ~ ! N2(kl, k~) ( z -  2.) c3k3 

• {In(z--2.) [(¢3~-~ G . ) ( - ~ k  3 2,)2+3G, (~k3 2 . ) (~@3 2 2.)]} 

(lo) 

"{(~k3-G,) ( ~  2,)2+3G, (3@3 2 , ) ( 0 ~ 2  2,)} 

where 

G(k)=d(k) ~,.[I ~ , ( k )  <~oo~P.(k)~J>. 01) 
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In this form it is clear that J(z) will have continuous boundary values 
as z ~ L The normalization function was constructed to keep the inte- 
grand of the right hand side of (10) bounded. Hence we have the 
theorem. [] 

HI. Scattering Theory 

Let H~ = -  A + V(x)+ W(x) act in ~ = L2(IR 3) with V(x) again a 
real periodic function of x, square integrable over a unit cell, and W(x) 
a real valued function of x satisfying the conditions of the theorem 
below. W(x) is just the potential due to the impurity. H is the "free" 
Hamiltonian, H = - A + V(x). 

Theorem 3. Let W be relatively compact with respect to - A  and 
assume tW[~(1-A)  -1 is Hilbert-Schmidt. Then the wave operators 
~4: (Hw, H) exist and are complete, i.e. the range off2+_ is the absolutely 
continuous subspace with respect to H w. The domain of Q+ is ~ .  

Proof. Let 2 be a point below the spectrum of H. We have in the 
momentum representation that 

(1 - A ) ( 4 -  m -1 = .[ (~ + T ( k ) ) ( ~  - T(k) )  -1  (t - V ( k ) ( 4 -  T ( k ) ) - l )  -1  d 3 k 
B 

is bounded. Therefore W ( 2 - H )  -1 = W ( 1 - A ) - I ( I - A ) ( 2 - H )  1 is 
compact. Similarly I W I ~ ( 2 - H )  -~ is Hilbert-Schmidt. By ([2], Theo- 
rem 4.9, p. 545) the wave operators exist and are complete. The domain 
of ~_+ is the absolutely continuous subspace of ~f  with respect to /4 ,  
hence by Theorems 1 and 2, all of ~ .  

Remark. Perturbations satisfying Theorem 3 include W(x)~ L 1 OR 3) 
c~L2(IR 2) ([2], p. 546). A theorem for such perturbations has been given 
by Lenahan [12], but with the periodic potential fiV(x) assumed 
bounded, and the coupling constant fl not assuming supposed excep- 
tional values. Results on existence of wave operators have been shown 
for a broader class of perturbations W(x) [-12]. These results can 
probably be extended further [3, 4], but the main point here has been 
to establish the appropriate spectral properties for the unperturbed 
Hamiltonian H. 

Appendix 

We first prove a lemma needed for Lemma 1 of Section II. 

Lemma A-1. For appropriate choice of rek3, the Hilbert-Schmidt norm 
of V(O) (2 - Tk(0)) -1 tends to zero, [imk3] tendin9 towards oo. 
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Pro@ The Hilbert-Schmidt norm S(k) is given by 

S(k) = - ( q  + _ ( q  + 
p,qeF 

= v 2 ~ ( ( 2 - ( q + r e k ) Z + ( i m k ) 2 ) z + 4 ( i m k . ( q + r e k ) ) 2 )  -1, q ~ F  
qsF 

where k points in the k3-direction. Fix rek so that Iq3 + rek31 does not 
vanish, q ~ F. (Recall that the k3-direction was chosen perpendicular to 
a Brillouin zone face.) Then for some finite M > 0 independent of im k3, 

((), _ q2 + (im k)2)2 + 4(imk. q)2)-1 

< M((q 2 - (imk)2) 2 + 4(imk. q)Z + (imk)2)-l, q ~ F, ek. 

But this latter term is in turn uniformly bounded in q ~ F~ek and rimk[ ~ 1 
by N(((q + r) 2-(imk)2) 2 +4( imk.  (q + r)) 2 + (imk)2) -1 for some finite 
N > 0, r e B. In short, for this choice of re k3 and Iimk31 > 1, 

S(k) < const .i d3p((P 2 - (ira k)2) 2 + 4(p. imk) 2 + (ira k)2) -~ 
~3 

1 co 

= const .( d# S pZdp((P 2 - ( i m  k)2) 2 + 4pZ(imk)2/~a + (imk)2) -1 
- 1  0 

in spherical coordinates. The p integration can be done explicitly by 
making the substitution of variables x = p2, extending the contour of 
integration to ( - c o ,  ~ )  (the integrand will be pure imaginary x < 0), 
and then performing the integral by contour integration techniques. 
One obtains 

• 4 ± ((lmk)2 (1 - 2p 2) + i((imk) 2 + 4(ira k)4 (p 2 - /~  ) )@ 
S(k) < const re -1'I d/~ ((ira k) 2 + 4(ira k) 4 (l~ 2 -/~4))-~ 

The integrand of the right hand side is uniformly bounded and goes to 
zero ]imk[ ~ ~ for almost all/~. Hence by the Lebesgue dominated con- 
vergence theorem ([13], p. 151), S(k)~Olimkt--+~. [] 

Finally, we prove a remark made in the proof of absolute continuity 
for the spectrum of/4. (See the remark following the proof of Lemma 1, 
regarding the numbering of the eigenvalues 2,(k).) 

Lemma A-2. Given any 2 > O, there exists an N such that if n > N; 
;~,(k) > ;~. 

Proof. The proof of this lemma reduces to showing that if N is chosen 
large enough, a continuation ,~,(k) of 2,(0) to k0 ~B along a straight 
line { in B satisfies 2,(k) > 2, n > N, k e L We have an estimate of the form 

c~ oo ~7-Hk(O) <a(b) Ilqo°]l + bllHk(0)~o°ll 9 ° ~ (  2, k ~ n  and where 
o~c i 
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b > 0 may be taken arbitrarily small [t t]. But this estimate implies that 

- 2,(0)1 _-< ~-(a(b) + b2,(0))(e b l k ° l  - -  1) ([2], Theorem 3.6, p. 391). 
1 

I,~.(k) 

Choose b so that (e bd- 1)=~ where d =  sup lk]. Then I,~,(k)-2.(0)l 
a(b) k ~  

< ½ --if-- + ½2,(0). But if N is large enough, i.e. 2,(0) large enough, it is 

clear that 2,(k) > L [ ]  
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