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Abstract. The conditional entropy between two states of a quantum system is shown 
to be nonincreasing when a complete measurement is performed on the system. The 
information between two quantum systems is defined and is shown to be bounded above 
by the logarithmic correlation. This inequality is then applied to the measurement process. 
The entropy changes in the observed system and the measuring apparatus are compared 
with the information gain in the measurement. 

1. Introduction 

The object of this paper  is to discuss the measurement process in 
quantum theory using the concepts of information and entropy. The 
starting point is a model of the measurement process introduced by 
von Neumann  [ t ]  which treats both the system to be observed (S) and 
the measuring instrument (M) as finite quantum systems. The aim is 
to obtain relations between the information obtained in the measurement 
and the entropy changes in S and M. 

In § 2 the fundamental  quantities of information, entropy and condi- 
tional entropy are introduced. The entropy used here is the statistical 
(or Gibbs')  entropy, which cannot, in general, be identified with the 
thermodynamic entropy. The further development is based on an 
inequality for the conditional entropy which says that the conditional 
entropy is nonincreasing when a complete measurement is performed 
on the system (§ 3). The inequality is believed to hold also under a 
general measurement,  and this conjecture can be shown to be equivalent 
to the conjecture that the entropy for a quasilocal quantum system is 
strongly subadditive [2]. The information between two subsystems of 
a quantum systems in a given state is defined, and from the inequality 
above it is proved to be bounded above by the logarithmic correlation 
(§ 4). This result is applied to the measurement process. If  the system 
S +  M is closed, then the time evolution is a unitary transformation 
and the total entropy is conserved. Under the assumption that any 
eigenstate of the observable to be measured is conserved under the 
interaction of S and M, it is proved that the entropy of M increases 
by at least as much as the information gained during the measurement 
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(§ 6). Furthermore we consider the entropy change in S during the 
interaction and the reduction in the entropy of S that can be achieved 
by using the information contained in M. We then have a quantum- 
mechanical analogue of Szilard's discussion of Maxwell's demon where 
he argues for the identification of entropy with lack of information 
[3-6], but the entropy concept considered there is the thermodynamic 
entropy and consequently he has to postulate the nondecrease of entropy. 
Szilard's argument has the weakness that it does not keep within the 
bounds of thermodynamics, and therefore it has been criticized for 
using procedures not allowed in that theory [7]. In order to beat the 
second law of thermodynamics the demon tries to use the fluctuations 
inherent in the picture of equilibrium in statistical mechanics. The 
argument goes roughly like this! local fluctuations always take place, 
but due to their random character it is impossible to exPlOit them in 
order to obtain macroscopic violations of the second law. If, however, 
our information on the microstate could be increased, such a process 
would become feasible unless the entropy of the measuring instrument 
increased by a corresponding amount. There are several difficulties in 
this argument. First, fluctuations are difficult to include in classical 
thermodynamics so one must use statistical mechanics. Secondly, 
Szilard has to identify the thermodynamic and statistical entropies for a 
simple system (a one-molecule gas in a box). This identification cannot 
be general as we have already stated, especially it does not hold for the 
measuring instrument as will be discussed further in § 8. Finally, in 
classical statistical mechanics even the statistical entropy is not uniquely 
defined. In fact the microstate of a classical system may be defined with 
arbitrary precision, hence an infinite amount of information may be 
obtained about it, and it is then necessary to consider states with negative 
entropy. For an ideal gas it is necessary to introduce ad hoc minimal 
phase space cells of volume h 3, which define the maximal information 
that can be obtained about the system. This points to the conclusion 
that quantum theory is the best framework for a discussion of the 
relation between statistical entropy and information. 

Attempts have been made before to adapt the concept of information 
to quantum theory in general [8, 9] and the measurement process in 
particular [10], but as far as we know the fundamental inequalities in 
§ 3 and 4 are new. 

2. Formalism 

The set of observables (9 will be the bounded self-adjoint operators 
with discrete spectra in a Hilbert space iF. The set of normal states 5 p 
are then the density operators i.e. positive operators of trace 1. Let A 
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be an observable with spectrum {ak} and eigenspaces defined by pro- 
jectors Pk- When A is measured on the system in the state W by a classical 
apparatus, the value ak is obtained with probability pk=TrPkW and 
after obtaining a k the state of the system is W/, = p~ 1P k W P k. 

Averaging over all possible outcomes of the experiment gives the 
state 

w'= Xp~W;,= XI'kWPk, 

i.e. a mixture of states in each of which A has a definite value. Note that 
W' gives the same expectations as W for all observables commuting 
with A, and we can therefore call this a minimum-disturbance measure- 
ment [I1].  We call the measurement (and the observable A) complete 
if the Pk are one-dimensional. 

The map T A : W + W '  extended to ~(J¢~) is a special case of an 
expectation in the operator algebra ~(o~) i.e. a linear map from N(ovf) 
into a yon Neumann subalgebra satisfying [12, 13] T I = I  where I is 
the identity operator 

T(A" TB) = TA.  TB for all A,B s ~ ( - ~ ) .  

It then follows that T is idempotent and positive. In this special case 
we have furthermore that T is tracepreserving (Tr TA = TrA), hence it 
maps states into states. 

The entropy of a state W is defined as 

S ( W ) = - T r W l o g W  if W l o g W  is of t racec lass  

= + oo otherwise. 

The entropy functional satisfies the following inequalities. Let W~ E 5 p, 
2~ > 0, £ ~i = 1 and s{2i} = - Y. 2~ log2i. Then 

S(Z 2~ l#}) > 2; 2~S(W~) (2.1) 

(concavity) with equality iff all W~ are equal, 

s(x ,~i vii) 6 x ~is(w3 + s{~,} (2.2) 

(subadditivity) with equality iff W~ ~ = 0 for i 4@ 

S( W) <= S( T A W) <= S( W) + s {pk} (2.3) 

where the first equality holds iff T A W = W and the second iffS(W£) = S(W) 
for all k. For  proofs see [14-16].  The conditional entropy between two 
states is given by 

S(Wt[ W2) = Tr(W1 logW1 - W 1 log We). 
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This formal expression will be interpreted in the following way: if A, B 
are positive trace class operators with complete orthonormal sets of 
eigenvectors {lai)} and {Ibj)} define 

S(A t B) = ~ I(ail bj)l 2 (ai log ai - ai log bj + bj - ai) 
i,j 

= Z (ail(A logA - A  logB + B  - A ) l a i )  

= X (bj[(A l o g A - A  l o g B + B - A ) f b j ) .  

From the convexity of x logx follows that the terms of the first sum are 
nonnegative [t4]. The sum is then welldefined (eventually infinite) and 
the order of summation is irrelevant. Furthermore the definition is 
independent of the choice of eigenvectors when A, B have degenerate 
spectra [17]. Consequently the two other expressions are obtained by 
summation over i or j. 

In order that S(WIIW2)< oo it is necessary that Pw1 <= Pw2 where 
Pw = supp W is the support projection of W (we will write this as W 1 < W2). 
From the definition follows that 

S(Wa I W2) >_- 0 (2.4) 

with equality iff W 1 = W z [15]. If 2 W I < W  2 for some 2e(0,  1) then 
S ( W l l W 2 ) < - l o g 2  from the operator monotony of logx [18]. If 
W = 2 21 W~ then 

s ( w )  = x ;~is(w3+ x )~s (~ l  w)  

which gives (2.1) and (2.2). If T is a trace-preserving expectation then 
W < T W  [8] and 

S(T W) = S(W) + S(WI T W) 

i.e. T is entropy-increasing. 
The uncertainty of A e (9 in the state W is defined as the entropy 

of the probability distribution {Pk} obtained in a measurement of A: 

H(A, W) = S{Pk}. 

Let A, B e (9. We can then define the average uncertainty in B after A 
has been measured 

H(BIA, W)= X p~H(B, W~). 

If [A, B] = 0 then 

tt(B IA, W ) = H ( A ~ B ,  W ) -  H(A, W) , 
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where A w B is the observable obtained by measuring A and B simultane- 
ously. The information between commuting A and B is defined by (note 
the symmetry in A and B) 

I(BIA, W)= H(B, W ) -  tt(BIA, W) 

=H(A, W)+H(B, W) -H(AwB,  W). 

(The first expression works also for noncommuting A and B but the 
information is then not necessarily positive.) In case some of the terms 
in (2.5) are infinite the information is defined as follows: let {Pl}, {q j}, {rlj} 
be the probability distributions of A, B, and A •B, respectively, then 

I(BIA, W) = Z (rij log(ri/piq~) + Piqj- rij). 
t , J  

The following inequalities hold 

0 <= H(A, W) <= S(T A W) 

where the second equality holds if A is complete, 

X 2,H(A, W~) <= H(A, Z 2i W~) <= X ),,H(A, VVi) + s{2~} 

H(A, W)< H(AwB, W)~H(A, W)+ H(B, W) 

H(AiBwC, W)< H(AIB, W) 

O<=I(BIA, W)< H(A, W) 

I(A[B, W) < I(A [Bu C, W) (2.5) 

where A, B, C is a commuting set of observables. The proofs follow from 
the concavity and subadditivity properties of the function s{ } as in 
classical information theory [19]. 

3. A Fundamental Inequality 

Theorem 1. Let ml,  W 2 ~ ~ ,  W 1 < W 2 and let the expectation 
T: W ~ W ~ correspond to a complete measurement. Then 

s (w;  I w~) <= s (wl  I v~) . (3.1) 

The proof proceeds via a number of lemmas. 
Definition. An operator function f(x) is operator convex in an 

interval I if the operator inequality 

f(2A + (1 - 2)B) < 2f(A) + (1 - 2) f(B) 
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holds for 2 ~ (0, 1) and arbitrary self-adjoint A, B ~ N ( H )  with spectra 
in I [17]. 

From Theorem 3.3 and corollaries of [ 18] follows that f (x )  is operator 
convex in I = (x 0 - R, Xo + R) iff it can be represented there as a Stieltjes 
integral 

+ 1/R 

f (x )  = f(Xo) + (x - Xo) f'(Xo) + (x - Xo) 2 j (1 - t ( x -  Xo)) -1 dip(t) 
- 1 / R  

where ip(t) is a bounded nondecreasing function, continuous on the left. 

Lemma 1. x ~, e 6  [1, 2] and - l o g x  are operator convex in (0, ~) .  

Proof. x ~ satisfies the Stieltjes integral formula above with x o ---1, 
R = 1 and 

d t p = - r c  - l s i n ~ z c ( l + t ) ~ ( - t ) l - ~ d t  for t e ( - 1 ,  O) 

= 0  for t~(0,1)  

hence it is operator convex in (0, 2). Dilatation x ~ 2 x  gives operator 
convexity in (0, co). 

Derivation at ~ = 0 gives for f ( x ) =  - l o g x  

d i p = - t d t  for t ~ ( - l , 0 ) , = 0  for t~(0, t) 

and the same conclusion follows. 
Let A0, As be positive trace class operators, As <A0, {Ik)} an 

arbitrary complete orthonormal set in Jr. Put Aa=2A~ + ( 1 - 2 ) A  o, 
Pk = ]k) (k], A ' =  ~2 PkAPk and pk,~(A)=((kJA~lk)) ~/~. 

Lemma 2. pk,~(A ~) < 2 pk,~(A ~) + (1 -- 2)pk,~(A0) Jot ~ e [1, 23. 

Proof. Pk,~ convex *~{A; pk,~(A) ~ 1, A > 0} convex ~=~{A, p~,,~(A) < l, 
A > 0} convex .~ (kTA~lk) convex. 

But the convexity of (k lA~lk )  follows from Lemma 1. Note that 
equality holds for c~ = 1. 

L e m m a  3.  2 S(A'~ [A'~.) + ( t  - 2) S(A'o [A;.) <= 2 S(A 1 t A;) + (1 - 2) 
. S(AolAz). 

d 
Proof. ( k t A  l o g A I k )  ( k t A t k )  l o g ( k t A t k )  Pk,~(A)]~I = 

= ( k l A  logA - A '  logA'lk) .  
From Lemma 2 we obtain by derivation at c~ = 1 ; 

t t <~ (ktB~(Ao, A~)lk) = (klB;.(A o, A~)[k) 
where 

Bx(A o, A 1) = 2A1 logA1 + (1 - 2)A o logA o - Az logA¢. 
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Due to the operator convexity of x logx 1-20] Bz(A o, A1)~0, hence the 
trace of Bz is well defined and independent of the basis chosen [21] i.e. 

Tr Bz(A~, A'~) < Tr Bz(Ao, A 1) 

by summation over k. But 

B).(A o, A1) = 2(A 1 logA~ - A~ logAz + Az - A~) 

+ (1 - 2) (A o logA o - A o logA~ + A z - Ao). 

Calculating the trace in an eigenbasis of A z we obtain 

TrBz(Ao, A1) =)o S(A11A z) + (1 - 2) S(Ao l A z ) -  f (2) < s(2, 1 - 2). 

Lemma 4. lim 2-1 f(2)  = S(A a I Ao). 
),---~ 0 

Proof. First we note that 

lira S(A1 [Ax)= S(A~ ]Ao). 
2 ~ 0  

This follows from the definition of S(AaIA2) using an eigenbasis of A 1. 
In fact every finite partial sum 

9.(2) = ~ (ai l o g a i -  ai<aiIlogA.~lai> + <ailAxlai> - ai) 

is continuous in 2 = 0 : g . ( 0 ) = ~ ! m 9 , ( 2 )  as A1 <Ao. g, is convex in 2 

by the operator concavity of logx and {g,(2)} form a monotonely 
increasing sequence, g,(2)--, 9(2) = S(A 1 [A~), hence by a simple argument 
l img(2)=g(0) .  In the same way S(A o l A ~ ) ~ S ( A o t A o ) = O  and 

f(2) --. f(0)  = 0. 
From the convexity of x logx follows that f(2) is concave, hence 

2-1 f(2)  is monotonely increasing when 2 --~0 and lira 2-1 f(2) is uniquely 

defined. Then l i r a (2 -1_  1)S(AolA~. ) >0  also exists and obviously 

lira2-1 f(2)  > S(A 1 ]Ao), 

If S(AllAo) = oe the lemma holds, if not then we can write 

f(2)  = 2 S(A~ [Ao)-S(A~.IAo) 

using an eigenbasis of A o in calculating the trace. Hence 

lim 2-1 f(2)  = S(A 1 [ A o) - lim 2-1 S(A z [ Ao) < S(A i I Ao), 

consequently lira2-1 f(2)  = S(A ~ ]A0). 
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Proof of Theorem 1. Dividing by 2 in Lemma 3 and taking the limit 
2 ~ 0  gives by Lemma 4 S(A' 1 I A~)) < S(A ~ ]Ao) which proves the theorem. 
In analogy with the classical case [8, 22] it is natural to make the following 
hypothesis. 

Conjecture. If W1, W 2 ~ ~ W I < W2, and if T: W ~  Z Pk WPg 
corresponds to an arbitrary measurement then 

S(TWilTW2) <-_ S(W~ t W2). (3.2) 

It turns out that this inequality is equivalent to the property of strong 
subadditivity for the entropy of a quasilocal system. This property has 
been conjectured to be valid for quantum systems [2, 17] a. A proof of 
the equivalence will be published elsewhere. 

Remark. From the proofs of Lemmas 3 and 4 follows that we can 
define an operator conditional entropy. 

Definition. Sop(A i IAo)= l im2-1Bi(A o, A1) where the limit exists if 
, ~ 0  

S(A 1 [A0) < oo. 
From the operator convexity of x logx follows that 2-~B),(Ao, A1) 

is monotonely increasing when 2 ~ 0. Furthermore 

2-  ~ Bx(Ao, A~) < 2 -1 Tr(Bz(Ao, A~))" I < S(Aa IAo)" I 

hence the limit exists and 2-  j B~.(A o, A l ) ~  Sop( A l lAo) strongly (Lemma 1 
of [23]). 

4. Correlation and Information 

Consider a system made up of two subsystems such that Yf = ~f~ ® ~ 2 "  

From the state W of the whole system we define the partial states for the 
subsystems 

W 1 = Tr 2 W, W 2 = Tr i W. 

The corresponding entropies satisfy the inequalities [17] 

IS(W1) - S(W2)l =< S(W) <: S(W1) + S(W2) . 

The logarithmic correlation between the subsystems is defined as 

C12(W) = S(WI Wl ® W2). 

From (2.4) follows that 

C~2(W)=0 iff W = W i ® W 2 .  (4.1) 

After the completion of the manuscript a proof was announced by Lieb, E.H., 
Ruskai, M.B., in: Phys. Rev. Letters 30, 434 (t973). 
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We note that W <  Wt®Wz. In fact Pw~w~=Pw~®Pw~, hence 

0 < Tr(I - Pwl ® Pw2) W = - Tr(I - Pwl) ®(I - Pw2) W < 0 

~(I - Pw~®w2) W = O ~ ( I -  Pw,®w~)Pw=O~ Pw < Pw~®w~ . 

If S(W) < oe we can write 

G d w )  = s (w~  ® w2) - s ( w )  = s ( w o  + s ( w ~ )  - s ( w )  . 

It then follows that 

O< C12(W) < 2 miniS(W3 

S(WO=O~S(W)=S(W2), C12(W)=0 and W=W~®W2. (4.2) 

Define the information between the two subsystems in the state W as 

I12(W)=supA,nI(A[B, W), A t  (9(~), BE C(,~2). 

Theorem 2. 112 (W)<  C12(W ) . (4.3) 

Proof. From (2.5) follows that it is sufficient to take the supremum 
over A, B complete in •1 and ~2,  respectively. For such A, B 

I(AIB, W)=S(TA TBWI T~ W~ ® TBW2)=S(TA TBWI TA TBWI ® W2). 

As TA T, corresponds to a complete measurement in ~ ,  it follows from 
Theorem 1 that 

S( TA T. W ITA G W1 ® We) <= S( W I W~ ® W2) = G d W) 

and the theorem is proved. 
In general it is necessary to use observables not of tensor product 

form to detect the total correlation C12(W), which implies an interaction 
between the subsystems. If we consider the physically realizable ob- 
servables for separated subsystems to be those of tensor product form, 
then we can call I~2 the measurable correlation which is thus always less 
than C12. In the opposite direction we have the following easy result. 

Proposition 1. 112 (W) = 0 ~ C 12 (W) = O. 

Proof. I12(W)=O=::>C12(TATBW).~-O for all complete A~(9(~¢~), 
Be(9(d/fz). Hence by (4.1) TATBW=TaWI®T~W 2. If {Ik)}, {[/)} are 
arbitrary complete orthonormal systems in )Yl and ~(¢'2, respectively, 
then the equality reads (k, 1[ WIk, I) = (k[ W1 Ik) (11 W211). By polariza- 
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tion we obtain <k, II Wlk' ,  1'> = <kJ W11k'> <ll W2[l'> and for arbitrary 
~ e ~  <tp lWlg '>=(~plW~®W21~p>,  hence W = W I ® W 2  and 
CI:(W)=O. 

5. The Measurement Process 

Consider the following model of the measurement process. The 
system S as well as the apparatus M are described as quantum systems 
with Hilbert spaces ~fl and .3f 2 respectively. Before the interaction the 
two systems are supposed to be uncorrelated i.e. W = Wt ® W 2. As the 
total system S + M is taken to be closed, its time development during the 
interaction is given by a unitary operator in 24f = ~1 ® Jr2 : 

W - ,  W' = U WI ® W2 U+ . 

We will call this interaction a perfect measurement ofA = 22 akP k ~ C(Yfl) 
if the following two conditions are satisfied: 

(a) W ~ = T r 2 W ' =  TAW~= EPkW~Pk 

i.e. the reduced state of S is that after a measurement of A by a classical 
apparatus, 

(b) infnH(A[B, W ' ) = 0 ,  B e  (9(3(f2) or equivalently 

supBI(AIB, W') = tf(A, VV~) = s{pk} 

i.e. complete information on A is obtainable by a measurement on M. 
Note that the preceding conditions in general only hold for some special 
choice of W 2. Apart from this we want to make no more a priori assump- 
tions on M. 

The transformation W1-0 E Pk WI Pk can be viewed as a loss of the 
information contained in the nondiagonal terms Pk W1Pk,, k4: k', in 
W1 = ~ Pk W1 Pk', or, equivalently, as an averaging over the relative 

k,k' 

phases between the subspaces PkY( 1. In fact [13] 

y~ e~ w, Pk= JN(v wl v +) 

where ~ denotes the invariant mean over the abelian group of unitary 
operators in the yon Neumann algebra generated by the projectors Pk. 
We now consider a more general process where the relative phases are 
not completely lost: The interaction is called an imperfect measurement 
of A if the following condition is satisfied 

(c) W~ = W1 for all W 1 such that TA W1 = W1, i.e. every eigenstate 
of A is mapped onto itself. 
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We will see below that (b) and (c) imply (a), so in the general case (c) 
we will have only partial information on A by measurements on M 
(obviously (a) ~ (c)). 

We want to show that (c) implies that W~ is independent of the relative 
phases present in Wp 

Lemma 5. I f  (c) is satisfied, then W~ =- Tr 1 (U W 1 ® W2 U +) 
= T r ( U T A W I ® W 2 U + ) = T r ( U V W ~  V+ ®W2 U+) for all unitary V 
generated by {Pk}" 

Proof. Put W/, k, = U Pk W1 Pk' ® W2 U +. Then, by (c) Tr 2 W[, k = Pk W1 Pk, 
hence Tr(Pk,®I" W~k) = 0  for k4:k'  i.e. Pk,®IW[,k=O for k+k' .  But 

vG, vr;,,~= uPkw, P,,W,P,®W~U + <__ uP~w,&,w,&®w2 u + <-_ w ~  

where we have used that W2__< W for W~ S and that W P W <  W z for 
any projection P. Hence 

Pk,,®IW/,k,=O for k=t=k" 
and 

TAW'= X & ® I W ' P k ® X =  X Wik= U TA WI® W2U + 

W~ = T r  1 W ' = T r  1 T A W ' = T r  1 U T A W I ® W  2 U + . 

If V is generated by {Pk} then T A V W  1 V + = T A W 1 and the lemma follows. 
Remarks. 1) T A W' is the state obtained when A is measured by a 

classical apparatus M 1 after the interaction of S and M. The partial state 
1¥~ is unchanged by the interaction with M 1 . The lemma says that it is 
impossible to get information on the relative phases in W~ by making 
a measurement on M and simultaneously making a measurement of 
A onS .  

2) The lemma implies that in order to calculate the state of M after 
the interaction (and hence the entropy) we can replace W 1 by TA Wl. 

Lemma 6. Let W~ be an eigenstate of A with eigenvalue ak i.e. 
Pk I4~ = W1. Then (c) implies that W ' =  ~{] ® W~k where W~k depends 
only on k. 

Proof. In the proof of Lemma 5, replace {Pk} by any complete set 
of projectors {Pk~} in P ~ ,  k fixed, and let V be any unitary operator 
in Pkg.  As the set of pure states is transitive under this group of unitaries 
and W~ = Tr(U V W1 V + ® W2 U+), W~ is the same for all pure states and 
thus by superposition for all states in PkYf. Consequently W~ = W~k 
is a function only of k. If W~ is a pure state we must have by (4.2) 
W ' =  W1 ® W~k and by superposition this holds for all W 1 belonging 
to the eigenvalue ak. 
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Corollary. T A W'= 2 Pk W1Pk® W~k for arbitrary W1. 

Lemma 7. I f  the W~k are orthogonal then Wi= E Pk W1Pk i,e. the 
measurement satisfies condition (a). 

Proof. If Qk = supp 14~ k then Qk" Q~ = 0 for k + k'. From the proof of 
Lemma 5 and from Lemma 6 

W~k, W~,k < W~= Pk W~ P,® W~, 

hence I @ Qk"" W~k, = 0 for k + k" and 

W~ = Tr2  W ' = T r 2  EI@QkW' I®Qk=Trz  Z Wig= ZPkW1Pk. 

6. Entropy Increase in the Apparatus 

Define the information content in M on the observable A in the final 
state W' for S + M as 

12 (A, W') = sup~I(AiB, W'), B ~ (9(~2). 

As the probability distributions of A and B are invariant under 
W'~TAW'  we have I(AIB, W')=I(A]B, TAW'), hence 

I2(A, W')= I2(A, T A W') < I12(T a W') . 

Assume that the entropies appearing below are finite. 

Proposition 2. I f  condition (c) is satisfied then 

I2(A, W') < S(W~) - S(W2). 

Proof. By the remarks after Lemma 5 we can replace the initial state 
Wa of S by TA W1. Then the final state of S is T A W1 by condition (c) and 
the final state of S + M is TAW' by Lemma 6. The unitary invariance 
of the entropy means that 

S(TA WO + S(W2) = S(TA W1) + S(W~) - CI2(TA W') 

i.e. S(W~) - S(W2) = CI2(TA W'). 
But from Theorem 2 

I2(A , W') <= I12(T A W') <= C~2(TA W') 

hence the statement is proved. 

Proposition 3. I f  conditions (b) and (c) are satisfied then 

S(Wj) - S(W2) = I2(A, W') = S{Pk} 

and furthermore condition (a) is satisjqed. 
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Proof. Put TA W1 = 22 pkW~k, then it follows from Lemma 6 that 

S(W~) - S(W2) = C12(T A W') = S(• Pk Wig) + S(W;) - S(Y~ Pk W[k@ W2k) 

= s ( w g -  22 pkS(W~k) = X p k S ( W ~ I  W g .  

For complete B E C(~¢'2) 

I(AIB, W') = H(B, W~) - Z pkH(B, W~,) = S(TB W~) - Z pkS(Ta W~k ) 

= EpkS(T,W~kl T,W~). 

From Theorem 1 we obtain (this is an alternative proof of Proposition 2) 

I(A[B, W') < S(W~) - S(W2) • 

If (b) is satisfied then S(W~) - S(W2) _-> S{pk}. But according to (2.2) 

s045)  - s ( w 9  = s ( w 9  - x p ~ S ( W ~ )  <_ s{p~} 

with equality iff {W~k } are mutually orthogonal. Hence the equality 
holds and from Lemma 7 follows that condition (a) is satisfied. 

Remark. Alternatively one can use Lemma 6 and the unitary in- 
variance of entropy to show that S(W~k)=S(W2). Hence S([;V2) 
= ZPkS(W~k) and S(W~)-S(W2)= EpkS(W;kl W2). 

It is natural to ask whether conversely condition (a) implies (b). 
This is not true in general. Let WE= Z2r]q~r)((Pri where {]Or)} are 
orthonormal. From Lemma 6 follows that W~k = Z 2,[(Pkr) (qOk~l where 
(q)krl (Pk'~') = 0  for r+-r' and all k, k'. A simple calculation gives 

W ' =  ~, 2¢Pk W~ Pk,®t~k~) (qgk,rl , 
(6.1) 

W;= E 2,.(q)k,~l~Okr) Pk W1Pk,. 

The condition W~ = T a W~ for all W~ is equivalent to 

Z 2~(q)k,~ [ q)k~) = 6~k,. 

This relation can be fulfilled without necessarily 

TrW;kW~k,=X,t~l(~0k,~l~0kr)12----0 for k + k '  

i.e. (~ov, [ q)k~) = 0 for k + k' and all r. 
This is easily seen e.g. when the number of different eigenvalues of A 

is finite. Consequently (b) need not be satisfied. 

7. Entropy Changes in the Object System 

We have already stated in (2.3) that for a perfect measurement the 
entropy of S is nondecreasing 

S(WO <= S( T A W1) . (7.1) 
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Furthermore, using the information contained in M about the state S 
we can reduce the average entropy of S to E pkS(W~'k). This is done 
by choosing for B an operator in (9(.~z) with the eigenprojectors Qk of 
Lemma 7. Then from Lemmas 6 and 7 

T B W ' •  EI®Q kW' I®Q k= EpkW;k®W~k, 

hence the state of S after measuring B and obtaining an eigenvatue bk 
(with probability Pk) is WI' k and the average entropy of S is Z Pk S(W~k). 
The average entropy decrease in S due to the measurement of B is then 
S(I/I~)- Z pkS(W;k), which is in fact positive by (2.3). From (2.3) it also 
follows that 

S(W~) - 2 pkS(W~k) < s{pk} = I2(A). (7.2) 

Equality holds only if W 1 = W~, hence the average entropy decrease in 
S is in general strictly less than the entropy increase in M, in spite of the 
fact that the process is reversible. The origin of this is of course the 
relative phases present in W1 and W' which are lost in the partial states 
W; and W~. In other words, W' contains an extra correlation 

C12(W') - C12(TA W') = S(T A W') - -  S ( W ' )  = S(TA WO - S(I/VO 

that does not contribute to the information when measuring pairs of 
observables A, B with the given choice of A. This extra correlation is 
of course the cause of the Einstein-Podolsky-Roscn "paradox" and is 
thus a typical quantum effect. 

The entropy increase property (7.1) is also easily proved for imperfect 
measurements. 

Prol~sition 4. I f  property (c) holds then S(W;)>__ S(W1). 

Proof (Compare [241). From (6.1) follows 

Tr WI' = Yr W 1 , 

TrW;2 = k~' ~ 2r(q~k'rlq)kr)zTrPkW1Pk'W1 

< • TrPkW1Pk'WI=TrW? • 
k,k' 

Hence the map T : H ~ W ;  satisfies IITW~Itl=II~I~II1 and IIT~II2 
"~ 1[ W1 I[ 2 ,  where [1W I[ p = (Tr WP) lip. 

From an interpolation theorem due to Kunze [25] follows that 

I{TW~IIv<IIW~tlp for pe[-1,2] .  

Hence Tr(TWOP<TrW~ for p e  [1, 2] with equality for p =  1. Differ- 
entiation at p = 1 gives S(TI4~])>S(t4~). 
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The analogue of (7.2) for imperfect measurements is probably true, 
but a proof seems to depend on the conjecture (3.2). From conservation 
of total entropy and the proof of Proposition 2 we have 

s ( w ; ) -  s ( w o  = c~2(w ' )  + s (w2)  - s (w~)  = c12 (w')- G2(TA W') . 

Let B be complete in (9(~fz) with eigenprojectors Q~ and put 

qlW~l=Trz(I®QiW'). 

Then simple calculations give 

S(WO- Z qtS(W;3 = C12(TB W') , 

I(AIB, W')= C12(TA T13W'). 

The average entropy of S when B has been measured on M is Z q~ S(W; 3 
and the average entropy decrease in S achieved through this measurement 
is 

S(W1) - E qiS(W~l) = C12(TA W') + CI2(T B W') - C12(W'). 

A simple rearrangement gives that the r.h.s, is equal to 

I(AIB, W') - S(W'[ Ta W') + S(T B W'I TB TA W'). 

If the conjecture (3.2) were proved we could conclude 
S(T, W'I TB TAW') < S(W'T TAW') and hence that 

that 

S(W1)- E qtS(W~) <__ I(A[B, W'). 

8. Discussion 

a) The following objection has been made to the scheme given in § 5 
[26, 27]. One can prove that the condition (c) can be satisfied only if A 
commutes with all additive conserved observables of S + M. Thus if S 
is a spin-½ system, A = % and if the total angular momentum of S + M 
commutes with U, then condition (c) cannot hold. By making M large 
in the sense that the expectation of j2 is large, it is nevertheless possible 
to realize the condition in an approximate manner [28]. 

This objection, however, does not make the results above irrelevant 
for the following reason. If we consider a Stern-Gerlach experiment which 
measures % then we are free to consider the static magnetic field as an 
external potential, i.e. as an additional term in the Hamiltonian of 
S + M. Hence it is not included in the apparatus M which then consists 
only of the counters detecting the particles. In this way the conservation 
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law is broken, but the time development of S + M is still unitary, which 
is all that is needed in § 5. 

b) We note that the conditions in § 5 imply an asymmetry between 
S and M and a special form of the final state W'. On the other hand the 
definition of information is symmetric, so one may be tempted to obtain 
a symmetric relation between the entropies of S and M. Consider therefore 
any interaction of S and M, and any B s O(J~'¢2). Then 

S(W1) - S ( W [ )  = S ( W ; )  - S(W2) - C1 2 ( W ' ) ,  

S(145') - Z qtS(W;l)  <- C 12(T B W') 

where ql, W~z are defined as in § 7. Hence 

S(W1) - X qtS(W;,)  < S ( W  0 - S(W;)  + CI2 (T  ~ W')  

= C~2(TB W')  - C12(W') + S(W~) - S(W2). 

If the conjecture (3.2) is correct, then we can conclude that 

S(WO - E qlS(W;,)  ~ S(W~) - S(W2) 

as well as the symmetric relation for any A ~ (9(Yf0: 

s ( w 2 ) -  x p~s(w~k) < s ( w ; ) -  s (wo  . 

c) From the results of the preceding paragraphs we may conclude that 
the relation between statistical entropy and information for quantum 
systems is satisfactory and would be even better if the conjecture (3.2) 
could be proved. The obvious question, however, is whether these results 
have anything to do with the second law of thermodynamics. Obviously 
this question applies equally to the classical discussions of Maxwell's 
demon mentioned in the introduction. 

The definition of entropy used above and the description of the 
measurement process do not differentiate between microscopic and 
macroscopic quantities. But the thermodynamic entropy Sth should be 
defined as a function of a few parameters of a macroscopic nature like 
temperature, density etc. Hence ifa state W is a superposition of states that 
correspond to different values of some macroscopic variable (like the 
state of a macroscopic instrument M after a measurement), an observa- 
tion that determines the macrostate (reading the instrument M) cannot 
decrease the thermodynamic entropy. As the average entropy of M after 
reading it is Z pkS(W~k ) =S(W2), the entropy increase S ( W ~ ) - S ( W 2 )  
cannot be given a thermodynamic interpretation. Furthermore, if we 
measure a macroscopic quantity on S an increase in Sth for M is not 
necessary in order to satisfy the entropy nondecrease property for S + M. 
Consequently any relation between information and Sth cannot be 
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general,  bu t  requires some way of defining the macroscopic  variables of 
the system. In  this connec t ion  the po in t  of view that the amplif icat ion 
process from the microscopic  to the macroscopic  level must  necessarily 
be an  irreversible process may be relevant [29]. Then  the init ial  state of 
M is at most  a quas iequi l ib r ium state, which then develops in some 
ergodic m a n n e r  towards  an  equi l ib r ium final state. In  fact if M is init ially 
in an equi l ib r ium state, the measurement  process could be considered 
as a microscopic  f luctuat ion (the state of S) growing spontaneous ly  to 
macroscopic  d imens ions  (the final state of M) which would be cont rary  
to the en t ropy  law. It  seems na tu ra l  to conjecture that  this amplif icat ion 

of in fo rmat ion  will always imply an  increase of Sth for M no t  less than  the 
in format ion  gain. 
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