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Abstract. A v-dimensional classical particle system in a torus, i.e., in a rectangular box 
with periodic boundary conditions, is considered in a canonical ensemble. Subject to mild 
restrictions over and above the usual stability and tempering conditions it is proved that 
the thermodynamic limit for the torus exists and is identical with that for systems contained 
in normal domains with boundaries or walls. If, in addition, the pair interaction potential 
q~(r) decreases sufficiently rapidly (so that rlq~(r)l is integrable at ao), and satisfies some 
further regularity conditions, then the difference between the free energies of the torus 
and of the corresponding box is at most of the order of a surface term, Somewhat stronger 
results are indicated for the grand canonical pressure. 

I. Introduction 

The canonical free energy density of a system, namely 

F ( ~ ) /  V (O)  = - pg(f i ,  ~o ; ~ )  , ( t .1)  

is calculated in statistical mechanics from the partition function according 
to the relation 

Z(fl, N, f~)= e v(a~0(e, .o;a~, (1.2) 

where fi= 1/kBT measures the reciprocal temperature, and N is the 
number of particles contained in the v-dimensional domain 9, of (gen- 
eralized) volume V(g?), which represents a physical container with hard 
impenetrable walls. The density is defined for integral N by 

e = N / V ( a ) ,  (1.3) 

but the definition of g(fi, O; ~2) may readily be extended to general values 
of 0 by linear interpolation (see Ref. [1]). We assume a particle Hamil- 
tonian of the standard form 

N 

J{% = E P 2/2/'/~ -}- UN(~'I '""  rn), (1.4) 
i=1 
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where the Pi and ri = (r~,l, ri,2 . . . .  r~,~) are the momentum and coordinate 
vectors of the ith particle and UN is the total interaction energy. Our 
considerations will extend straightforwardly to systems with a finite 
number of different species of particle but we omit this complication in 
the interests of simplicity. 

For a classical system one has 

Z(fl, N, f2) = Ar  ,N Q(fl, N, f2) (1,5) 

where the thermal De Broglie wavelength is, as usual, 

Ar  = (h2/2~zmkB T) ~ , (t.6) 

while the configuration integral is 

1 
Q(fi, N,£~)= ~ ~-- .~  exp[ - f lU ,v ( r l  . . . .  rN)Jd~rl,.. .d~ru. (1.7) 

Recently the asymptotic properties of the free energy density 9(fi, Q; £~) 
have been discussed [1-33 in the thermodynamic limit in which the 
volumes Vk = V(f2k) of an infinite sequence of domains £2 k increase with- 
out limit (while the corresponding densities ~k approach a finite limit Q, 
or, alternatively the interpolated density Q remains fixed). Provided the 
potentials satisfy both a stability condition, namely [t-33 

A Stability 

UN(rl, ... ru) > -- NwA (1.8) 

Jor all r I . . . .  r N and all N (wa < ~o) ; 

and B, a suitable tempering condition (see below), and provided that the 
shapes of the domains f2 k remain sufficiently regular as k---,oe (prin- 
cipally the "surface-to-volume" ratio must go to zero) [1, 3] it has been 
proved rigorously that the limit 

lim g(fl, O;Q3 = g~(fl, Q), (1.9) 
k ~ o o  

exists. Furthermore, the limiting flee energy function, g~(fl, ~o), Is unique 
being, in particular, independent of the details of the shapes of the O k . 
This result justifies the relationship between themaodynamics and statis- 
tical mechanics normally postulated for systems in "realistic" containers. 
For theoretical and numerical purposes, however, it is often very con- 
venient to suppose that the system is confined to a torus t7; that is to 
a rectangular domain or box A of sides L = (L1, ... Lv), so that 

r C A  <=> O<ri,~=<L ~ (e=  l, 2, .., v) , (1.10) 
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on which periodic boundary conditions are imposed. We defer a precise 
specification of the meaning of the term periodic boundary conditions to 
Section II. 

The main practical advantage of periodic boundary conditions is that 
they make all the properties of the system translationally invariant (on 
the torus). This eliminates explicit surface effects. It is hence expected 
that a 'periodic system' or torus/7 with a limited number of particles, N, 
will better approximate the properties of an infinite thermodynamic 
system than a system of N particles in a rigid walled container, A. Nearly 
all machine computations are thus carried out on periodic systems. 

Naturally it is a common belief that the free energy calculated for 
a torus with periodic boundary conditions will, in the thermodynamic 
limit 

L---,oo i.e.,  L ~  (all cQ, (1.tl) 

be identical with that calculated in the usual way for a sequence of 
~normal domains' with walls or boundaries. This has not, however, been 
proved nor, as far as we know, is it an obvious corollary of existing 
work. In this article we supply the missing proof by demonstrating that 
the canonical free energy of a torus, /7, is indeed asymptotically, the 
same as that of the corresponding box A (or other regular domain f~). 
Our proof applies to classical systems with only minor restrictions over 
and above those, like stability, normally required for the existence of 
the thermodynamic limit (see Section II) [1-3]. With minor modifica- 
tions it applies also to a partial torus in which periodic boundary con- 
ditions are imposed on A in fewer than v directions. Furthermore, there 
is no difficulty in extending the proof to the grand canonical ensemble. 
On the other hand, we have not overcome all the difficulties associated 
with quantum-mechanical systems nor have we considered the funda- 
mental cases of Coulomb [4] or dipolar forces [5] for which further 
special considerations are essential. 

The proof commences after Section II in which the explicit meaning 
of periodic boundary conditions is examined and where the stability, 
tempering and shape conditions used in the proof are stated. The first 
part of the proof, in Section III, is the calculation of an asymptotic 
lower bound to the free energy density, g(/~, 0;/7), of the torus in terms 
of the standard limiting free energy density g~(/3, Q). This step is achieved 
along lines following closely the existing proofs [1, 2] of the thermo- 
dynamic limit in a normal system: it involves "cutting" the torus and 
<"squeezing'" the box A into a smaller box A- which is easily shown to 
reduce the partition function except for an asymptotically negligible 
term which arises from longrange repulsive interactions. The second step 
of the proof, in Section IV, entails the calculation of an asymptotic upper 
19" 
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bound. This is more tricky: again the torus is cut but the maximum 
possible loss of attractive (negative) potential energy by interactions 
across the dividing surface must now be estimated and shown to be 
asymptotically negligible. ComNnation of the upper and lower bounds 
establishes the basic result: 

Theorem. Subject to the conditions stated in Section II the free energy 
density of a classical particle system in a torus H, i.e., with periodic 
boundary conditions, satisfies 

lim g(fl, O; H) = g~(fl, ~) . (t.12) 
L-~ era 

where go~(fi, O) is the limiting free energy density for normal domains 
defined in (1.9). 

Some remarks concerning quantum-mechanical systems are made 
at the end of Section III. 

Finally, in Section V we demonstrate that when the pair interactions 
decay sufficiently rapidly [essentially so that rlcp(r)[ is integrable for 
large r], the difference between the free energy of a finite torus and that 
of the corresponding normal box is at most a "surface" term. Our 
analysis here for the lower bound to 9(17)- g(A) is restricted to strongly 
tempered potentials (nonpositive for r > Ro) without a hard core. We 
indicate, however, in Section VI how, in the grand canonical ensemble, 
the corresponding result can also be derived for (suitable) weakly tern: 
pered potentials with a hard core. In addition, we show that the grand 
canonical pressure for both box A and torus H differ from the thermo- 
dynamical limiting pressure by no more than a surface-to-volume term. 
We may comment at this point that it is much harder to prove that 
g(H)-  g(A) and g(A)-  g~, etc. vary asymptotically precisely as surface 
terms. Indeed although this is the normal thermodynamic expectation, 
and has been verified for certain models [6] it may not always be true. 
tn any event we do no more in this paper than raise the question. 

II. Periodicity, Stability and Tempering 

Before discussing the various stability, tempering and shape con- 
ditions we will employ in the proof, we make precise the implication of 
the phrase "periodic boundary conditions are imposed on the box A". 
Its meaning may be stated as follows: 

(a) The particles are supposed to interact only through a pair inter- 
action potential q0(r), so that (with r i in A) we have 

uN = uN{~o} = 2-  q~(rs- r0 ; (2.1) 
i = l  j ~  
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(b) in terms of v orthogonal unit vectors G, the lattice vectors 

l~= ~ GL~G, t=(q  .... t,.), 
a = l  

(2.2) 

are defined, where the t~ are positive or negative integers or zero; the 
integer vectors t index the cells A, congruent to A -~ A o into which space 
may thus be divided; 

(c) the periodized Hamiltonian ~ ' ~  is defined by (1.4) except that the 
periodized potential energy, U~ {~o}, is calculated by extending the sum- 
mation on .j in (2.1) to run over all the images, rj + l,, of the particles at 
rj as periodically repeated in each cell throughout space. The integra- 
tions on each ri in (1.7) run over the full domain A. 

Explicitly this construction yields (with r i in A) 

1 ~ ~ ~,~o(rj+l_ri)  ' (2.3) 
. . . .  r N ) =  5 -  i=1 :=1 , 

where the prime on the summation over t indicates that when i = j  the 
term t = 0  Ecorresponding to the self-interaction, q0(0)] is omitted. The 
definition (2.3) may also be expressed as 

U~{qo} = U N {pr,} + Nug{~o}, (r, C A), (2.4) 

where the periodized pair potential is 

On(r) = ~ q~(r + l,), (2.5) 
t 

and the periodized self-interaction potential is 

1 
u~{~0} = ~- ,*~o qo(l,). (2.6) 

The periodic partition function is, of course, calculated from (1.5) to (1.7) 
with f2 = A and with U r~N replacing UN. 

Naturally the question of the convergence of the infinite lattice sums 
in (2.3), (2.5), and (2.6) must be considered. As regards the positive or 
"'repulsive" parts of the potential this is ensured by the 

B' Mild Tempering Condition 

q~(r)<lrl-~O+(Irl) for [ r [>ro>O (2.7) 

where r- ~' 0 + (r) is a continuous monotonic nonincreasin9 function for 
which 

~ r -10+(r)dr < oo. (2.8) 
ro 
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A condition of this sort is already needed for the proof of the existence 
of the normal thermodynamic limit [i, 3]. (Actually the condition B' is 
slightly less restrictive than the weak tempering condition, B, introduced 
originally in Ref. [1], but the original arguments can quite easily be 
modified to utilize only B'.) Evidently the restriction (2.8) rules out 
Coulomb [4] and dipolar forces [5] but, as mentioned, these require 
further special conditions in any case (e.g., asymptotic electroneutrality 
must be imposed). 

To insure the convergence of the lattice sums with respect to the 
negative or "attractive" parts of the potential we will impose the cor- 
responding 

A' Partial Stability Condition 

q~Cr)> -Irl-+O-(Irl), Irl>O, (2.9) 

where r- ~ O- (r) is a monotonic nonincreasing functions Jot which 

y r - 1 0 - ( r ) d r <  oo (2.10) 
0 

We call this a partial stability condition since, in conjunction with the 
condition that ~o(r) has a repulsive hard core [i.e., (p(r)= + oo for 
frf < a > 0], it is sufficient to establish stability for both U~{qq and for 
U~{q)} [1, 3]. We also point out that in the case of strictly short range 
potentials [q~(r) - 0 for lrj exceeding some b < Go] it is not hard to prove 
from (2.3) that the stability of U~@p} implies the stability of U~{cp} with 
the same constant [7]. Before discussing the stability of the periodized 
potentials more generally, however, we re-express them once more. 

When the potential q0(r) is everywhere bounded and has a Fourier 
transform 

(o(k) = S d~re-ik'~ q~(r), (2.11) 

the standard and periodized total potential energies (2.1) and (2.3) may 
be written in the comparable forms 

1 
Us,{q)} = ff d'kgp(k) In(k)l z - ~ N(p(O) (2.12) 

where 

and 

N 

fi(k) = ~ e -~k'r '= n ( -  k)*, (2.13) 
i = l  

1 1 (2.14) 
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where the discrete reciprocal lattice vectors, k~, are defined by 

kq = (27zq~/L~ . . . .  27cG/L~), 
(2.15) 

q=(qi, . . .  G), G=0,  _+ 1, --+2,.... 

In practice it is frequently through the implicit or explicit use of the 
formula (2.14) that periodic boundary are introduced. 

Now in order to satisfy the stability condition A, without requiring 
hard cores, a very useful auxiliary condition has been introduced [1, 3], 
namely, 

Ab Positive plus positive type potentials 

q~(r) > (p + (r) = I dkeik'r ~° + (k) (2.16) 

where q~+ (r) is continuous and integrable and 

~b+ (k) > 0. (2.17) 

That (2.t6) and (2.17) imply stability for UN{cp} can be seen directly from 
(2.12). It is equally clear from (2.14), however, that condition Ab also 
insures stability for the periodized potential U~{(p}. For this reason we 
will consider only potentials satisfying Ab. This is a very wide class of 
potentials (see Refs. [1, 3, 8]) and, indeed, no stable potentials are pre- 
sently known for v > 1 which do not satisfy Ab. In particular, if the 
potential satisfies the partial stability condition A' and diverges positively 
at the origin faster than 1/r ~+~ (e>0), then it also satisfies Ab and is 
stable [1, 3, 8]. 

To complete the second part of the proof [upper bound for g(fi, 0; H)] 
we actually need a somewhat stronger stability condition, at least as 
regards the total periodized potential Uun{rp}. To state this we decompose 
the pair potential into positive and negative parts: 

 o(r) = > (r)  + ( r ) ,  

where qo>(r)_>_0 and qo<(r)<0, (2.18) 

and define the extended potential 

~o(t/; r) = qffr) + t/(p < (r). (2.19) 

In the extended pair potential the attractive (negative) parts are thus 
multipled by a factor (1 + t/). We will then require: 

An~i Extended Periodic Stability 
For some tto > 0 and all N 

U~(t/) = U~{cp(r) + ~/q;< (r)} > - NwA(rl), (2.20) 

with WA(t/) < OO for tl <= ~to. 
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By the previous arguments this condition will be satisfied if the 
extended potential (p(t/; r) satisfies condition Ab for t /< t/o. It will always 
be satisfied if ~0 consists of an infinite hard core plus a tempered potential. 
Furthermore, since the stability of un(th) clearly implies the stability of 
U~(t/) for all ~1 < th this condition only serves to exclude certain patho- 
logical "borderline" potentials that are just on the edge of being 
catastropic [8]. 

Finally, we will employ a shape condition on the sequence of tori 
used in taking the thermodynamic limit. If 

L = min {L~} (2.21) 

is the shortest side of the corresponding box A, we will require 

D* Uniform Regularity 

V(A)/Lv = (-I (L~/L) < cl (2.22) 
~ t = l  

where q < ,~ is fixed independent of A. 

This is a special case of the more general uniform regularity shape con- 
dition introduced in Ref. [1] for systems with weakly tempered poten- 
tials. (It is not needed if the potentials are of strictly short range.) 

IIl. Lower Bound 

To obtain a lower bound to the periodic free energy density g(fi, o~; H) 
we compare the torus H with a reduced box A-  of sides L ~ -  R. Equiva- 
lently, in the periodically repeated picture, we cut channels of width R 
between the cells At and discard all interactions between the reduced 
cells A[ so formed. (Of course, we suppose that all particles are now 
confined to the reduced cells.) 

For simplicity in the first instance let us suppose the potentials 
satisfy [1] the 

B* Strong Tempering Condition 

~o(r)N0 for Irl>R o. (3.1) 

The reduction of the domain of integration in the configurational integral 
Q(fl, N, H), from A to A- must decrease its magnitude. Furthermore, if 
we take R fixed but exceeding R o, the residual cell-cell interactions across 
the channels are all attractive, i.e., nonpositive, so that discarding them 
can only reduce, or leave unchanged, the integral Q(fl, N, A-). It fol- 
lows that 

Z(fl, N, 11) > Z(fl, N, A-) (3.2) 
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and so, by (1.2), 

g(~, ~; n)  > (~o/~-) g(~, ~o-; A-) ,  (3.3) 

where the new density is 

9- = 0 V(A)/V(A-) = 0 ~I [1 - (R/L~)] -~ (3.4) 

For the bound (3.3) to be meaningful we must insist that ~o- < 0max(A-), 
'where the maximum density is determined by any hard core present in 
q0(r), tn the thermodynamic limit (1.11) we have [1-3] 0m~(A)~ 0m~ and 
since we also will have R / L ~  0 and 0--+ 0 this restriction on the density 
is asymptotically harmless. (In the arguments below we will allow R ~ 
but always ensure that R/Loo-~,O; thus the restriction will again be 
harmless and, hence, it will not be mentioned explicitly.) 

Now if we take the thermodynamic limit in the inequality (3.3) and 
recall the continuity of the limit function (see Refs. [1-3]) we obtain 

lim inf g(fi, O; H) > goo(fi, 0), (3.5) 
L--+ ao 

which is the desired asymptotic lower bound [see (1.9)]. 
More generally we may consider potentials satisfying the mild tem- 

pering condition B', stated in Section II, namely, 

q~(r)<lrl-VO+(lrl) for trl>r0 (3.6) 

where r-~0 + (r) is continuous, monotonic nonincreasing and r -1 0 + (r) is 
integrable on (r 0, Go). Now from the definition (2.3) of Uff the total cell- 
cell interaction energy is clearly 

~N(L; rl ... rN) = ~- ~ q)0)+ 1,-  ri). (3.7) 
i = 1  j =  t-l:O 

]if the distance between a particle ri and the nearest image of another 
particle is not less than R > r 0, as is the case when the particles are 
confined to the reduced box A-. We have from (3.6) 

1 N N 

~N(L,R)<= T ~ ~ ~ Prj+lj-ril-~O+(Irj+lj-r~l) 
i=1 ~/=1 t*o (3.8) 

1 2 " <= g N  ~ R?'O+(R,), 
t~=O 

where/~, is the least distance between a point in cell A o and one in A[ 
with t 4= 0. Following Lebowitz and Penrose [9] we estimate the lattice 
sum by grouping the cells into shells. In the first shell there are 3 v -  1 
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cells and/~,  > R; in the second shell there are 5 ~ -  3 ~ cells and/~t > R 
+ L > 2R, where, as before, 

L=minfL~}, (3.9) 

and we naturally assume L > R .  In the sth shell there are ( 2 s+ l )  ~ 
- ( 2 s -  1) ~ cells and /~ t>  sR. From (2.8) we hence obtain 

where 
q~N(L, R)< ½-N2R-~+(R), (3.1o) 

tp+(R)= ~ E(2+s-~)~-(2-s-1)~]O+(sR). (3.tl) 
S = I  

Since r -10 + (r) is integrable, s -10 + (sR) is summable on s. Furthermore, 
since 0 + (sR) vanishes continuously as R ~  oo we conclude that ~p+ (R) is 
continuous and that 

~p+(R)-*0 as R - , o o .  (3.12) 

On returning to the previous argument comparing H with A- but 
allowing now for the loss of the cell-cell interactions ~N(L, R), we obtain 
in place of (3.3), the inequality 

g(fl, O; 11) > (0/0-) g(fl, 0-;  A-) - ½ rio 2 V(A) R - ' ~  + (R), (3.13) 

where Q- is still defined by (3.4). Now by (3.11) and (3.12) the function 
1/~+(R) is continuous and diverges to + oo as R---, oo. Accordingly for 
large enough L = Lmi, we may choose R = R(L) so that 

R~/[lp+(R)]I-~=L" , 1 > ~ > 0 .  (3.14) 

This choice implies 

(i) R ~ o o ,  and (ii) R/L~O as L ~ o v .  (3.t5) 

By (2.4) the relation (ii) insures that Q-~Q as L-~oo which is clearly 
essential. Then if we use the shape condition D* stated in Section II 
[Eq. (2.22)], and make the choice (3.14), we find 

V(A) R-  ~tp + (R) < cl (L/R)~ + (R), 
(3.16) 

__<cl[Ip÷(R)]'~O as L ~ o o .  

With the above choice of R we can thus take the limit in the inequality 
(3.13) to obtain, again, the required lower bound (3.5). 

Finally, we remark that this lower bound can be derived equally well 
for a quantum-mechanical system obeying any statistics. The main point 
is that after cutting the channels one must also insist that the wave 
functions vanish on the boundaries of the reduced box A-. (In the to rus / /  
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only continuity of the wave functions is required.) This boundary con- 
dition increases the kinetic energy and can only reduce the partition 
JTunction further (see Refs. [1, 2, 10)]. Thus in this respect quantum- 
mechanical periodic boundary conditions cause no difficulty. More gen- 
erally, however, changing the boundary conditions from the customary 
vanishing boundary conditions [1-3]  [i.e., ~N(rl . . . .  rN) -- 0 for r i on the 
boundary of f~], to normal derivative conditions [i.e., n" VT~N- 0 on 
~:he boundary],  or to intermediate or periodic conditions introduces 
complications even for systems without periodic potentials. These ques- 
tions have been considered by Lieb [10], Robinson [11] and, very 
recently, by Gallavotti et at. [12]. The results of these last authors should 
enable one to extend the remainder of our discussion of the torus to the 
quantum-mechanical case. 

IV. Upper Bound 

To obtain an upper bound for g(fi, ~; H) we compare it with g(/~, Q; A) 
and try to obtain a lower bound on the attractive part of the cell-cell 
interactions lost in going from H to A. To avoid difficulties with any 
hard cores or positively unbounded pieces of q~(r) we use the decom- 
position 

~ ( r )  = ~ > (r) + ~ < ( r ) ,  

where q0>(r)>0 and ~o<(r)<0, (4.1) 

as already introduced in Section II. The corresponding parts of the total 
celt-cell interactions, ~/~ (L) and q~iv(L), are defined by replacing (p in 
(3.7) by ~0> and q~<, respectively. 

Now consider the intermediate total interaction potential 

U• {(p} = UN{p} + cb~V {L; ~o}. (4.2) 

Since the positive, or repulsive, interactions in ~ can only reduce the 
configurational integral we clearly have 

Z(fl, N, A) > Z+(fi, N, A) (4.3) 

where the superscript + denotes the use of the intermediate potential 
U~. On the other hand (4.2) also implies 

U~ {(p} = Un{cp} -- ~1"~ {L; q~} (4.4) 
so that 

Z + (fl, N, A) = Z(fl, N, 17) (exp [ + fl~b~; (L)])n ,  (4.5) 



262 M.E. Fisher and J. L. Lebowitz: 

where the angular brackets, ( .) ,  denote the usual canonical thermal 
average while the subscript /7 indicates that the average is taken in the 
periodic system, i.e., with potential ~J~. By combining (4.3) and (4.5) and 
using the elementary inequality (exp(.))  > exp((-)), we obtain the result 

g(fi, ~ ; r l )<  g(fl, ~ ; A) + fl ( -  4~;~ ) ~ / V  (A) . (4.6) 

In order to bound the last term in this inequality we split the total 
attractive cell-cell interaction, ~ = - ] ~  ], into two parts: 

(i) ~ (L, R), consisting of all those interactions of particles in cell 
A 0 with those images of particles in the first shell of cells for which the 
particle-image distance satisfies 1~3 + l, - ri] < R < L = Lmin; and 

(ii) ku~ (L, R), consisting of aU the remaining cel!-cell interaction terms 
for which the particle-image distance exceeds R. 

Now the second or "long range" term can be bounded by using 
arguments precisely analogous to those used in Section III to bound 
~N(L, R) from above. Specifically, we use the partial stability condition 
A' [Eq. (2.9)] and estimate the lattice sums as before [9]. In analogy to 
(3.10) and (3.11) we thence obtain 

l~PN (L, R)I <= ½ N 2 R - ~ - ( R ) ,  (4.7) 

where ~ - (R)  is continuous and vanishes as L ~  oe and is given explicitly 
by 

tp- (R) = ~ [(2 + s-~) ' -  (2 - s-~) ~] O-(sR). (4.8) 
s = l  

To discuss the short range part of the interaction, T~, we first define 
the pair distribution function for the t o r u s / / b y  [13] 

n2(r~, r2; fl, 0:/7) 

1 
= (N-2)!Q(f i ,  N, II) ~dr3""~drNexp[- f iU~(r t '" ' rN)~" (4.9) 

Notice that the translational invariance of the torus implies 

n 2 ( r l ,  r 2 ;  17) ~/ ' /2( /*2 - -  I' 1 ; / r / )  (4.t0) 

which is not, of course, true for the pair distribution function of the box A. 
Then from the definition 

1 N N 
( ~ , ( L , R ) ) a =  -~- ~ ~ ~ (OR(Ir,,),tI)q~<(r~,j,,))u, (4.11) 

i = j  j = l  t # O  

where 
r .  . : r j 4 - I  t - r  i ~,j,t 
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and 
OR(r )= 1 for r < R ,  

(4.12) 
= 0  for r > R ,  

we obtain 

({~P,~-(L, R)I)n = ½(1 - N- l )  -* .(' dr~ ~(~1<=, drjqo <(r)ln2(r; 17). (4.13) 

Here the primes on the integrals indicate that the vector r 2 = r 1 + r must 
lie outside A i.e., in a cell of the first shell. The maximum volume of 
integration for rl is hence 

V(A) = V(A) - ~ (L~ - 2R) 

~ =  ~ (4.14) 
< 2R ~ [V(A)/L~] <2vV(A) R/L,, 

where we assume 2R < L = Lmi .. A simple bound may hence be obtained 
by restricting r~ to A but extending the integral over r to all space. This 
yields 

flKIg'~I>/V(A) <12V02 < -- fl(,o <)rl R/L (4.15) 
where 

( - fiq~< )u = fi 5 dr{ q)< (r)lnz(r; fl, O; 17), (4.16) 

and where we have used ( t - N - I )  -* < 2  for N > 2 .  
To bound this last expectation value we consider the extended 

potentials o2(t/; r) and U~(tl), introduced in Section II [Eqs. (2.18) to 
(2.20)]. An upper bound to the corresponding extended flee energy 
density function now follows easily [143 from the extended periodic 
stability condition An~/[Eq. (2.20)], namely, 

g(tl;fi,~o;l~<G+=o[l+fiWAOlo)-ln(oA})] for , l<t /o ,  (4.17) 

where t/o specifies the range over which the stability is guaranteed. This 
bound is uniformly valid for all /7 as L--+c~. A lower bound for the 
special value t /= 0 (which is all that will be needed) follows directly from 
the previous results (3.13) to (3.16) which we may write as 

g(tl;fi, o;fl),=o>G-(H)-~g~(fl, O), as L ~ m ,  (4.18) 

provided 0 is not too close to O~,(A) or, asymptotically, provided 0 < 0m%v 
Next we notice [ t3]  that the desired expectation value (4.16) satisfies 

the identity 

( -  fi~<)n = ({?/&l) g(t/; fi, 0; fl)[~=o, (4.19) 

which, indeed, provides the rationale for introducing the extended poten- 
tials. Furthermore [13] by virtue of its definition as an exponential 
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mean [via (1.2) and (1.7)] the function g(t/) is convex  for t /< ~/o, i.e., 

g(½ t h + ½ t/2 ) __< ½ g(th) + ½ g(t/2), (t/_<_ ~o). (4.20) 

This means that the derivative ~g/&t  at t /= 0 can be bounded in terms 
of G + and G-  : specifically we obtain 

( - f i 9  < ) u  <-- c2 = (G + - G-),/qo < oe, (421) 

for e < em~ and large enough A. 
On combining (4.7) with (4.15) and (4.21) and using again the shape 

condition D* [Eq. (2.22)], the last term in the inequality (4.6) is seen to 
satisfy 

f i (  - ga~ ) n / V ( A )  < ½ f iez  q (L /R)"  t ; -  (R) + 2 r e  z c z ( R / L  ) . (4.22) 

Then, in analogy with the previous analysis, we may choose R such that 

R ' / [ V , - ( R ) ] ~ - ~ = L  ~ , l > e > O ,  (4.23) 
which implies 

(i) (L/R)~-(R)~O, and 

(ii) R / Z - , O ,  as L - , o e .  (4,24) 

Evidently with this choice of R(L)  we may take the limit L +  co in (4.6) 
to obtain the desired upper bound 

lim sup g(fi, O; H) < g~o(fl, O) . (4.25) 
L--+ oo 

In combination with the corresponding lower bound (3.5) this completes 
the proof of the main Theorem (1.12). 

V. Surface Terms 
It is natural to inquire more closely into the difference between the 

reduced free energy, g(H), for a torus and that for the corresponding box, 
namely g(A), both at the same fl and 0. It is normally believed that this 
difference should amount to no more than a surface term; more spe- 
cifically, one would like to prove that 

K + S ( A ) / V ( A )  >= g(H)  - g(A)  > - K -  S ( A ) / V ( A ) ,  (5.1) 

where the total surface "area" of A is 

S(A)=2 ~ S,, S,= ~ L~, (5.2) 
7 = 1  a ~ 7  
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and K + and K -  are constants (depending on fl and 4). One also expects 
(5.1) to hold with either g(//) or g(A) replaced by their thermodynamic 
limit g~(fi, ~?). A short examination reveals, however, that (5.1) should be 
expected to apply only when the pair interaction potentials decrease 
rather more rapidly as r--, oo than needed merely for stability and tem- 
pering. In ,essence, the existence of the first moment, ~ frl (p(r)[dr, 

seems to be necessary. To this end we wilt assume: 

S The conditions A', B', Ab and Ar~ (stated in Section II) 
hold with q)(r) replaced by (1 + Colrl) q~(r) (c o > 0) 
and with 0 +- (r) monotonic nonincreasing. 

(Previously only r-V0 -+ (r) was supposed monotonic.) Along the lines used 
in Section IV it is then not hard to prove the first inequality of (5.1). The 
second inequality is more difficult (as are the corresponding inequalities 
involving g~) and we will utilize further conditions on our analysis 
although there seems little doubt that they are not necessary. 

Upper Bound 

To prove the first inequality we rewrite (4.6) with the decomposition 
~;, = ~e~ + e ;  as 

g(II) - g ( A )  < h < + h > , (5.3) 

where by the same arguments as lead to (4.7) and (4.8) we have 

h > = fi(lTJ~l)n/V(A) < ½ flQ(N/R ~) ~Ps (R) (5.4) 

in which, using condition S, 

~ps(R)= ~ [ (2+s -1 ) " - (2 - s -~y]  O-(sR)/(l+cosR ). (5.5) 
s = l  

By removing the factor in brackets for s = 1 and using the monotonicity 
of 0-(r) to replace the sum by an integral we find 

.U (R) = ½ R ~s  (R) < (3 ~ - 1) ~ dr O- (r)/(1 + Cor), 
~R (5.6) 

--~0, as R--~o(3, 

where the second line follows from the integrability of r-lO-(r). On 
combining (5.4) to (5.6), choosing R = L, and using the shape condition 
D* of Section II we obtain 

h > <= cl f lo2~-(L) /L  < c~fio2¢-(L) [Lv-I/V(A)]. (5.7) 
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For the short range part, h <, we use (4.13) with R = L and find, for 
N > 2 ,  

H < = [ V ( A ) / f f J h < < = * ' d r l  5' drl~°<(r)ln2(r;H), {5.8) 
A Irl<L 

where the primes indicate that r" = r + r' must lie outside A, and n2(r;/it) 
is the pair correlation function for the torus [defined in (4.9)]. The 
integrand in (5.8) is non-negative for all r so that extending the range of 
integration, and integrating more than once over some regions can only 
strengthen the inequality. To perform the r' integration we thus take in 
turn an origin in each face of the pairs ? = 1, 2, ... v with a sense such 
that r'~ = (r')e > 0 for points inside A. Then we obtain the bound 

H < <  ~,~= 1 S, o'dr" (~, ~ ,'~ d r +  r.~ ~ [  .~ d r){q~ < (r)ln2(r; H,.  (5.9, 

On interchanging the order of integration the limits become 

min{E.r~/} 
5 at+ , d 4 5 at;. (5.10) 

r,~>o r~<O / 0 

The inequality is again strengthened if the limit on the r'~ integration is 
now extended to r~ (for all L). This yields 

H< ~-~-c1Lv-t*dr (~7 trYt) [@<(r) ln2(F;M)' (5.11) 

where we have used condition D* through 

S, = V(A)/L., < q L ~-* . (5.12) 

On noting that tr~l < Irl, and adding a further nonnegative term pro- 
portional to k0< (r)] we find 

H < <= (vcl/Co) L ~-1 , dr(1 + c0lrl) nz(r; H). (5.13) 

The integral here can evidently be expressed as ( - ( 1  +cofrt)qo<(r)) n 
and hence may be bounded by exactly the same convexity arguments 
that led to (4.21), in which c 2 was defined. We conclude, therefore, that 

h < <= (vq  c2/Co) L ~ - I / V ( A ) .  (5.14) 

Finally, if we notice from (5.2) that 

2vL  ~-~ < S(A) ,  (5.15) 

and combine (5.14) and (5.7) in (5.3), we see that the first part of (5.1) is 
established (for L > Ro) with 

K + = ½ (q CjCo) + ½ c ~ o  ~ ¢- (Ro)/V. (5.t6) 
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Lower Bound 

The idea we use here is first to expand the torus H to a torus H + = o)H 
corresponding to an enlarged box A + of sides L + = ~ L ~  (co > 1); secondly, 
to insert corridors of width exceeding R = (oJ - 1) L, as in Section III, so 
as to reduce the torus /7 + to the original box A. The effects of then 
discarding the positive cell-cell interactions must be shown to be bounded 
by a surface term. This last step is not hard if the potentials have a hard 
core [q)(r) = + oo for r < a] so that the density has a bound Qm~x; without 
the aid of a hard core, however, we have been unable to complete the 
argument. Conversely, if we assume a hard core, the problem of bounding 
the free energy change on the expansion H ~ H  + has so far proved 
intractable. 

Accordingly, we will assume the pair potential is strongly tempered, 
i.e., it satisfies condition B* [see Eq. (3.t)]. The second step is then trivial 
for R > Ro. To facilitate the first step we introduce the extended stability 
condition: 

Sn~ Periodic Surface Stability 
(i) ~0(r) is differentiable for all r + 0 ; 

(ii) for all L with L, > R 1 > 0 

l,. Fop(l,)>- Vo, (5.17) 
t4= O 

(iii) for some ¢o > 0 and all N 

U~(0 = C~{~o(r) + Cr" V~p(r) > - N vA(0, (5.18) 

with vA(~ ) < oo Jbr ~ <= ~o. 

The last condition, (iii), namely, periodic stability, will be satisfied, as 
before, if ~0 + ~r;V~o satisfies condition Ab, i.e., is of positive type plus 
a positive potential. Although this condition allows suitable power taw 
potentials [1.-3] diverging like 1/r ~, it definitely excludes potentials with 
a hard core. The differentiability condition (i) could be relaxed somewhat 
at the cost of more elaborate analysis. 

We now present the line of argument. For convenience we set 

fu( f l ;H)=o- lg( f l ,  o ; H ) = N - '  lnZ(fl, N , H ) ,  (5.19) 

and consider the derivative 

j(c0) = (~/~,o) f.~ (/~; coi l ) .  

We will establish the bound 

(5.20) 

j(co) < J for 1 _< co_< oJ0, (5.21) 
20 Commun, math. Phys., Vol. 19 
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which, on integration, leads to 

f~(fl, H + ) <  f ,~( f l ;H)+ J(co - 1), (co<COo). (5.22) 

Now choose co according to 

c o = l + ( R / L )  with R > R  o, (5.23) 

where R is the f i xed  width of the narrowest of the channels to be inserted 
in order to reduce H + to A. On using B* to discard the residual cell-celt 
interactions we have 

fu(fi, 17+) > fN(fi, A) . (5.24) 

Combining this with (5.22) yields, for large enough L, 

g(II) - g(A) > - JQ R / L  , (5.25) 

which reduces to the desired lower bound of (5.1), with 

K -  = J Qq  R/2v  , (5.26) 

when (5.12) and (5.15) are used. 

Approach to Thermodynamic Limit  

Before proving the bound (5.21) we note that we may equally consider 
the sequence of tori k I I  (k = 1, 2, 3, ...) in place o f / / ,  and divide up each 
k I I  + = cokFI by channels into k replicas of the box A with N particles 
in each box. On using the basic inequality [1] 

z(/~, kN, k17 +) >= [Z(/~, N, A)] k (5.27) 

and using (5.22) for k17 we find 

Jlu([~, k l I )  > ]k.(#, A) - J ( R / L ) .  (5.28) 

If we let k--. Qe and use the previously proved result, namely 9(k17)~  g~, 
we obtain in place of (5.25) the additional result 

g(fl, if;A) - g ¢o ([J, Q) < K -  S(A) /V(A)  . (5.29) 

In combination with the upper bound (5.1), already established, this yields 

g(fl, 0;17) -goo (fi, ~) <= K~- S (A) /V(A)  (5.30) 

where K i- = K -  + K +. These results give information on the rapidity of 
approach to the thermodynamic limit from above. Unfortunately we 
have not so far been able to establish corresponding bounds on the 
approach to the limit from below. 
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It remains to justify the bound (5.21). The derivative j(CO) may be 
calculated, as in the usual formal derivations of the "virial theorem", by 
changing integration variables in the partition function from r~ to r~ = riCO 
before differentiation. Using the expressions (2.4) to (2.6) for U n then 
leads to 

where 

1 j(co)=v--%fl v 0(tO 
t ~ O  (5.31) 

1 
2 [V(coH)/N]f~ A d r [ ~  r, "V~o(rt)]n2(r;COH ) 

r, = r + l~, (5.32) 

and, n2(r; col) is the (translationally invariant) pair correlation function 
for the torus col/. On using part (ii) of condition Sn~ this leads along 
the previous lines to 

j(co)<v+ ½flvo+ ½O)~o0 -1 <- f i r .  Vqo(r)>~n (5.33) 

for 1 < co _< COo where, in terms of the extended potential UN~(~) of (5.18), 
we have 

( - f i r .  Vqo(r)>o)~=(c?/O~)g(~;fl,~;colI)l~=o~ (5.34) 

Now we can use the stability and convexity argument [13] of Eqs. (4.17) 
to (4.2i) once again to prove 

(a#/c~)~=o < c3, (1 < co _< COo), (5.35) 

where in terms of the bounds G~ > 9(~o) [replace wa ft/o) in (4.17) by va (~o) ], 
and G - < 9 ( ~ = 0 )  [see Eqs. (3.13) to (3.16)], we have c 3 = ( G / -  G-)/~ 0. 
Combination of these last three relations proves (5.21) and completes 
,our analysis. 

VI. Grand Canonical Ensemble 

All our previous analysis has referred to the canonical ensemble. 
Although we have not made a detailed investigation, we believe our 
arguments will extend without significant difficulty to the microcanonical 
ensemble since the geometrical problems associated with fixed particle 
number are similar in that context. On the other hand, most of the 
analysis becomes rather simpler in the grand canonical ensemble and 
analogs of all our results may be proved. Furthermore, we can then 
obtain a surface-to-volume lower bound, analogous to (5.1), with the 
presence of a hard core in the potential; indeed, the hard core enables us 
20* 
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to analyze, in addition, weakly tempered potentials (positive at large r). 
It is also possible to prove that the grand canonical pressure approaches 
its thermodynamic limit at the expected rate. We now sketch the argu- 
ments for this case but omit the detail (most of which is similar to that 
presented already). 

The grand canonical pressure p(/~, z; A) is related to the grand canoni- 
cal partition function 

~(~, z; A) = ~ zNZ(fi, N, f2), (6.1) 
N = t  

as usual, by 

~(fl, z; A)= exp [V(A) tip(t, z; A)], (6.2) 

with similar expressions for the torus/-/. 
Now the existence of a hard core, and hence a maximum density 

. . . .  together with condition S of the previous section (or merely A!) 
means that the energy" of interaction of a single particle with all others 
is bounded below by some -w0 (wo < co). By sqeezing the box A to 
a smaller box A-,  which can be done by "switching-off' the interactions 
of particles in the channels A = A - A-, we see that 

E(fl, z; A) < Y,(fl, z; A-)  e zv(A) e d(A)~w° , (6.3) 

where X(A) is the maximum number of particles that can be accom- 
modated in A. (It is the analog of this formula that we could not obtain 
for the canonical case; the difficulty was that the (fixed) number of par- 
ticles in A had all to go into A- whereas here the population in A- can 
vary.) Now we have 

~Af(A) < 0maxV(Zl) (6.4) 

and, for fixed channel width R and large enough 7~, also 

V(A) < c4RS(A ) . (6.5) 

Of course we choose R to exceed the hard core diameter a. Then we may 
compare the torus with A- which yields, term by term, 

Z(fl, z ;H)>  ~ z N Z ( f l ; N , A - ) e x p [ - f l m a x { ~ + } ] .  (6.6) 
N=O 

To bound ~b~ (R), the positive cell-cell interaction energy lost in reducing 
the torus to A-,  we utilize the bound on the density and consider the 
interactions across the 2v faces of A along the lines used in deriving 
(5.14) from (5.8). In particular, we utilize the upper bound of condition S 
and find 

max {obey } < Nc  s Ore,× aVwoRS(A)/V(A) = Ne(A),  (6,7) 
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for fixed R and sufficiently large L. (The factor a~woR is inserted purely 
for dimensional reasons.) ttence (6.6) can be written 

~(/3, z; rl) __> ~(p, z-, A-) (6.8) 
where 

z -  = ze -t~'(A) . (6.9) 

On combining this result with Eqs. (6.3) to (6.5) we obtain 

p(/3, z ;H) > p(/3, z - ;  A) - c4R(k B Tz + ~maxW0) S(A)/V(A) .  (6.10) 

Lastly, we may use the convexity and boundedness ofp(z) in lnz to prove 
that 

p(/3, z ;A ) -p ( /3 ,  z - ; A ) < c o O m a x k B T [ l n z - l n z - ] ,  (6.11) 

where the factor ~OmaxkBT is again retained for dimensional reasons. 
Together with (6.9) and (6.7) we hence obtain the desired bound 

p(fl, z; 17) - p(/3, z; A) > - E -  S(A)/V(A) (6.12) 
with 

E - = [ c  5 c 6 (Omax) 2 a v !42 0 --}- c 4 ( k  B Tz + 0m,xW0)] R. (6.13) 

We recall that this result was established under the assumptions that the 
potential has a hard core although r~0(r) (see S) need only satisfy the mild 
tempering condition B'. 

To discuss the approach to the thermodynamic limit we note that the 
inequality (6.3) holds for a box Ak= kA  [i.e., Lk = k L ]  with the left 
member replaced by [~(/3, z; kA)] l/k; one simply inserts sufficiently many 
channels to decompose Ak into k replicas of A-, and notes the estimates 
V ( k A ) ~ k V ( A )  and Y ( k A ) g L U ( A ) .  On letting k~oe  and using the 
existence of the grand canonical thermodynamic limit, namely, 

lira p(fi, z; k A ) =  p~(/3, z),  (6.14) 
k wo 

one obtains, in place of (6.12), the result 

p(fl, z;17) - p~o (fi, z) > - E-S(A) /V(A)~  (6.15) 

Essentially the same argument yields the inequality with the box pressure 
p(fi, z; A) replacing the torus pressure p(/3, z;/7). These inequalities are 
the analogs of those which were not proved for the canonical ensemble. 
[Compare with Eqs. (5.29) and (5.30).] On combining them with the 
corresponding inequalities for the approach to the thermodynamic limit 
from above we see that for large boxes or tori the grand canonical 
pressure differs from its limit by no more than a surface-to-volume term. 

In conclusion we note that Ruelte [15] has very recently shown that 
for superstable potentials (i.e., (p(r) is the sum of a stable potential and 
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a positive continuous function ~p(r) with tp(0)> 0) the grand canonicai 
correlation functions can be uniformly bounded. This should open the 
way to further progress for the grand ensemble. Likewise, when a similar 
result becomes available for canonical correlation functions it should be 
possible to extend our results appreciably. 
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