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Abstract. The dynamical meaning of the equations TiJ//j = 0 is derived as a conse- 
quence of the mathematical structure of Einstein's equations. A generalization of Lichnero- 
wicz's analysis of the gravitational equations is proposed. 

§ 1. Introduction 

In this paper  we discuss the problem of mot ion  for a material con t inuum 
in the fl 'amework of the general theory of relativity 1. 
On  this subject there is already a very extensive literature [1 + 12]. The 
aim of the present contr ibut ion is to show that the general structure of 
the problem is intrinsically very simple. 

To avoid unnecessary complications,  we shall restrict our  analysis to 
those systems whose four-velocity field V ~ and density # are expressed 
in terms of  the ene rgy -momen tum tensor T~j by the eigenvalue equa- 
t ion [13] 

(Tij + I~gij) VJ = 0 (1.1) 
with the normal iza t ion  

gij Vi vJ = - 1.  (1.2) 

We prove that  if we assume the validity of Einstein's equations 

Gij = - k Tij (1.3) 

and impose certain consistency conditions for the initial and boundary  
data  of the gravitat ional  problem, Eqs. (1.1), (1.2) are mathematical ly  
equivalent to the divergence equat ions 

TiJ~q = 0.  (1.4) 

* Lavoro eseguito nel centro di Matematica e Fisica Teorica del C.N.R. presso 
l'Universit~t di Genova. 

Throughout the paper, Latin indices will run from 1 to 4, and Greek indices from 
1 to 3, unless otherwise stated. The metric is assumed to be of normal hyperbolic type with 
signature (+ + + -). 

Partial derivatives will usually be indicated by a comma; covariant derivatives by 
a double vertical stroke (like in Eq. (1.4)). 
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We then indicate how this fact may be regarded as a general proof 
that Eqs. (1.4) are the equations of motion for the given material con- 
tinuum. 

This result, although obtained under the simplifying assumption (1. i), 
may be easily extended to more general cases, e.g. to the case when an 
electromagnetic field is present. 

However, we shall not discuss this generalization here. 
In Section 2 we analyse the mathematical structure of Eqs. (1.3), and 

prove the validity of several Lichnerowicz-type decompositions of these 
equations under very weak conditions. The main results are stated at 
the beginning of Section 2, and proved in Lemma 2.1 and Lemma 2.2. 

In Section 3 we discuss the relativistic formulation of the problem of 
motion, and use the material of Section 2 to obtain the desired conclusions. 

Finally, in the Appendix, we indicate a general uniqueness theorem 
for symmetric hyperbolic systems of partial differential equations. 

This theorem is not very original - in fact, it is borrowed from ref. 
[14] and adapted to the problem in study - and is reproduced here for 
convenience of the reader. 

§ 2. Mathematical Preliminaries 

In this section we prove a general result concerning the mathematical 
structure of Einstein's equations in the mixed initial and boundary value 
problem. 

In the space-time manifold ~%, let F be a (C1, C2) 2 congruence of 
time-like curves filling a world-tube f2. Let the hypersurfaces S - with 
local equation f ( x  t , x 2, x 3, x 4) = 0 - and B - with local equation x 4 = 0 - 
be the boundary of f2 and a spatial section of f2 respectively. 

Finally, let V f denote the field of unit tangents to the lines of F. To 
the field V ~ we associate two projection operators ~ and Y,, acting on 
the vector bundle of f2, and mapping every vector field A ~ into the fields 

~ ( A  ~) = - V i V~A J ,  (2.1) 

~f'(A i) = (3} + ViVa) A j (2.2) 

respectively tangent and normal to the lines of F. 
By taking tensor products of copies of ~ and./V~ we can induce pro- 

jection operators ~ ®  ..- ® Y @ - . .  on every tensor bundle of f2: 

~ ®  ... ® ~ ®  ... ( w ~ l . . . ~ 9 = ( - v ' l v j ) . . .  (6~ + v ' ~ v j ) . . ,  w jl,..j~ . (2.3) 

2 The notation C, stands for "piecewise C,"; the notation (C,,, C,)(m < n) for "'Cm, 
piecewise C,". 
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In particular, in the space of symmetric tensors of rank 2, we have 
'the obvious relation 

® X ( W  i j) = Y  ® ~ ( W  u) 

(the symbol ,-~ denoting interchange of the indices), so that we have 
only three independent projections: ~ ®  ~,  Y ® Y  and 

In the domain f2 now consider the system 

G~ = - k T~; (2.4) 

~:ogether with a suitable set of initial and boundary data specified on B 
and on S respectively. 

Consider also the following systems 

(~z) [~A/I.Q~/" ER# + k (T iJ -  1 Tgij)] = O, 

[ T'J//.i = O, 

)[," ® W  [R ~ + k (T ~j - ½ T 9~j)] = O, 
(fi) -~@Ar(GiJ+ k T  iJ) = 0 ,  

~(riJ//j) = O, 

(7) ~ ® ~ ( G "  + kT'/) = 0, 
" 0 .  

We shall prove that, in the initial and boundary value problem, the 
system (2.4) is mathematically equivalent to any of the systems (~), (fl) 
and (7), provided that the data on B and on S satisfy the consistency 
conditions [15 + 18] 

G ~ ( = - k T ~  on B,  (2.5) 

(G i~ + k r  i J) fv  = 0 on S. (2.6) 

In particular, as far as the equivalence between Eqs. (2.4) and the 
system (~) is concerned, our result reduces to Lichnerowicz's one [15 + 17] 
under the further restrictions 

(i) the congruence F is normal, 
(ii) the degree of smothness of F is not (C1, C2), but (C2, C4) , 

(iii) the problem is a pure Cauchy one (i.e. f2 = ~4). 

In a previous paper [18] we have already shown how the restriction 
(iii) can be dropped. The fact that we can now drop the restrictions (i) 
and (ii) too, is particularly worthwhile in the discussion of the problem 
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of motion, as it enables us to identify the congruence F with the con- 
gruence of stream lines of an arbitrary material continuum. 

In order to prove our result, we shall follow an abstract method [t3], 
in which the tensor field G~j + kT~j is replaced by an arbitrary symmetric 
tensor field Wq. For every symmetric field W~j, we define the conjugate 
field ~ *  by 

W~* = W~ - ½ W9~; W = g~b W~b. (2.7) 

Eq. (2.7) implies 

(W~*)* = W)~. (2.7') 

Lemma 2.1. Let V ~ be an arbitrm~" rime-like unit vector field, and let 
X be the projection operator associated to V ~ by Eq. (2.2). 

Then, the eontravariant components W O qf any symmetric tensor field 
may always be expressed in the linear form 

W U = Aqpq,A/@d[/'(W *pq) + B iJkwkPv  p (2.s) 

the coefficients AiJpq arid BiJ k being functions of the metric and of V ~. 
In particular 

B~J k = - (6~V J + V~ b{ - VkgZJ). (2.9) 

Proof. By a proper choice of the local co-ordinates, we may always 
require 

V i =  7i def. c~ ; Vi = 71 -  gi4 (2.10) 
1/-g44 

at any given point of ~4. 
A straightforward application of Eq. (2.3) shows that Eq. (2.10) implies 

Y ® J ( W *  Pq) = CP~p W* ~/~ (2.11) 

the coefficients CPq~a being functions of the metric. Moreover 

w2 
W~pVp = W~p~p- l f 2 ~  ' 

Now, we have 

(2.t2) 

W,~ = W*~ = g4fl W* ~p + 944 W * ~  (2.13 a) 

W~=  W*~ - ½ W * =  - ½(g~aW*~a-g44W .44) (2.t3b) 

Eqs. (2.13a, b) may be easily solved for W *~4 and W .44. 
Therefore, all the components W* ij may be expressed linearly in terms 

of W *~a and ~l~. By Eq. (2.7'), the same is then true of the components W ~. 
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By Eqs. (2.11), (2.12), this statement is equivalent to Eq. (2.8) in the 
local frame in which Eq. (2.10) holds. Finally, in view of the tensorial 
character of Eq. (2.8), the same conclusion is valid in every frame. 

This proves the first part of Lemma 2.1. The proof of Eq. (2.9) may 
be obtained by direct computation. 

By Lemma 2.1, every symmetric tensor field W ij satisfying 

is necessarily of the form 

with #k= wkZ Vt. 

~/° ® Y ( W *  i j) = 0 

W 0 = Bi~# k (2.14) 

Eqs. (2.9), (2.14) and our previous definitions imply the following algebraic 
relations: 

~@JV(WiJ)~-O iff J V ' ( # J ) = 0 ,  (2.15) 

~ ® N ( W i J ) = 0  iff N(#J)=0 ,  (2.16) 

W? = 0 iff #J = 0 ( ~  W ij = 0). (2.17) 

Let us now go back to the world-tube f2 and to the vector field V i 
introduced at the beginning of this section. 

In the domain O, we consider a symmetric tensor field W ij of the 
:form (2.14) satisfying 

W ¢ = 0  on B, (2.t8) 

WVf, j=O on S. (2.19) 

Lemma 2.2. Let the symmetric tensor field wiJE C1(f2 ) satisfy Eqs. 
(2.14), (2.18),, (2.19). Then, in the domain t2, the following statements are 
mathematically equivalent: 

(I) W ~j=O, 

(II) W~//~ = 0,  

(III) ~ @ ~  (Wij) = 0, 
[N(W ~//;) = O, 

(IV) ~2'~ ® ~. (Wij) = 0, 
[~ / ' (W~' / / )  = 0 .  

Proof. Obviously, the statement (I) implies all the others. The relevant 
part of the proof is to show that (II)~(I), (III)~(I) and (IV)~(I). 

(i) Assume (II). Eq. (II) is mathematically equivalent to 

(gi, + 2ViVp) WPJ//, = 0 (2.20) 
21 Commun. math. Phys., VoI. 20 
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as the matrix g~p + 2Vi V v is non-singular for any time-like unit vector 
field V i (check). If we evaluate the covariant derivatives explicitly, and 
make use of Eqso (2.9), (2.t4), we can write Eq. (2.20) in the form 

M/k#kq + Ni~# k = 0 (2.21) 

where 
MiJk= BiJk-t- 2 gi VpBPJk= gik V j -  Vi~kJ-- Vk(~i j (2.22) 

and the coefficients Nik are functions of gpq, qpq, r, Vp, Vp.r. 
Ve may regard Eqs. (2.21) as a system of partial differential equations 

for the unknowns/~k. Eqs. (2.18), (2.19) provide the initial data 

#k=0  on B (2.23) 

(by Eq. (2.17)), and the boundary conditions 

BiSkf, jflk--= l~,liJkf, jllk=O on S. (2.24) 

We shall now prove that the system (2.21), (2.23), (2.24) admits the 
unique solution/~k__ 0. 

To this purpose we notice that Eqs. (2.22) imply Mi~k = Mk~. 
Moreover, for any time-like hypersurface ~o(x t x2x 3 x 4) = 0 satisfying 

q04 >0,  the matrix ~k = M/kq~ i is positive definite. In fact, by a proper 
choice of the local coordinates, we may always require V ~ =7 ~ and 
~o, i = a6~ (a > 0), at any given point x E ~2. In these co-ordinates we have, 
by Eq. (2.22) 

a (Oik 2gi4~4 ) 212k a . . . .  (g~fl~a~fl_ g44~4/~4) ~ O 

unless 2 ~ - 0. 
Therefore, by Sylvester's law, the matrix ~k  is positive definite in 

every frame of reference. 
The previous properties show that the system (2.21) is symmetric and 

hyperbolic (see Appendix). Also, recalling that the vector field V i is (C, tit) 
(by the prescribed properties of the congruence F), while the metric 
tensor go is (C~, Ca), we see that the coefficients MiJk and Nik are  respec- 
tively (C, Ca) and C. 

We can therefore apply the general uniqueness theorem stated in the 
Appendix. 

Taking Eqs. (2.23), (2.24) into account, we obtain ltk= 0 in £2, and 
therefore, by Eq. (2.14), Wis=O in f2. 

This completes the proof that (II) ~ (I). 
(ii) Assume (III). Then, by Eq. (2.15) and the first condition in (III) 

#~ = c V j (2.25) 
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i.e., by Eqs. (2.9), (2.14) 

W ij = - c(2 V ~ l#  + f J ) .  (2.26) 

Eq. (2.26) and the second condition in (III) imply 

V~c,j + 2c V~z,j = 0. (2.27) 

Moreover, by Eqs. (2.18), (2.19), (2.26), taking Eq. (2.17) into account 

c = 0  on B, (2.28) 

V~(W'J f ,  j )=cVJ  f ,  j = O  on S. (2.29) 

Finally, by the time-like character of the vector field V i, we have 

vJcp,~ > 0 

for any time-like hypersurface go(xlx2x3x 4) = 0 satisfying 9, 4> 0. 
Using the condition V ~ ~ (C, C1), we see that we can again apply the 

uniqueness theorem stated in the Appendix. This gives c = 0  in f2, i.e., 
by Eq. (2.26), Wi~=O in f2. Therefore also (III)~(I).  

(iii) Assume (IV). Then, by Eq. (2.16) and the first condition in (IV) 

•kl/k = 0 (2.30) 
:i.e., by Eqs. (2.9), (2.14) 

W • = - (6kiV J + visk j) Iz k , (2.31) 

Eq. (2.31) and the second condition in (IV) imply 

- (g ,p  + V,.Vp) WPJ//~=(g~, + V~r/~) VJ/~k//~ + H~k#k=O, (2.32) 

i:he coefficients Hik being function of gvq, gpq, r, Vi, V~,~. 
If we now differentiate Eq. (2.30) with respect to x j, we see that Eq. 

(2.32) may be written in the equivalent form 

(g~k + 2 V~ 1/),) vJ#k,~ + H~ ~k = 0 (2.33) 
with 

I2Iik = Hik + V~ V ~ Vk//i + (gi; + 2 V i Vv) V~ {kPj} . 

The system (2.33) is again symmetric and hyperbolic, as may be 
easily checked. 

Moreover, Eqs. (2.17), (2.18), (2.19), (2.30), (2.31) imply the initial data 

~ J = 0  on B (2.34) 

and the boundary conditions 

(6ip+ V~Vp) Wpj f ,  j=#~V~ f ,~=O on S. (2.35) 
2[* 
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Finally, the coefficients of the system (2.33) satisfy the continuity 
requirements stated in the Appendix. Therefore, by the uniqueness 
theorem, we deduce again #k=0 in f2, i.e., by Eq. (2.31), w i J = O  in f2. 
Thus, also (IV)~ (I), and the proof of Lemma 2.2 is complete. 

We now consider the tensor field (defined in the domain O) 

W ij = G ij + k T  ~; . (2.36) 

Then, by the topological structure of U4, Eqs. (2.18), (2.19), are iden- 
tically satisfied, and are in fact to be regarded as consistency conditions 
for the initial and boundary data of the gravitational problem [18]. 
Also, by Lemma 2.t. Eq. (2.14) is mathematically equivalent to 

JV" ® Y ( W *  ~J) = Y  ® Y  [R  ~ + k ( T  ~j - ½ Tg'J)] = 0. (2.37) 

Finally, in view of the Bianchi identities, the equation W~J//j = 0 can 
now be replaced by Ti3/, = O. 

tf we collect all these facts, and apply Lemma 2.2, we obtain the result 
stated at the beginning of this section, namely: the gravitational Eqs. 
(2.4) are mathematically equivalent to any of the systems (~), (t3) and (7), 
provided that the initial and boundary data satisfy the consistency con- 
ditions (2.5), (2.6). 

§ 3. The Problem of Motion 

Let T~j be the energy-momentum tensor of a material continuum 
whose hystory is contained in the world-tube O introduced in Section 2. 

Consider the eigenvalue equation 

(T,~ + ~9,j) W = 0 (3.1) 

with the normalization 
gij Vi V j  = - 1. (3.2) 

We assume that the eigenvalue # exists, and is real, positive and 
non-degenerate. 

In this case, the tensor ~ admits a unique decomposition of the form 

T~j = # V~ Vj - S,~ (3.3) 
with 

Sit vJ  = 0. (3.4) 

We assume V i e (C, C1), and identify the quantities #, V ~ and Sij with 
the density, four-velocity and stress tensor of the continuum respectively. 

The problem of motion consists of the determination of the density 
# and of the congruence F of stream-lines of the continuum, these being 
world-lines having V i for unit tangents. 
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To achieve this goal we have at our disposal: 

(i) Einstein's gravitational equations 

Gij = - k T~j , (3.5) 

(ii) the state equations describing the physical structure of the con- 
tinuum, 

(iii) a suitable set of initial and boundary data. 

We assume that the geometry of space-time inside f2 is uniquely 
determined by (i), (ii), and (iii) 

Under these conditions, the problem of motion is well posed and 
physically acceptable. Our aim is to discuss its general structure. 

To this purpose, we consider the projection operators ~ and Jff 
associated to the vector field V ~ by Eqs. (2.1), (2.2). In terms of these 
operators, Eqs. (3.1) are mathematically equivalent to 

© Y ( T  ~j) = 0, (3.6) 

~ ® Si~( T ij) = # Vi V j (3.7) 

'while Eqs. (3.3), (3.4) imply 

JV" @Ar(T ~j) = - S ~J . (3.8) 

One can easily check that Eqs. (3.6) are satisfied if anY only if the 
fimelike vector field V ~ is an eigenvector of T~j, irrespective of the value 
of p. 

Therefore, Eqs. (3.6) de f ine  the four-velocity V i in terms of Tij, and 
Eqs. (3.7), (3.8) define the density p and the stress tensor Sij  in terms of 
V i and Tij. 

If we now use Eqs. (3.6) + (3.8) and Lemma 2.1, we can express the 
field equations (3.5) in the form 

© Y ( G  ~j) = 0, (3.9) 

~ ® ~ ( G  'j) = - k v '  v j , (3 .10)  

X ® Y [ R  'j + k ( T  'j - ½ Tg'J)]  = 0. (3.11) 

Using the same argument as before, we see that Eqs. (3.9), (3.10) 
d e t e r m i n e  V ~ and # in terms of the gravitational fields g~J. 

In this sense, Eqs. (3.9), (3.10) are mathematically equivalent to the 
equations of motion for the given continuum, as they express the relevant 
kinematical quantities in terms of the dynamical effects. 

The reason why we do not assert that Eqs. (3.9), (3.10) are the equations 
of motion is based on the fact that the equations of motion should in 
principle be able to determine the evolution of an arbitrary infinitesimal 
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portion 6 of the continuum in terms of the dynamical effects generated 
by the rest of the continuum and by the external sources. 

Now, let £~'C (2 be the (infinitesimal) world-tube containing the 
hystory of 3. 

Then Eqs. (3.9), (3.10) express /2 and V i inside f~' in terms of the 
Einstein tensor Gij inside Q', i.e. in terms of the dynamical effects 
generated by 6 itself. 

In particular, if we neglect these effects by letting k ~ 0  (i.e. G~j~O) 
in f2', Eqs. (3.9), (3.10) become identities, and do not determine the 
evolution of 3 any longer. 

Thus we conclude 

Theorem 3.1. The equations of motion for a material continuum of the 
form (3.3) are completely characterized by the following properties: 

a) they must be mathematically equivalent to Eqs. (3.9), (3.10); 
b) they must remain non-trivial (i.e., they must not reduce to identities) 

in the limit k ~ O. 

If we now apply to the system (3.9)+ (3.11) the results of Section 2, 
taking Eqs. (3.6), (3.7) into account, we see that Eq. (3.9) may be re- 
placed by 

Y ( T ° / / )  = 0, (3.11) 

while Eq. (3.10) may be replaced by 

.~(Ti~//) = 0. (3.12) 

Eqs. (3.11), (3.12) are mathematically equivalent to the divergence 
equations .. 

T~J//~ = 0. (3.13) 

These equations are surely non trivial in the limit k ~ 0 ,  as they are 
perfectly meaningful even in a fiat space-time (k = 0, Gi~ = 0). 

Therefore, in view of Theorem 3.1, we conclude. 

Corollary 3.1. The equations of motion for a material continuum of the 
Jbrm (3.3) are the divergence equations (3.13). More precisely, if we split 
these equations into the system (3.11), (3.12), Eqs. (3.11) determine the 
evolution of the four-velocity field V i (and therefore the congruence of 
stream-tines of the material continuum), while Eq. (3.12) determines the 
evolution of the density. 

The proof of all these assertions follows easily from the previous 
arguments, and will be omitted. 

This work has been performed while the Author was a scholar at the Dublin Institute 
for Advanced Studies, School of Theoretical Physics. 

The Author wishes to express his sincere gratitude to Prof. J. L. Synge and Prol~ J. R. 
McConnell for their warm hospitality. 
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Appendix: Uniqueness Theorem for Symmetric Hyperbolic Systems 
of Partial Differential Equations 3 

In the space-time manifold "U4, consider the linear operator  

L = A t - -  + B (A.1) 
0x i 

where A t and B are real n x n matrices whose entries are functions of 
(xl x2x3x+). 

We assume: 

(i) all l~he matrices A i are symmetric,  
(ii) the matrix A i (0,i is positive definite for any time-like hypersur-  

face (p(x t, x 2, x a, x 4) = 0  satisfying (P,4> 0 (so that, in particular, A s is 
positive definite). 

(iii) A i ~ (C, (1)  and B s C. 

The first two condit ions imply that  L is a symmetric  hyperbolic  
differential operator .  

Now,  let f2 be the domain  in t roduced in Section 2. In f2 consider the 
field u = (u~,..., u"), where the componen ts  u k are C1 functions of the 
space-time co-ordinates.  

We shall prove the following 

Theorem A.1, The system 

L[u]  = Aiu, i + Bu = 0 (A.2) 

admits the unique solution u = 0 in f2, provided that the following con- 
ditions are satisfied: 

(I) u=:O on B, 
(II) (u lA i f ,  iu )>O on S. ~ 

Proof. By setting u =  e =x`. v, we can write the system (A.2) in the 
equivalent tbrm 

L[v]  =Aiv ,  i + (B + eA 4) v = 0 .  (1.3) 

Using Eq. (A.3) and the condi t ion (i) we obtain 

2(vlL Iv]) = 2(vlA~v,~) + 2(vl[B + ~A ~] v) = (v ia  ~ v),, + (v IN v ) :  0 (1.4) 

with 
/~ = 2(B + ~ A  4) - Ai, i. 

3 The material of this Appendix is a straightforward generalization of the results 
:~hown in Ref. [14]; it is reported here for convenience of the reader. The notation, ter- 
iainotogy, etc., are the same as in [14]. 

4 The symbol (1) is used here to denote the usual scalar product in the Hilbert space 
!R =, namely (ulv) = ulv ~ + ... + u~v =. 
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By the conditions (ii), (iii), and the arbitrariness of e, we see that it 
is always possible to require that the matrix/3 be positive definite in the 

whole domain ~2. 
Now, let Z be any time-like section of ~, with local equation 

~o(x 1 , x 2 , x 3 , x 4) = 0, ~o,4 > 0. 
We integrate Eq. (A.4) in the domain N bounded by the hypersurfaces 

B, S and I:, and use Gauss theorem. This gives 

- j(v[Aav)+j(v[AJv)f,j+ j(v[A~v)q),~+ j J (v l /3v)=0 .  (A.5) 
B S i~ 

The first term in Eq. (A.5) vanishes in view of the condition (I). 
Moreover, by the conditions (II), (ii) and our previous arguments, all the 
other terms in Eq. (A.5) are necessarily non-negative. 

Therefore, in order that Eq. (A.5) be satisfied, we must necessarily 
have v = 0  in 9 .  By the arbitrariness of Z, this implies v = 0  in/2,  i.e. 
u = e~X4v = O in  f~. 
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