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Abstract. The concept of locality in quantum physics leads to mathematical structures 
in which the basic object is an operator algebra with a net of distinguished subalgebras 
(the "local" subatgebras). Such nets provide a classification of the states of this algebra in 
equivalence classes determined by local or asymptotic properties. The corresponding 
equivalence relations are natural generalizations of the (more stringent) standard quasi- 
equivalence relation (they are also useful for classifying states by their properties with 
respect to automorphism groups). After discussing general nets from this point of view we 
investigate in the last section more specialized nets (funnels of yon Neumann algebras) 
with special emphasis on their locally normal states. 

Introduction 

In  the algebraic approach  to Q u a n t u m  Field Theory  or Statistical 
Mechanics  one deals with a C*-algebra 9 /wi th  a distinguished collection 
of  subalgebras 9/~. The physical significance of the index e is usually to 
specify a region in Minkowski  space (resp. Euclidean space). Then 9/~ is 
the algebra generated by the physical operat ions (or observables) which 
can be performed in the specified region. The collection {9,I~} provides 
a "net" for 9 / in  the sense of Definit ion 2 below and for many  purposes  we 
may  assume that  it is a "funnel" (see Definition 7). 

Parallel to observables and operat ions we have to consider the 
physical states. In the mathemat ica l  frame they are given by positive 
linear forms (expectation functionals) over the algebra. The set of these 
forms is denoted by 9,1 *+. One m a y  take the att i tude that each o) e 9/*+ 
corresponds to a physical state, but  that  no  actual experimental arrange- 
ment  can prepare a state precisely. Rather  an experiment specifies a 
weak ne ighborhood  in the space of positive linear forms. This is the point  

* The research in this paper was supported in part by the N.S.F. and the Minist6re de 
l'Education Nationale. 
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of view adopted in [1]. It results if one assumes that 92[ contains all 
observables and that no further knowledge about a state is available 
beyond the information obtained from the measurement of a finite 
number of observables. A consequence of this point of view is that one 
can treat all experimentally relevant questions by using a very restricted 
set of states, namely the vector states of one faithful representation of 9,1 
because such a set is weakly dense in N*+. Moreover, the choice of this 
representation is arbitrary. Another possible point of view [2] is to 
assume that the "physical states" are a distinguished subset 5 ~ C 9.I* ÷ 
so that the theory specifies (9,I, 5 p) rather than 9_I alone. The two points 
of view are reconciled if one acknowledges that in each case an idealiza- 
tion is made and that the idealizations have to be judged by their con- 
venience rather than by fundamental principles. In the first point of view 
the idealization consists in the choice of the algebra 9A. This specifies 
precisely what is supposed to be observable. In practice the precise 
choice of the local subalgebras 9.I, may be a matter of dispute. For 
example, in the non-relativistic many body problem of a single type of 
Fermi particle, interpreting the index e to specify a finite region V in 
3-dimensional Euclidean space at a time t and writing ~(V, t) instead of 
~I~, the simplest choice for N(V, t) would be to take the smallest 
C*-algebra containing all creation- and destruction operators for a 
particle whose wave function at time t has support in V. This should first 
be considered as defining a collection of concrete operator algebras, 
denoted by C(V, t), in Fock space. Each C(V, t), as a C*-algebra, is iso- 
morphic to the Clifford algebra over a separable Hilbert space. If we 
regard the collection of all these C(V, t) as a net of C*-algebras (keeping 
their mutual relations in so far as they are independent of the realization 
in Fock space) then we encounter the following two problems. 

First, this algebraic structure allows many states which are not 
physically realizable in realistic systems, namely states which describe 
an actual infinity of particles within a finite volume V. A "physical state" 
should be "locally normal" [3] with respect to the Fock representation, 
i.e. the restrictions of all physical states to one local subalgebra lie in 
one quasi-equivalence class. This allows us to choose as the local algebra 
9X(V, t) instead of C0¢, t) its weak closure ~d(V, t) in the Fock represen- 
tation or any other C*-algebra in Fock space whose weak closure 
coincides with .~(V, t). We can use this freedom to return to the first 
mentioned point of view by building up the local algebra ~I(V, t) from 
the relatively compact operators in dg(V', t) with V' C V. 

Secondly, there is the problem of the relation between the algebras 
associated with different times. The dynamical law, formulated for 
instance by the Heisenberg equations of motion for the creation opera- 
tors, means that a local observable at time t should be expressible also in 
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terms of the observables at an arbitrary other time. One may therefore 
hope that one can (by a proper choice of the local algebras 9.1(V, t)) define 
a "kinematical algebra" 

9x(0 = U ~ ( v ,  t) (1) 
v 

in such a way that 
9.I(t) = 9.I(t') = 9.1, (2) 

i.e. that the kinematical algebra at an arbitrary time is already the full 
algebra mentioned at the beginning of this section. In that case the group 
of time translations will be a subgroup of the automorphisms of 9.1 (i.e. 
time translations will be represented by automorphisms of ~I). If we 
choose ~I(V, t) = C(V, t) then for a system of non-interacting particles 
and also for sufficiently "mild interactions" Eqs. (1), (2) will be true. 
They cease to be true, however, in the case of most practical interest, 
where the interaction is given by a velocity independent 2-particle 
potential. One might be inclined to put 9A(V, t )=  rig(V, t) in that case. 
It has been pointed out to us by Araki that such a choice can only make 
matters worse. A very simple argument shows that with this choice of 
9A(V, t) Eq. (2) does not even hold for the non-interacting particle system. 
It is at present unknown whether a suitable choice for 9~(V, t) can be 
found for which Eqs. (1), (2) hold in a sufficiently general class of inter- 
actions. This question will, however, not be studied here. 

The objective of the present paper is to study different ways of 
classifying states of 96 into equivalence classes. We shall assume that 
we are dealing with a distinguished subset S e C ~I *+ of states. The 
various definitions of "equivalence" will be related to various properties 
with respect to a net of subalgebras {9.1~}. 

The last section of the paper, dealing with "funnels" of yon Neumann 
algebras, can be read independently of the earlier sections (except for the 
definition of nets of subalgebras). In particular it makes no use of the 
concepts of relative equivalence and containment. 

§ 1. Relative Equivalence and Relative Containment 
of Representations of a C*-Algebra 

In this section we describe a generalization of the notions of quasi- 
equivalence and quasi-containment of representations (or states) of a 
C*-algebra 1. This will provide a unified language for dealing with the 
type of situations mentioned in the Introduction and discussed in 
Section 2 below. After a statement of definitions and notation, we list 

We refer to [4] the reader interested in the corresponding relative central decom- 
positions of states. 
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results without giving the proofs which can easily be adapted from 
known arguments ([5], Chapter I, [6], Chapter 5). 

Let 92 be a C*-algebra with double dual (yon Neumann enveloping 
algebra) 9.I**. We first remind the reader that one can define quasi- 
equivalence (quasi-containment) of representations of 92 by using as 
follows the center ~ of 92**: if, with 7z a representation of 92, we denote 
by ~ its ultraweakly continuous extension to 92**, by K ° the generating 
projector of the kernel of~; and if we set S ° = I -  K° (so that K~,° S~° ~ ~) ,  

__ 0 rq is quasi-equivalent to (quasi-containedin) rc 2 if and only if S°1 - S~2 
(S°i < SO). In this way quasi-equivalence classes of representations of 
92 are set into a one-to-one correspondance with projectors of ~e. Further- 
more, with M an arbitrary set of representations of 92 and ~ = @ n, 

z~M 
one has S O = V SO 2; and the minimal projectors of ~e correspond to 

nsM 
the quasi-equivalence classes of primary (factor) representations of 96. 
Our generalization will now consist on the one hand in replacing 92** by 
the closure [50]* of 92 in the weak topology of operators determined by 
some faithful representation (having 50 as its set of normal positive linear 
forms); and on the other in taking instead o f ~  e an arbitrary von Neumann 
subatgebra ~e 1 of the center of [50]*. We first introduce some terminology 
and notation. 

Let 92* + be the set of positive linear forms over 92. A subset of 92* + 
will be called a f o l i u m  3 whenever 5 ° is (i) closed under convex com- 
binations (ii) closed in the norm-topology of linear forms (iii) such that 
for each q) ~ 5° and A e 92, (PA = q~(A* • A) e ~ The normal positive forms 
of any representation rc of 92 form a folium which we denote by 50~. 
Conversely any folium 50 is of the form 50, for some representation 7z 
which we can take to be the direct sum ~z = @ rc~o of all cyclic represen- 

t.p e ,9 ° 
tations rc~o determined by the elements q) e ~ Given two representations 
na and 7c 2_ of 92 nt is quasi-equivalent to (quasi-contained in) 7~ 2 iff 
50.~ =50~(50~ __c 50~2). This establishes a one-to-one order-preserving 
correspondence between the folia of 92*+ and the quasi-equivalence 
classes of representations of 92. (With q0 a state of 92 we note that the 
normal folium 50~ of the representation n o generated by ~o is the smallest 
fotium containing qL) 

Let now 50 be a folium in 92* +, with zs, = @ n o, so that 50 = 50~j. 

We assume that 50 is w*-dense in ~21 *÷, so that -Cse is a faithful represen- 
tation 4; and identify A E 9.1 with zs,(A) acting on the representation space 

z V denotes the union of projectors. 
Our folia correspond to the norm-closed invariant faces of [7, 8]. 

4 By Theorem (2.2) of [2] this is equivalent to the assumption that 5 e is a full folium, 
i.e. that A > 0 if q~(A) => 0 for all ~o in 
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~s~  of z z, thus considering 92 as a concrete C*-algebra acting on ~ e .  
The linear hull [6"] of ~ is a Banach subspace of the strong dual 92* of 
91, consisting of all the linear forms of 92 continuous in the ultraweak 
topology of operators on oVf~s~ (or the weak topology of 92 with respect 
to [~]) .  The norm dual [ ~ ] *  of the Banach space [~ ] ,  then coincides 
with the weak closure, z z(92)", of 92 acting on ~ ,  since [ ~ ]  is the set of 
ultraweakly continuous linear forms (the predual) of z~(92)". Therefore 
[5"]* = z~(92)" is a yon Neumann algebra, the strong and w*-topologies 
of [ ~ ] *  as a dual space coinciding respectively with the norm and ultra- 
weak topology of operators. (In the particular case when ~ consists of 
all positive forms of 92, ~ = 92*+, Zs~ is the universal representation z 
of 92 and [60]* = 92**, the yon Neumann enveloping algebra of 91.) Let 
Ns~ be the set of representations rc of 91 quasi-contained in Zs~ (i.e. such 
that ~ c__ ~q~). As a generalization of the universal property of 92**, we 
have that each representation rc E N~o (each state q~ e ~ )  uniquely extends 
to a normal representation ~" (state ~ of [~ ]* ;  moreover rc([~]*) is the 
weak closure of the concrete C*-algebra rc(92); and ~~o = rc~. Denoting 
by ~s~ the center of the yon Neumann algebra [~]* ,  we are now in a 
position to give 

Definition 1. Let ~1 be an arbitrary yon Neumann subalgebra of ~se. 
With zr ~ ~s~, we denote by K~ the generatin 9 projector in ~r of the kernel 
of ~1 ~1, the restriction of ~ to ~r~ ; and by S~ = I - K~ the complementary 
projector of K~ in ~1 (called the Lr 1-carrier of re) 5 With rq, rc 2 in ~s~, we 
say that 

(i) rq is ~l-contained in rc 2 (rq c~ rc2) whenever S~ < S~ (or K~ ~ K~) ,  
(ii) rq and r~ z are ~rl-equivalent ( ~  .7 r~2) whenever S~ = S~ (or 

K~, = K,:) ,  
(iii) rq and ~2 are ~rt-disjoint (zq6rc2) whenever S~S , z=O (or 

K ~  v K,~ z = I). 
Further r~ ~ ~ is called ~<~'~-primary whenever zq o~ ~ implies rq T ~z 

~br all ~h e Ns~ (or else if S~ is a minimal projector of ~ ) .  
For states of 9I, ~l-containment (-equivalence, -disjointness, -primari- 

ness) are defined as the same circumstances for the associated represen- 
tations. 

We have thus defined an ordering ~ of-~se, and associated equiv- 
alence T,  which reduce to quasi-containment and quasi-equivalence 
in the case ~ = 91" + and ~ = ~r 6. We note that the above definitions 
are invariant under addition of a null representation as a direct summand 

5 With K ° the generating projector of the kernel of ~-in [S~]* and S ° = I - K ° we note 
that K~ is the greatest projector of . ~  smaller than K °, and S~ the smallest projector of 
~ greater than  S °. 

6 Or in the case of a general :~ and ~f'~ = ~ e ,  to the usual notion of quasi-containment  
and equivalence restricted to representations in Ns~. 
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to the representations under consideration. In this respect our generalized 
disjointness and primariness notions differ slightly from the usual ones 
in the case of degenerate representations: for 5 ° = ~I *+ and N1 = ~,  
~t-disjointness of n, and n 2 in our sense means that the essential parts 7 
of n1 and ~2 are disjoint in the usual sense; and analogously n will be 
~(-primary in our sense if and only if it is the direct sum of a null represen- 
tation and a primary representation defined as usual. For essential 
representations all our generalized notions merge exactly into the usual 
ones in the case Y =  9.I *+ and ~1 = ~ .  Obviously, two ~el-primary 
representations are either ~l-equivalent or ~-dis jo int .  The following 
statements are listed without proofs, since most of them are straight- 
forward generalizations of known facts in the theory of quasi-equiv- 
alence of representations. 

(a) Let n = @ n~ with n, e ~se, v e I: then n e ~s~ and ~ = @ ~-~. 
v~I vel  

Furthermore K~ = ~ K~. and S~= v S~v. In particular for gl, 7~2 e ~ y ,  

K~j ~2 = K~j K~2 and S~ e,~ = S,1 + S~ - S~ S~. 

Combining this with the preceding definition we have that: 

(b) There is a one-to-one correspondence between ~l-equivaIence 
classes of representations in Nse and projectors in ~1; whereby ~l-con- 
tainment, ;£fl-disjointness, ~l-primariness and direct sums of (classes of) 
representations go over respectively into contaimnent, orthogonatity, 
minimality and union of projectors. The ~l-equivalence classes of represen- 
tations thus build a Boolean algebra. 

We next state properties of the Y',-carriers connected with the 
representations themselves: 

(c) Let n ~ ,~s~. Then g(S~) is the essential projector of n (the smallest 
projector E acting on the Hilbert space of n such that En(A)= n(A), 
A + ga). 

(d) Let nl be a subrepresentation of n ~ ~ .  Then nl ~ ~ and nl ~ n. 
Furthermore ~(S~,) is the smallest projector in ~(~t) containin9 the 
essential projector of n 1. 

(e) Let n ~ ~ and let S be a projector in ~1. Defining o(A) = ~(SA), 
A ~ 9.I, one obtains a subrepresentation ~ of n with S O = SS~ (in particular 
S o = S if S < S~). Moreover ~(SS~) and ~(S~-SS~) are the greatest 

7 With ~ a representation of~i  on the Hilbert space ~ we recall that a subrepresenta- 
tion of ~ !s a representation ~ of 9.I on d~ of the form zq (A) = Pn(A), A ~ ~, with P a pro- 
jector acting on ~,~ which commutes  with ~(9~). A representation n is called essential (non 
degenerate) if it has no null subrepresentation. The essential part o fn  is the subrepresentation 
n~ of the foregoing form with P the greatest projector such that ~ is essential (P is then 
called the essential projector and PoV the essential subspaee of n). 
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projectors determinin 9 essential subrepresentations of  7z respectively 
Lr i-contained in and ~l-dis joint  f rom the ~l-equivalence class of  represen- 
tations determined by S. 

As immediate  corollaries we have that 
(f) With hi, n 2 ~ ~5~ one has ni ~ n2 i f  and only if n 1 is ~l-equivalent  

to a subrepresentation of  n 2. 
(g) With ni, n 2 E~S,o and assuming n 1 essential, n 1 is uniquely de- 

composed into a direct sum n'l 0 n'a' o f  a subrepresentation n'l ~rl-contained 
in n 2 (determined by the central projector ~-l(S~2)) and a subrepresentation 
n~ disjoint f rom n 2. 

The next two propert ies are relative to mutual  relationships of sub- 
representat ions of the same representat ion:  

(h) Let  nl, n 2 e ~s~ and consider n = n 1 G n  2. Then n i and n 2 are 
~l -dis jo int  i f  and only if  the essential projector of  n 1 belongs to n-(~fl). 

(k) Let  hi ,  n2 ~ ~SP be subrepresentations of  n e ~ ;  and let F1, F2 be 
the smallest projectors o f  ~-(~ei) dominating the respective essential pro- 
jectors of  n i and n 2 (so that F i = ff(S~l ) and F 2 = ~(S~2 ) by (d)). We have 
the following equivalences." n 1 ~ n 2 , ~ F  1 < F2 ; nl "7 nz¢~Fi = F2 ; nl 6 n2 
~ F i F 2  = 0. 

We next characterize 5fi-primariness of a representat ion or a state: 

(1) n e ~ is ~ i -pr imary  if  and only if  n-(~i) reduces to the multiples 
of  the unit operator on the essential subspace of  n ( i f f  ~-(~el) is one-dimen- 
sional). 

(m) Let  q~ e 5 ¢ with n o the corresponding representation of  9,I acting 
on the Hilbert space ovf with cyclic vector [2 such that ~o(A) = ([2, n~(A)f2), 
A eg.[. 

The following are equivalent: 
(i) ~o is ~ l -pr imary  ; 

(ii) for  each A e 9.1 and Z e Lr i Co(AZ) = ~o(A) Up(Z); 
(iii) for  each A e [ S e ]  * and Z e ~ i  ~ ( A Z )  = Up(A) UP(Z); 
(iv) ~--~(~ei) reduces to the multiples o f  the identity operator I oJ"~vt~. • 
(v) -~-~(Z) = ~(Z)  o I for  all Z e ,~i ; 

(vi) ~-~(L71) is one-dimensional; 
(vii) the restriction o f  Up to ~1 is pure. 

The next three properties state relationships between our  ~x-pr imar i -  
ness and ~l-dis jointness  not ions and the usual ones: 

(n) I f  n 1 C ~5~ is quasi-contained in 7z 2 E ~ ,  7"f, 1 is ~ l -contained in 
n2. In particular n~ ~ n2 implies nl "T re2. 

(0) I f  n e ~ (cp E 5, ~ )  is primary, it is ~i -pr imary.  
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(p) Two essential representations n~, n z ~ ~t~ (two states qh, q~ ~ 50) 
which are ~-dis jo int  are disjoint s. 

We finally give an interpretation of the foregoing notions in terms 
of the " ~ - f o l i a  of representations": 

(q) Let z~ ~ ~ .  The sets 

M 1 = {~; ~ 5°; there is a ~p ~ 5 ~ with ~p(A) = Up(S~A), A ~ ~ } ,  

M 2 = {~p ~ 5¢: Fp(S~A) = ~p(a), A ~ 9A}, 

M 3 = U S ~  ~ , 

define the same subset Y,~ of 5 ¢ called the ~- fo l ium of re. One has ~o ~ ~ 
.~z~ c~ n. For n~, n 2 ~ Ylz we have the equivalences n~ T z r z~Z~  = X~;  
7q q: nz~=~12~ = ~ ;  rc~ ~ n ~ - Z ~  c~ 22~ = {0}. With rc~ ~ .~s~, v ~ I, ~@rc~ 

is the norm-closed convex hull of the union of all N~,v ~ I. 

§ 2. Applications to Nets of Subalgebras and Groups of Automorphisms 

A. Local and Asymptotic Properties Relative to a Net  of Subalgebras 

The general context of this sub-sections is that of a "net of local sub- 
algebras" defined in the following way: 

Definition 2. Let 9.I be a C*-algebra. A net of gA is a collection ~- = { ~ }  
of C*-subalgebras of 9.1 (the "local subalgebras') with the following 
properties 

(i) to all pairs 9.I~, 9 . I ~ g  there is ~ with 9.I~u~p ~ ~7; 
(ii) the unit of 9A, if it exists, is contained in all 9.I~ ~ Y ;  if' 9.I has no 

unit, every approximate unit of each 9.1~ ~ o~ is an approximate unit of 9A 9; 
(iii) the union U 9A~ of all 9I, is norm-dense in 9.11°. 

8 More generally if ~1 and Lr2 are von Neumann  subalgebras of ~ with ~1 < ~2 ,  
we have for ~ ,  nz, zc e N ~  and q~ ~ ~ with evident notation: 

(n') ~1o;~2~1% ~2- 
(o') If zr(~o) is ~e2-primary, it is ~1-primary. 
(p') ~ ~ ~ ~ ~.  
9 We note that this property entails that each essential representation of 9.1 is essential 

in restriction to all ~1~ ~ ~-: and that a state of 9.1 furnishes by restriction a state of 9~ for 
all ~ s 

~0 Given two nets ~ = {~,} and ff = { ~ }  of ~ ,  we write ~ < ~ whenever, to each 
9I~ e ~,, there is a ~1~ ~ ~ with 9~ c 9.I~. 
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Given a C*-algebra 9I with a full folium 5" of positive forms and a net 
.fi, we next define two von Neumann algebras ~t  and ~ of the center of 
[5~] *, each of which determines as above a notion of equivalence and 
containment of representations of 91. The indexes l and c stand for 
"local" and "commutant",  as the so obtained notions are respectively 
related to properties holding "within" the local subalgebras and on their 
relative commutants. 

Definition 3. Let 9~ be a C*-algebra equipped with a full folium 5" of 
positive forms and with a net ~ Retaining the identification 91 = z~(91) and 
taking commutants and bicommutants in the representation zy, we denote 

- by ~1 the yon Neumann algebra generated by the central supports 
relative to 91" of all elements of the centers 91" c~ 91'~ of all 9if; 

- by ~ the intersection of all 91~', 9 1 ~ ,  where 91~ = 91'~c~91 is the 
relative commutant of 91~ in 91. 

We denote accordingly by "7, c~,6 ; and by "7, ~ , 6  the respective 
relative equivalence, relative containment and relative disjointness of  
representations given in Definition 1 where one takes ~1 = ~rl; and 
~ = ~c ~1 

9V" C 91' We note that for each 91~ e ~,  ~ c 91~' and 9.1~ c 91, so that _.~ = _.~ 
(whence 91~" c 91' by (iii) of Definition 2) and 91~" ____ 91"= [SP] *. Thus 
~ belongs as implied above to the center Lr~ of [5"]*. 

The local nature of ~l  is shown by 

Proposition 1. Let ~zi, ~2 E ~ 9  ~ and assume ~z 1 ~ n 2. Then for each 
91~ E ~ the restriction n 1 1 91~ of nl to 91~ is quasi-contained in n2 1 9.I~. In 
particular, if n 1.7n2, n1191 ~ and ~z2191 ~ are quasi-equivalent for all 
9 1 ~ e ~  

Proof. Consider n ~ ~ with ultraweakly continuous extension ~" to 
[5"]* and denote by K ° and K~ the respective generating projectors of 
Ker~  and K e r ~ ' ] ~  t. For 9 1 ~  and any L~92~c~92'~ with central 
support C L we have (since C L ~ ~ and K ° ~ ~s~) the equivalences: 

K,~Cr~ = CL ¢~g(CL) = O'~'~ K° CL = CL.~ K° L = L.~..ff(L) = O . 

Therefore if n~, n:  ~ ~ are such that n~ % n z, whence the implication 
K ~ C  L = C L ~ K ~ t ~ C  L = C L for  L ~ 9 1 ~ 9 1 ' ~ ,  we have also the implication 
~-~(L) = 0 ~ - I ( L )  = 0 for L ~ 91~c~91'~ i.e. the inclusion K e r ~  [ 91~c~91'~ 

Ker~- 2 [ 9 1 ~  91'~, or equivalently Ker~'~ [9~ ~ Kerff  2 ] 91~. In order to 
complete our proof we will now pass from there to the inclusion Ker ~-- -~  

Ker n2[ 91,, where n~ ] 91~ and n2 ] 91~ are the respective ultraweakly 
continuous extensions of n~ [ 9.1~ and nz [ ~ to the yon Neumann algebra 
[5~ [ ~ ] * ,  5" I 91~ denoting the set of restrictions of the states of 5" to 

~ The symbols ~,  o% 6 will be reserved for the usual quasi-equivalence, quasi- 
containment and disjointness of representations of ~- 
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9.I~ (this will imply our result see footnote after Definition 1). Now the 
restriction z~,l ~I~ of zz to ~[~ extends uniquely to a ultraweakly co- 
tinuous representation of [St 19.i~]* whose image is the weak closure 
9J 2 of Zs~(~2I~). Furthermore, since the normal states of ~s~l 9J~ comprise 
~[g[~ ,  this extension is faithful, so that we may identify [SPfg[~] * 
with ~I 2 as a v o n  Neumann algebra; whereby rq ] 9J~ and n21 9.I~ are 
respectively identified with the restrictions of rq and rc 2 to ~I~; whence 
our result. 

The next results are easy generalizations of a theorem of Powers ([9], 
Theorem 2.5). 

Definition 4. Let  (Pl and (02 be elements of  the linear closure [~9 °] of ~ ° '  
and denote by ~-~ and ~-2 their respective uttraweakly continuous extensions 
to [ ~ ] * ;  (01 and (02 are called ~c-equal whenever ~o 1 and Up 2 coincide in 
restriction to ~c.  

Lemma 1. Let  (01, (02 ~ [~ ] .  The following are equivalent: 
(i) ~01 and qo 2 are ~ - e q u a l ;  

(ii) to each ~ > 0  there is a 9 . i ~ e ~  with tlqh 19.i~-(0219X~ll <e. 

P r o @  We prove (i)~(ii). Assume (i) to hold and (ii) to be false. For 
each 9J~ e ~ the weak-operator closed set 

Q~ = {x  s %";  IIxN _-< 1, I g~ (x ) -  ~2(x)l >_- e} 

is non void. We note that 9,i~ ~ 9.Ip implies Q, __c Qp; thus (i) of Definition 2 
entails that the family {Q~} has the finite intersection property. The weak 
compactness of the unit ball of [5 P]* then yields the existence of a Z ~ ~c 
with I~(Z)-~--~2(Z)I > e, a contradiction. We now prove the converse 
(ii)~(i). Let e > 0 ,  assume (ii) and take Z ~ Z ~ .  Since Lr __cgX~", 
Kaplansky's density theorem yields a B eN~ with [IB]I < IIzll, 
I N ( Z ) -  qh (B)I < e and t(~2(Z)- (02(B)l ~ e; then 

I ~ ( 2 ) -  ~(2)1 =< ~(2 + II211) 
and (i) follows. 

Proposition 2. Let  (p ~ Y. The following are equivalent: 
(i) (0 is ~c-primary; 

(ii) to each A ~ 9.I there is a ~ ~ ~ with 

[(0(AN) - q0(A) ~p(B)I < ][Bl[, B e ~I~. 

P r o @  Define qh, (02 e [ ~ ]  by 9~(B) = (0(AB) and p2(B) = (0(A) (0(B), 
B s ~l. By (m) above, (i) means that (0~ and cpz are ~-equal .  But this is 
equivalent to (ii) where one takes A/e instead of A from the previous 
Lemma. 

Proposition 3. Let  qh, (02 e 5~ Then p~ 6 (02 implies tt(0, t ~I~ 
- (02 ] 9.I~[I = 2 for  all 9J~ ~ ~ .  The converse holds f (0~ and (02 are ~ -  
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primary. Two ~c-primary states qo 1 and (P2 are Lr~-equivalent if and only if, 
to each e > 0 ,  there is a 9 1 ~ Y  with [I~01 [ 9.I~-~02 [ 91~[[ =<e. 

Proof. Consider ~z = rc~0~ ® n~o, acting on 3:f =W~, G H ~  and denote 
by Et, E 2 the respective projectors onto 34:~, and 0;4:~, in .~. We know 
by (h) above that ~0 1 d (o2 entails E1 = ~-(Z0, E2 = if(Z2) with Z1, Z2 ~ Aec. 
For  each N~ e o ~, Z~, Z z E 91~", Kaplansky's density theorem then asserts 
the existence, to each e > 0 ,  of A~91~ with IIAII=I, I~p~(A-ZO] 
= [qh(A) - 11 < e and lq~2(A + Z2)[ = [q~2(A) + 11 < e; since e is arbitrary 
it follows that It cPl 1 91~ - q~2 [ ~ II ~--- 2. If ~0 1 and q~2 are Ae~-primary we 
have either cp~ 6 @2 or q9 1 ~ (])2. The latter entails by Lemma 1 the ex- 
istence of 9 1 , e f t  for which [[(0~ [ 91~-~% t 91~11 <e. 

Combining the two last propositions with (n) and (o) of Section I we 
get the 

Corollary.If(p is a primary state of  the C*-algebra 9I and i f ( =  {91~}) is 
a net for 91, then, given A in 91, there is an 9.i~ in ~ such that 

[(p(AB)-~p(A)ep(B)] < IIB[[, B~91~.  

Moreover, with qh and ~P2 quasi-equivalent, primary states of  91, for 
each positive ~ there is an 91~ in ~ such that ]]cp~ 191~-~,02191~11 <~. 

Remark. We note that Lemma 1 and Propositions 2 and 3 hold more 
generally replacing 91~ by ~ and ~e by (~ 54~', with {:f~} a family of sub- 

algebras of 91 such that (i) to each A ¢ ~ and e > 0 there is a 5¢, with 
I[ [A, B] It < a for each B in the unit ball o f ~  (ii) to each pair ~ ,  5¢a there 
is ~ contained in ~,c~ ~a. The algebra ~ (cf. [10], § 2) of Lanford and 
Ruelle, which is more genuinely asymptotic in nature than our ~ in 
that it excludes superselection operators, comes under the scope of 
this remark. 

B. Central Subalgebras Related to a Group of  Automorphisms 

Another structure to which the general notions of Section 1 apply is 
that ofa  C*-algebra 91 together with a weakly dense folium 5: of positive 
forms and a homomorphism g ~ G ~ a g  of a group G into the group of 
a(91, IS:])-continuous automorphisms of 9.I 12. (We note that each a s then 

, . [~],, possesses a transposed a0 on [S:] and a bitransposed ~g on 
respectively a([S:] ,  91)-continuous and ultraweakly continuous. Further- 
more g ~ a ; - ~  and g-~c~; t are group homomorphisms, a; t is an auto- 
morphism of [SP]*; and ~oo a*j = ~o-~), n ~ )  = n~o o %, fro a o = n o % 
for all ~0 e 5 ° and n ~ Ns:)- 

12 With V and Wtwo vectors spaces in duality or(V, W) denotes the weak topology of 
V with respect to W. We note that the automorphisms % are a(N, ~])-continuous if and 
only if their transposed in 92[* leave the folinrn 5: invariant. 
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Definition 5. We denote by ~ c  the set of elements of ~se invariant 
under all a~, g ~ G. A representation n ~ Ns~ (state (p E 5 ¢) is called quasi- 
invariant 1~ whenever the ~se-carrier S~ of n (of re.) belongs to ~c ;  n and 
~o are called ergodic whenever they are quasi-invariant and L~G-primary. 

It follows from the noted facts that Y'c is a yon Neumann subalgebra 
of Ys~; and that n s Ns~ is quasi-invariant iff the kernel of ~- in [SeJ * is 
a~t-invariant for all g ~ G ;  or i f fnoao, , ,n for all g ~ G ;  or iffS~ is £-in- 
variant. Ergodicity of n means that the only G-invariant elements of 
n(9/)" are the scalar multiples of the unit operator. For 9.I and G separable 
one can decompose any quasi-invariant state into ergodic states [4]. 

Proposition 4. Let n ~:: the ~c-folium Z~ of n is the smallest 
£-invariant fotium containing 5P~. Let qo, (p' ~ 50: q~ ' is ~G-contained in 
qo iff it is a norm-limit of convex combinations of states of the form ato(q~A), 
g~G, A e 9/; and ~Pl and (¢9 2 in 5 P are ~re-disjoint iff ~o 1 and at(~02) a r e  

disjoint for all g ~ G. 

Proof. Let S~ and S ° be the respective ~e-  and ~r :carr ier  of n. The 
first assertion follows from the fact that S= is the smallest att-invariant 
projector of ~s~ larger than S °, and thus equals V tt 0 a o (s=). Further, for 

gee 
~p E cj, the ~e-folium Z~  of n~ is the smallest at-invariant folium con- 
taining q~, and thus coincides with the norm-closure of the convex hull of 
states of the form a~(q~A), g eG, A E 9/.I; whence our second assertion 
using (q) of § 1. The last assertion is proved as follows: if q~l and atgq~2 
are not disjoint for some g e G, then 

5 ~  (C= Z~,~) and 5¢~(,~)(= a ~ ( ~ )  _c_ Z~,~) 

have a non vanishing common element; therefore qh and cp2 are not 
Lre-disjoint. Conversely if qh and a~(cp2) are disjoint for all g ~ G, so are 

q01) A and a~,(q~2)R for all g, h~ G and A, B ~9/. The direct sums 
n~(e,) A and @ ~(,:~)~, whose respective normal folia coincide with 

oeG h~G 
A~9.1 B~9 /  

Z~,  and Z~,~, are then disjoint; therefore ~0~ and q)2 are LYe-disjoint, 
from (q) of § 1. 

We now examine the particularly interesting special case in which G 
is locally compact amenable and acts on 9/with the following properties: 

a) g-~q~(ao(A)) is continuous for all cp 6 5 ~ and A ~ 9/; 
b) the system {9/, a} is asymptotically abelian in the following sense: 

denoting by 9J~ e the set of invariant means of G, we have, for all t/~ 9J~, 
~o~5 ~ and A , B ~ 9 /  

r/{cp(A • ao(B)) - ~(A) ~p(ao(B))} = 0 

13 According to Zeller-Meier [11], 
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where q( f (g ) )= q(f)  with f : g ~ f ( g )  a bounded continuous function 
on G. 

Arguing as in ([12], Lemma 1), we can then define, for each q e 9J~g, 
unique mappings M , : 2 t ~ [ 5 ~ ]  * and M~: [5~]-,9.I * by the properties 

q {go(ao(A)) } = N(M,A) = (M~go)(A), A ~ 9I, go ~ [Sf].  (1) 

These mappings are linear, of norm not exceeding 1, and such that 

M,A A g G. (2) 

Further, M, has its range in Lrse, and therefore in 2G- 
Assuming the foregoing structure and notation, we make: 

Definition 6. We denote by 2~ M the yon Neumann subalgebra of [Sf] * 
generated by all M~A, A ~ 9.1, q ~ ?[J~. A state go ~ 5f is called q-clustering 
whenever 

q {go(A "an(B))- go(A) go (a0(B)) } = 0 (3) 
or equivalently 

UP(A" M,B) = go(A) 0(M,B) (3a) 
for all A, B ~ 9.I. 

Proposition 5. With go in 5~, the following are equivalent 
(i) go is ~M-primary, 

(ii) go is V-clustering for all q ~ 93l G. 
In particular ~a-primary (and especially ergodic) states are v-clustering 

for all q ~ gJl G. I f  go1, go2 ~ 5¢ are 2~¢-primary, they are Y.M-equivalent if 
and only if M~ gol = Mtngo2 for all 17 ~ ~G.  

Proof. According to (m) of § 1 go is ~M-primary iff 

~o(AZ) = Up(A) Up(Z), A ~ [5¢3 *, Z e ~M. (4) 

Now (i)~(ii) since (4)~(3a). Conversely, assume (3a) for all A,B  ~ 9.1; 
since Up is ultraweakly continuous, we have (4) for all A e [Sf]* and Z of 
the form M ,B, q e !Bl C, B ~ 9~. Repeated application of this property 
yields, for A, B~ e 9.I, t h e 9~ c, i = 1, 2 . . . .  n 

go A M,~,B, = go A I-[ M,7~B, go(M,,B,,) 
i=1  i = 1  

By linearity we then have (4) with Z in an ultraweakly dense set of ~M, 
and thus everywhere in ~M by density. For ~M-primary states go~, goz ~ Sf 
~M-equivalence means ~M-equality which is the same as equality on 
all M~A, A e 92(, q e 9Jl~, by multiplicativity and ultraweak continuity. 
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§ 3. Funnels and Their Locally Normal States 

In this section we consider special types of  nets, the funnels of Defini- 
tion 7 below. These are encountered e.g. as the von N e u m a n n  algebras 
of  local regiOns in quan tum field theory and statistical mechanics. The 
specification of a funnel of a C*-algebra provides a natural  selection of a 
particular Subset of  states, the locally normal states of Definition 8 below. 

Definition 7. A bet o ~ = {/d~} of a C*-algebra (cf Definition 2) is 
called a funnel whenever each local algebra ~ ~ ~ is a factor possessing 
a representation on a separable Hilbert space. ~ is called a Type I-, 
Type lo~-, Type IlI-funnel if the ~ are factors of Type I, Type I~, 
Type III  ... etc. I f  ~.~ consists of an ascending sequence {Jg,},=l,2 ..... we 
call it a sequential funnel. 

We will get a funnel by considering e.g. a C*-atgebra acting on a 
separable Hilbert  space Yf with a net of concrete factors ~'~ on 0~ Note  
that as a consequence of Definition 7 for all ordered pairs ~ c= Jd, in 
the embedding of Jg~ in dg, is normal. Indeed we know from [13, 14, and 15] 
that every representat ion of  a factor on a separable Hilbert space is 
normal :  any representat ion ~0 of Jdp on a separable Hilbert space J f  is 
thus normal  and, since dt~ is a factor, faithful; cp is therefore faithful in 
restriction to J[~ and normal  by the separability o f ~ ,  whence the normal  
character  of  the embedding Jt~ __c ~ , .  No te  also, that  for Type I-factors, 
the proper ty  of being separably representable is equivalent to countable  
decomposabil i ty.  

Definition 8. We say that a state (a representation; a linear form) of a 
C*-algebra 9.1 with a net ~ of yon Neumann rings is locally normal (relative 
to ~ )  whenever it is normal in restriction to all elements.of ~,~ The set of 
positive linear forms of 9.I locally normal relative to ~ will be denoted 
byAP~. 

The two next proposi t ions are valid in a somewhat  wider context 
than that of  funnels: 

Proposition 6. Let 9,I be a C*-algebra with a net ~ = {g[~} of yon Neu- 
mann algebras such that for all ordered pairs % c= 9X~ of Y the embedding 
of ~ in 9.1~ is normal. Then the locally normal positive linear .forms of 9.I 
form a folium ~4. A state of 9.I is locally normal iff it generates a locally 
normal representation. I f  q~ is a hermitian locally normal linear form on 9.I 
with q~ = q)+ - ~o- the (unique) decomposition of cp as the difference of 
two positive forms on ~ such that I1~o1[ = l[(p + 11 + [I~P-I1, then q~+ and (p- 
are locally normal. 

t4 Recall that we defined a folium in Section 1 as a convex set of positive linear forms 
closed for the norm of linear forms and containing ~oa = q~(A* o A), A ~ N, with every cp. 
Note that the assumptions of Proposition 6 are realized if ~I is a C*-algebra acting on a 
Hilbert space Jig with the 9,I, concrete yon Neumann algebras acting on ~. 
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Proof. We first observe the trivial facts that  a linear combinat ion of 
locally normal  linear forms is locally normal ;  and that every normal  state 
of  a locally normal  representat ion is locally normal  (so that a state q~ 
which generates a locally normal  representat ion n~ is locally normal). 
Fur ther  the real and imaginary parts of a locally normal  linear form are 
obviously locally normal.  

Let  now the linear form (p of 9.i be the norm-limit  of a sequence {(p,} 
of locally normal  linear forms; its restriction ~o [ 9/~ to an 9/, ~ ~-  is then 
the norm-l imit  of the normal  forms qo, 1 9.I~ of 9/~ and thus normal,  there- 
fore ~o is locally normal.  We further consider a locally normal  linear form 
~0 o f g / w i t h  q)A = q~(A* .A), A ~ 9/, and wish to show that  the restriction 
(Pa 1 9.I~ to any 9/~ ~ ~-  is normal.  By (i) and (iii) of Definit ion 2 to each 
e > 0 we find a B e 9/p with 9/~ ~ Y,, 9/~ __c 9.18, and I]A - BI] < e; and thus 
II~0A - ~oBIl < [l~ol/ IIAI[ ~(1 + ~). This ma jo r i za t ion  holds  a f o r t i o r i  for the 
norm of (q~A - q~B) 1 9.I~; but, since the embedding N~ ~ ~I 8 is by assump- 
tion normal,  q~B] 9/~ is normal  as the restriction to 9/~ of the normal  form 
(08 [ 9.1~ of 918 : ~o A ] 9/, is therefore a norm-l imit  of normal  forms and thus 
normal.  Having established that  ~ is a folium, we now show that a 
locally normal  state q~ generates a locally normal  representat ion rco: we 
have to check that  1he restriction n~, 1 9/~ of ~r~o to each 9/, e Y is normal,  
i.e. that  all the vector  states of ~ 1 9/~ are normal.  But the latter are 

non,a-limits of states of the form q0 A ] 9X,, A ~ 9/, and we have shown in 
the foregoing that ~o A is locally normal  for all A e 9/. 

Fo r  the proof  of the last assertion, we need the following lemma. Its 
p roof  adapts  Kjaergfird-Pedersen's  elegant a rgument  ([163; Proposi-  
tions 1 and 2), for proving uniqueness, to our estimates. 

Lemma 2. I f  q~ is a continuous linear form o f  norm 1 on the C*-algebra 
9/ and (p = ~o + - ( p -  with qo + and q~- positive and I]qo][ = [Iq)+l] + 1[~o-[[, 
then , / f  II~o~ - ~Oo - (PI[ -< e _<_ 1 and ]llcp~ II + Ilq)o 1[ - l[(pll] < ~, with q)~ and 
q)o positive, it fol lows that IIcp~ - cp + tl < 6e ~ and II(Oo - ~-tI  < 6e~. 

Proof. Since (p = ~o + -  cp-, (p is hermit ian;  and we can find a self- 
adjoint  A in 9 / such  that - I _< A < I and 1 < q~(A) + e. Let B be ½(I - A); 
so that  I -  B is ½(I + A). No te  that  0 _< B _< I and: 

o + (B) + ~o- (I  - -  B)  = ½Eq) + (I) + ~o- (I)  - (qo + (A) - q~- (A))]  

= ½ [11~o + 11 + I1~o-II - q ) ( A ) ]  --- ½[11~oll - (p (A)~] = ½ [ 1  - q~ (A) ]  < ½e,. 

By the same token, 

(p; (B) + q~o (I - B) = l l - I I~o; II + II ~o II - (~o; - q~o) (A)] 

=< ½Il l ,oi l  - q ( A ) ]  + e < 3 e .  



96 R. Haag, R. V. Kadison, and D. Kastler: 

Since 0 < B _< I, 
to- (I - B) =< ½ e). 

Ilto; - t o ~  - to l l  = 

l ( to ;  - to÷)  (C ) l  = 

< 

to; (B)< }5 and t oo ( i -  B)<  }5 (along with to+ (B)=<½e, 
Thus, with C in the unit ball of ~1, since 

llto; -~P+ - ( t o o  - e-) l l  < ~, 

I(to; - to+)(BC)+ (to+ - t o + ) ( ( I - B ) C ) I  

IcE (BC)I + Ito + (BC)I + I(toE - to-) ( (Z -  B) C)l + 5 

e-+ to+ (B) ~ to~ (C* B C) ~ + to+ (B) ~ to+ (C* BC) "~ 

+ (Po (I - B) ~ (Po (C* (I - B) C) ~ 

+ to- (i - B) ~ to- ( C * ( I -  B) C) } 

~ +  [6~(t  + ~ ) ] l  + (2 ~)i < 65~. 

By the same argument, ]}too -q~-Jl < 6e ~-, completing our proof. 
Remark. Lemma 2 establishes that to ~ (p + and to-, to- are norm con- 

tinuous mappings. Kjaerg~rd-Pedersen remarks to us that the same 
argument, with minor modifications, also proves that these mappings 
are w*-continuous on restriction to spheres of constant norm - slightly 
more, that if Ilto,}l ~ lltol} then to,+ and to;- tend to to+ and ~0-, respectively, 
in the w*-topology. (Some condition on norms is required for w*-con- 
vergence, for with {x,} an orthonormal set, cox1 ' x, tends to 0 on the algebra 
of all bounded operators in the w*-topology, while NoJ . . . . .  11 = 1 for all n; 
so that not both o)~ ... .  (I) (=  IIto+~,~.l[) and c~,x.(I) (=  l[co~,,~,[I) tend to 0.) 

Proof of end of Proposition 6. We wish to show that to ÷ [ 9.I~ and 
to-lgI~ are normal. Choose A in g[ such that -I__<A_<I and 
11 -to(A)] <½5. (We may assume lltoll : 1.) Find ~lp containing ~l~ and B 
in 9.1~ such that - I < _ B < _ I  and ]IA-BI[ <½~. Then tto(B)-I]_<_~; 
so that 

1 - e  __< Ilto I ~Ipll < I1~o ÷ I ~-Ipll + Ilto- I ~-I~ll < Ilto+ II + Ilto- I1 = Iltoll = 1. 

Thus 

and 

From Lemma 2, 

where 

to i mp = to~ - to~ w i t h  Iltol ~ I I  = llto~ll + llto};ll • 

From ([6], 12.3.3 and 4), to~ is normal. Since ~/I~ is normally imbedded in 
~[~, to~ 19.1~ is normal. Thus to + t gX~ (and to- ] 9.I~) is a normal limit of 
normal forms. 
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In the next proposition, we introduce a topology which singles out 
the locally normal states as the corresponding continuous states. This 
allows us, in particular, to state conditions (fulfilled by the sequential 
funnels) which guarantee the abundance of locally normal states. 

Proposition 7. 144th the assumptions of Proposition 6; denoting by 
91~ the union of all 91~ ~ ~ ;  and by 3-~ the locally convex topology on 
91~ which is the inductive limit of the ultraweak topologies °Y-~ on the 
91~ ~ ~ ;  then the locally normal states (linear forms) of 91 consists of the 
norm-continuous extensions of the states (linear forms) of 91~ continuous 
for J-~. I f  in addition 91 consists of an ascendin 9 sequence of yon Neumann 
algebras, ~-'~ is Hausdorff, the set of locally normal states is ,-weakly 
dense in the set of all states of 91; and each normal state of any 91i ~ ~ can 
be extended to a locally normal state of 91. 

We note that in the latter case the set Y~ of locally normal positive 
linear forms of 91 will thus be of the type of the set 5: considered in the 
beginning of Section 1 and can therefore be used for the constructs 
presented there. 

Proof. We first observe that, due to (iii) of Definition 2, taking the 
restrictions to 91~ of the states (bounded linear forms) of 9~ yields a 
one-to-one mapping of the latter onto the bounded states (bounded 
linear forms) of 91:. Since the locally normal states (linear forms) of 
91~ is are automatically bounded, we can thus identify the locally normal 
states (linear forms) of 91 with those of 91s~, from which they are obtained 
by norm-continuous extension. 

We recall that one gets a complete system of neighbourhoods of zero 
for 3--: by taking the balanced convex sets V of 91: which intersect each 
91, ~ ~- along a neighbourhood of zero for Y~ ([17], § 3, 15) (those V are 
automatically absorbing for 91~). From this, it fotlows immediately that 
the ~-~-continuous linear forms on 91~ are those whose restriction to 
each 91~ ~ ~- is J'~-continuous, in other terms the locally normal linear 
forms of 91~. If we now add the assumption that the net ~ is an increasing 
s e q u e n c e  {-~Ij}j=l, 2 ..... we can assert ([173, § 3,16) that ~--: is Hausdorff 
(note that the assumed normal character of the embeddings 91~ __c 91~+1 
entails that the ultraweak topology ~ of 91j is the restriction of ~-)j+a on 
91~+1 ([18], Chapter I, § 4,3)). Further, since % (in ~') is closed in 91~+~ 
([181 toc. cit.), 91~ is a :7.f-closed linear subspace of 91~ from the Hahn- 
Banach theorem, each normal linear functional on 91; is the restriction 
of one on 91 which is locally normal. 

Since the locally normal states of 91 form a folium (Proposition 6), 
and the vector states of a faithful representation of a C*-algebra have 
convex hull which is w*-dense in the set of all states of that algebra 

~5 Obviously defined as those normal in restriction to all g[~ ~ o~ 
7 Commtm. math. Phys~ VoL 16 
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([-6], 3.4.4); to establish that the locally normal states of 92 are w*-dense 
in the set of all states of 92, it will suffice to show that the direct sum ~ of 
the representations of 9.1 arising from all locally normal states of 92 is 
faithful. If z(A) = 0, with A in 92j, each locally normal state (and, from 
Proposition 6, each locally normal form) of 92 vanishes on A. Since Y-~ is 
Hausdorff, A = 0. Thus ~ is faithful, hence isometric, on each 92j. By norm- 
density of 92~ in 92 and norm-continuity of ~, z is isometric, hence faithful, 
on 92. 

If 4 is a normal state of 92j, there is a T of trace-class on H~ (with 
O < T < I )  such that Q(A)=Trace[,Tv(A)],  for A in 92j. Then 
B-~Trace[Tz(B)] defines a locally normal state extension of 4 to 92. 

Proposition 8. Let 92 be a C*-algebra with a sequential funnel 
= {-/#j}j=l,z .... . Then 

(i) a state 4 of 92 is locally normal (relative w ~ )  if and only if the 
representation it generates is separable; 

(ii) each automorphism ~ of 92 maps each locally normal state Q of 92 
into a locally normal state 4 ° ~. 

Proof. We know by [13, 14, and 15] that every representation of a 
factor algebra on a separable Hilbert space is normal. 

Let ¢ be a state of 92 generating the representation ~pQ acting on 54 ° 
with corresponding cyclic vector ;(o- If (0 0 is separable, so is its restriction 
to each @ E ~" which is thus normal, hence 4 is locally normal. Con- 
versely if 4 (and, hence, (oQ) is locally normal, (o0[ Jdj is normal for all 
J//j ~ S ;  and thus [-(po(/~)Zo] is separable for all @ e ~,~ 16 Then ~ is 
separable as the closure of the union of the[-(oo(Jgj))~o],~g6s~,~ The 
proof of (i) is complete. Property (ii) then follows from (i) and the fact 
that the state 0 ° ~ generates the representation (po o e acting in the same 
Hilbert space as cpo. 

Proposition9. Let 92 be a C*-aIgebra with a Type I-funnel 
= {JE~}. Denote by cg~ the set of operators compact relative to Jgl~ ~7 ; and 

by ~ the C*-algebra generated by all c(? . Each locally normal state of 92 
restricts to a state q~ of ~ for which llq) l Cg~ll = 1Jbr all cg~; and each such 
state of qY has a unique state extension to 92 which is locally normal. 

Proof. Let 0 be a locally normal state of 92. Since 41 ~{~ is normal 
and since ~ is ultraweakly dense in J~ ,  41~= is the unique normal 
extension of 41 ~ to J/l=. As Q) J ~  is norm dense in 92, 4 is the unique 

locally normal extension of (0(= 4I~). With E, a sequence of projections 

16 [M'] denotes the closed subspace generated by the set M. 
~7 I.e. elements of J/~ which are compact operators in the faithful irreducible represen- 

tation o f ~ .  Proposition 9 is in fact independent of the assumption that the factors ~'~ are 
countably decomposable embeddings of Type I-factors being automatically normal. This 
remark holds also for Proposition 11, 12, and 13 below. 



Nets of C*-Algebras 99 

in (g~ tending strongly to I, Q(E.)~I,  since O[ ~'~ is normal. Thus 
tl~ 1%11 ( =  I1~1%13 = 1. 

Firstly, let Up be a state extension ofcp from ~ to 9..[ ([6], 1.7.2, 2.1.5 (vi), 
2.10.1). Then UP l ~'~ is a state extension of q0 1 ~. Since 1[ q~[ %11 = 1, such 
extension is unique and normal ([6], 2.11.7). Thus Up is a locally normal 
extension of qo to 91. 

Proposition 10. Let 9.I be a C*-algebra with a Type I-funnel Y = {J~} 
and assume that each J¢l~ ~ ~ is included in a J/t~ ~ J in which it has 
infinite relative commutant. Then 91 is simple. 

Proof (cf. [19], Theorem 7). If J is a proper two-sided ideal in 91 the 
norm closure of J is proper (since an operator near I is invertible, so 
that I is not in the norm closure of J ) .  We assume that J is norm- 
closed. As ~¢c~ ~'~, JE~ e ~ is a norm-closed two sided ideal of JE~ and 
J¢i'~ is a countably decomposable factor of the type/0o, Jc~/g~ is either 
~ ,  ~f~, or (0), where ~ is the ideal of operators compact relative to ~ .  
Since I q~ o¢, J c~ Jl¢'~ 4=-~. Suppose J c~Jg~ = ~ and take J¢l e ~ ~ con- 
taining d/t~ with an infinite relative commutant Jl~ ~ = ~'~c~,/t¢'~: J~  is a 
type /oo factor and one has .J/t~=J/I~®A/~ ([18], Chapter I, § 8, 2, 
Corollaire 3). With {Ei} an infinite orthogonal family of projections in 
A~ and C a non-zero operator in ~ ;  C*C dominates some non-zero 
projection E in ~t'~ (which must, then, lie in J/g~). Since Ej commutes with 
J¢~ and is non-zero; {EEl} is an infinite orthogonal family of non-zero 
projections in J4 B dominated by E. Thus E is not finite relative to ~(~ 
(recall that ~ e  is of type I, so that each EEj contains some minimal 
projection and all minimal projections are equivalent in J¢/e)" Hence 
C ' C ,  and, therefore, C are not in cgp. 

Since C ~ J c~ -/ge; J c~ ~g~ = ~#¢~; contradicting the choice of ~ as 
"proper". Hence ~ m ~ . ,  = (0) for all e; and the representation qo of 91 
on 91/~ defined by q~(A) = A + ~ is an isomorphisan on each M/I~. Thus ~o 
is isometric on each ~ ,  and has a unique isometric isomorphic extension 
(p mapping 91 onto 91/~ Thus ~ = (0); and 91 is simple. 

Proposition 11. Let 9.I (i), j = 1, 2, be C*-aIgebras with respective sequent- 
ial Type 1-funnels ~(J )=  {JC/,(J)},=0,~,~- .... (where ~o(J) = {21(J)}, with I (~) 
the unit of 91(J)). Let  A/',(J)_- ~J)~,_~ r~jg(J ), n = 1, 2 . . . .  . I f  we assume that 
~4,r~ ~) is .-isomorphic to ~F~ ~) for all n, 91(~) and 91 (2) are isomorphic as 
C*-algebras. 

Proof. With (p, an isomorphism of ~F, a) onto ~F~ z), ~pp defined on 
A~ ... Ap, A , e ~ F ,  a), by ~p~(A~ ... Ap)= ~o~(A 0 ... q~v(Ap) extends to an 
isomorphism ~Pv of the von Neumann algebra generated by JF~ (~) ...~Fp (~), 
i.e. Jg~(t), onto that generated by .iF(2)... ~Fp (2), i.e. jgp(2). Since the ~v, 
p = 1, 2, ... are extensions of one another and are isometric, they extend 
by continuity to an isometric isomorphism of 9,1 ~) onto 91(z) 
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The following propositions (12 and 13) are generalizations of ([9], 
Lemma2.4 and Theorems2.5, 2.7). We restate Proposition 12 as a 
corollary using the language of Section 2. In this same style, Prop- 
osition 13 follows from Propositions 2 and 3 there. However, in order to 
keep this Section independent of the somewhat heavy apparatus of 
Section 1, we will give a self-contained proof. For establishing Prop- 
osition 12 we need: 

Lemma 3. I f  rig is a factor of type I contained in a C*-algebra 92[ acting 
on the Hilbert space ~ and ~'c~91 together with Vg generate 9.i" (as a 
yon Neumann algebra), then Jg' c~ 9.I" = ( ~ '  c~ 9.i)". 

Proof. Since both ~ '  and 91" are weak-operator closed, the weak- 
operator closure, (Jg'c~91)', of Jg'c~N is contained in Jg'c~91". To 
establish the reverse inclusion, suppose E is a minimal projection in ~ .  
The mapping T'-~ T'E is an isomorphism of rig' onto Mg'E, since ~ is 
a factor. We show that the two subsets (JC{' ~ 91)" and Vg' c~ 9.1" of ~/¢d' have 
the same image, (Jg'~9.I)"E, under this mapping; so that (~g{'c~91)" 
=Jd ' c~ l " .  For this, note that E T E  is a scalar multiple of E for each 
T in ~/;  so that the strongly continuous mapping, S ~  ESE, carries the 
algebra generated (algebraically) by Jg and J#c~9.I onto ( ~ ' n  91)E - 
hence the strong closure, 9.1" (by assumption), of this algebra into the 
strong closure, (JCZ'c~91)"E, of (j~'c~9.1)E. In particular (Jg'c~91")E is 
contained in (hence, coincides with) (~'n91)"E, as we wished to show. 

Proposition 12. I f  the C*-algebra 91 acting on the Hilbert space 
has a net ~ = { ~ }  of (concrete) factors of Type 1, then 91'c~9.1" 

= Cl 

Corollary. I f  the C*-algebra 91 has a Type I-Jhnnel ~- = { ~ }  and if 
we denote by 5 ~ the corresponding set of locally normal positive linear 
forms, with [Se] * = ~s~(91)", ~.f, ~el and ~ as defined in Section t, then 
~l  reduces to the multiples of the unit, while ~ = ~s~. 

Proof. Note first that for each Jg~ ~ ~ every @ ~ Y is contained in 
a J ?  2 Jg~- Since ~ and Jg;c~/g? generate ~ as a v o n  Neumann 
algebra; ~¢~ and /E£c~91 generate a v o n  Neumann algebra containing 
each ~(~, i.e. 9.1". Applying Lemma2 we have (~g;c~91)"=~g~c~91". 
Clearly 9,1"c~9/'= (~ ~//'c~91"; so that ~ (~g~c~91)"= 91"~91'. To 

,/g~s ~; ~4'/= s ~.- ~ 

obtain the corollary, we note that since 5 ~ consists of locally normal 
states of ~I, zs* is normal (thus faithful and isometric) in restriction to 
each #g~. Identifying ~/g,(___ 2l) with ~s~(Jg~)(_c-c:~(gx)) and 92[ with %(91), 
91'c~ 9X" is identified with ~so. Moreover :£e consists of scalars since the 
center of each ~d~ consists of scalars (and all its elements have central 
s u p p o r t / i n  ~l"). As for ~ = (  ~ ~/~" = )  0 (~¢d:c~9.I)", we have 
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just noted that it coincides with all of ~ e .  From the fact that ~c = ~ z ,  
combined with Propositions 2 and 3 of Section 1, we deduce: 

Proposition 13.If  the C*-algebra 91 has a Type 1-funnel J~ = {~g~}, 
then 

(i) a locally normal state Q of  9.1 is primary if and only if, to each 
A ~ 91, there is a ~/g~ ~ ~ with 

to(AB) - e(A) o(B)t <= LIBI[ (5) 

for all B ~ ,//l~ ; 
(ii) /f two locally normal states Q and z of  91 9enerate disjoint represen- 

tations, they are such that I1~ I ~ - • I ~ l i  = 2 for all ~ ~ ~ The con- 
verse holds for ~ and z primary. Two locally normal primary states Q and 
z of  91 9enerate quasi-equivalent representations if  and only if, to each 
e>0 ,  there is a d g , ~  with lie I ~ ' g - r  I ~ l l  __<e 

For  the direct proof of this proposition, we use: 

Lemma 4. l f91  is a C*-aI#ebra actin 9 on the H ilbert space ~ ,  ~- = {91,} 
is a net for 91, 91" is a factor, and Xo is a unit vector in o¢{~; then to each 
y ~ ~ and e > O, there is a 91~ ~ ~ such that 

t(Y, AXo) - (Xo, AXo) (Y, Xo)l < e (6) 

for all A of  unit norm in 9.I~ (the relative commutant of  9.I~ in 9.1). 

Proof. Suppose the contrary. Then there is an e > 0 and a y E ~ such 
that, for all 9.I~ ~ o~ the set 

Q~ = {X ~ 91~"; I(y, X x o ) - ( X o ,  Xxo) (y ,  Xo)] > s, IlXll _-< 1} 

is non void. Due to (i) of Definition 2, the Q~ have the finite intersection 
property; so that, by the weak-operator compactness of the unit ball of 
9/", all Q~ have a common element A for which 

I(Y, Axo )  - (Xo, Axo )  (y, x0)l > 8.  

As A is in 91~" for each 91~ s ~ A is in 91' as well as 91". Thus, since 91" is a 
factor, A = aI  for some scalar a, and 

(y, Axo)  = a(y, Xo) = (Xo, Axo)  (y, Xo) 

contradicting the previous inequality. 
Taking y =  T*xo,  T E ~ ( ~ )  19, in the preceding lemma, we have: 

Corollary. With the same assumptions as in Lemma 3; to each e > 0 and 
T ~ ~ ( ~ ) ,  there is a 91~ ~ ~ such that, for all A in the unit ball of' 91~, 

ICO~o(TA) - Og~o(T) ~O~o(A)l < ~. (7) 

19 ~(,¢F) denotes the set of bounded linear operators on off and co~ the vector state 
defined by x o E 
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When J is a net of Type I-factors, Proposition 12 can be used to 
establish the following partial converse: 

Lemma 5. I f  9.1 is a C*-algebra acting on the Hilbert space ~ with a 
net ~ = {dg~} of (concrete) factors of Type I;  and if Xo is a unit vector 
in guy cyclic for 9.1 and such that, to each T e ~ J¢fa and e > O, there is a 
J/g~ ~ ~ with ~ ~ ~ 

II(~OT, xo.xo-- ~%o(T)o~xo) 1 ~ i l  < e, (8) 
then 9.I" is a factor. 

Proof. Suppose P is a central projector in 9.I"; and 0 4: P 4: I. Since Xo 
is cyclic for ~I, it is separating for 9.1' - hence for 9.1"n 9.1'. Thus 

(Xo, Pxo) = HPxo tl 2 4:0 4: lf(I - P)xolt 2 = (Xo, (I - P)xo) .  

Setting (Xo, Pxo) (Xo, (I - P)xo) equal to 5e, we can choose a self-adjoint 
T in U ~/g~ such that ] l(T-P)xo[l  _-<e (since {~Us~Jg~}"=  \ t - -  J 9.1"~./ 

d4~eo ~ 
F rom Proposit ion 12 and the Kaplansky density theorem, given d¢'~ E ~,, 
we can choose a self-adjoint S in the unit ball of ~ such that 
[I(S - (I - P))xot [ <__ ~. Then 

l[(COT*xo, xo -- O)xo(T)COxo) [ ~g~[I > lcor*xo, xo(S) - C°xo(T) C°xo(S)[ 

= I(Xo, TSxo)  - (Xo, r xo )  (Xo, Sxo)[ 

= [(Xo, ( T -  P)Sxo)  + (x o, P(S - (I - P))xo) 

+ (Xo, (P - r)xo)(Xo,  Sxo) 

- (x  o, n x o )  (x  o, (S - (I  - P ) )xo)  

--  (Xo, n x o )  (Xo, (I  --  P)xo)l 
> - 4 e + 5 e = e  

for all ~ ,  contradicting (8). Thus 91" is a factor. 
Proof  of  Proposition 13. Let 92[ be a C*-algebra with a net ~,~ = {9.1~}; 

and let ~ be a pr imary state of 9/. Applying the corollary to Lemma 4 to 
the concrete C*-algebra %(9.1) (with the net {%(gt~)} and the cyclic 
vector xQ), we get the direct statement of (i), Proposit ion 13 (in fact the 
result obtained is somewhat more genera l -  cf. corollary to Propositions 2, 
3 of Section 2). For  obtaining the converse statement of(i), Proposit ion 13, 
we need the additional assumptions that Y is a Type I-funnel and 0 a 
locally normal  state, in which case {~o(9.I~)} is a Type I-funnel for ¢p(9.1) 
and Lemma 5 applies to give the result. 

Assuming, still, that o ~ is a Type I-funnel and that 0, z are locally 
normal  states, the direct sum p of the representations they generate 
maps 9~ onto a C*-algebra vA(gJ) acting on a Hilbert space ~ ,  with ~ and 
z given by Q = cox° p, z = coy° ~p, x, y e ~ .  In addition, {h0(9.I~)= A~} is 
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a Type I-funnel for ~p(~2I); and the representations induced by ~ and z are 
given by restriction of ~ to the cyclic projections E and F respectively 
generated by x and y (under tp0I)). 

These representations are disjoint if and only if the central carriers C~ 
and Cr  of E and F are orthogonal. In this case C g -  CF is an operator in 
the unit ball of the center ~ of ~ (9.I)" (coinciding with the intersection of 
all ~#~", 9.I~ ~ o ~, as we know by Proposition 12). Now 

tt(co~- co,) I ~1I > II(co~- co,) ( c ~ -  cr)II = 2 ;  

while we have for each 9.I~ e ,~, using the Kaplansky density theorem, 

tl(cox- co,)r x2"l l  = tt(e - z) (~911 -_> ll(cox- co,)l ~ t l .  

We see, by comparison, that two disjoint Q and r are such that 
11(~- z) l 9X~II -- 2 for all % e ~ ,  the first assertion of (ii), Proposition 13. 
For  the converse, with ~ and r primary, if they are not disjoint they are 
quasi-equivalent; and II(Q - ~) [ 9.I~II < 2 for some e will follow from the 
proof  of the (direct part) of the last statement of the proposition. We 
assume that Q and z are primary and quasi-equivalent. In this case we 
know that ~(N)" is a Nctor; and we can apply L e m m a 4  with 
x o = 2-~(x - y), y = x + y to conclude that to each e > 0, there is a 9A~ ~ o ~ 
with 

I(x + y, ~(A) (x - y)) - ½(x - y, ~(A) (x - y)) (x + y, x - Y)I 

= l e ( a )  - z ( A ) l  < 

for all A in the unit ball of 91~. Conversely, with I1(~ - ~) 19~Cl1 < 2 for 
some 9.1~ in ~,, Q, and ~ are not disjoint (from the above). Being primary, 
Q and -c are quasi-equivalent. 
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