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Abstract. Dyson's method is adopted here for the so called Gaussian ensembles. 
Incidently this confirms the long cherished belief that the statistical properties of a small 
number of eigenvalues is the same for the two kinds of ensembles, the circular and the 
Gaussian ones. 

In studies of the statistical behaviour of the eigenvalues of random 
matrices, some authors have used as a basis the Gaussian matrix en- 
sembles [1] while others have used the circular ensembles [2]. The 
Gaussian ensembles have a clearer physical motivation, while the circular 
ensembles are mathematically simpler. The choice of ensemble has been 
a matter of personal taste, and it has never been made clear how far the 
predictions of the theory might depend on the ensemble which is chosen. 
We here demonstrate that the predictions of Gaussian and circular 
ensembles in fact become identical in the limit as the order N of the 
matrices tends to infinity. More precisely, we prove that for any fixed n 
the joint probability density function of n eigenvalues in the Gaussian 
ensemble of order N tends to the same limit when N ~  oo as the cor- 
responding density function in the circular ensemble. This means that 
in an infinitely long eigenvalue sequence all the statistical properties are 
independent of the choice of ensemble. 

Recently Dyson derived explicit analytical expressions for the joint 
probability density functions of n eigenvalues belonging to a random 
matrix taken from the circular ensembles [3]. We indicate below the 
necessary changes in his equations to give explicit expressions for the 
same correlation functions the random matrix being taken this time fi'om 
the corresponding Gaussian ensembles. These changes do not alter in 
any way his arguments and we write therefore only the equations which 
are changed and which replace those in Dyson's paper with the same 
numbering. This note is supposed to be read along with Dyson's original. 

7z 1 
x j=  (2N) ~ DEs '  (1.1) 

QN~ (xl, . . . ,  XN) = CNp exp -- - f  [3 xf  l-I Ixs-- xk ]~. (1.2) 
j<k 
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RNi4(Xl)-- ~/~ 

where 

Everywhere in the text 0 s is to be replaced by xj. 
N 

CN e = (2r0~N fi-~.N-+~,,'(u-i){r(1 + ½fi)i-N [-[ F(I + ½fij).  
J=~ (1.5)-(1.7) 

The limits of integration in Eq. (1.8) are ( -  co, co). 

RNO ~ = 1,  

R u l i ( x i )  = Z rp2(xl) + N q~u_i(x) - e u ( t ) d t ,  
s=o (1.9) 
N - I  

RNlz(Xl )  = Z (p2(X*), 
j = O  

1 2N--1 xi|/-2 
-;-yg-N~q~z~(xl]/i) ~ q~2x-i( t)  d t ,  

j = 0  V ~ 

q~ j ( x )=(n~2J j ! ) -~eX2 /2 (J -~ )Se  -'~" 

are the normalized harmonic oscillator wave functions. 

PN~(E1 . . . .  , E . ) = L i I  ( ( 2 N ) ) n  N-+oo D , RN,~(Xl , . . ., X,) . 

The text following Eq. (1.10) and the whole of Section II remains un- 
changed. The Eq. (3.1) is replaced by 

" - '  (2 ; S N ( x , y ) =  ~ cpj(x)q~j(y)+ N (PN_i(X) e(y, t )  cpN(Odt, (3.1) 
j = 0  - m  

where 

f 1 2 '  x>y,  1 
e(x, y) = ~- Sign (x - y) = O , x = y,  

- 2 - '  x < y .  

In Section Ill we make the following changes 

d 
D SN(x, y) = - -- SN(x, y) = - D SN(y, x) , 

dy  

ISN(x,  y) = i" e(x, t) SN(t, y) dt  = - ISN(y,  x ) ,  
- - o o  

J SN(x, y) = 1Su(x ,  y) - ~(x, y) , 

(3A) 

(3.5) 

(3.10) 
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[SN(x, y) + e(X) DSu(x, y) ] (3.16) 
~Nl(x, y) = [JSu(x, y) su(y, x) + ~(y)j ' 

1 [ SzN+l(x] /~,yl /~)  DS2N+I(X]/2, Yl/~)] (3.17) 
aN4(X, Y)= ~ -  [ISzu+ 1 (xV~ ' y[f~) $2N+I (Y]//2, x]//2)] ' 

N - 1  

0"N2(X, y) = 2 q~j(X) q~j(y), (3.18) 
j=0 

where 

o~(X)= (pzm(X) q)2m(t) dt,  for N =  2 m +  1 odd,  

and 
c~(x)=0, for N = 2 m  even. 

The interchange of (x, y) in the lower right hand corner of Eqs. (3.16) 
and (3.17) is to be noticed. We study the quaternion determinants 

b~-,~(xl, ..., x,) = Q Det [~,(xj, Xk)]j.k= 1 . . . . . . .  (3.19) 

which are functions of the n variables x~, ..., x,. 
Theorem 3 takes the form 
For f i= 1,2,4, 

UN~p(x~, ..., xu) = Qu~(x~, ..., xu) , (3.20) 

with Qua given by Eq. (1.2). 
In the proof of Theorem 3 we make the following changes. 

Case fi = 1, N = 2m, even. 

sT~J =- tI s~(x~, x~) SN(x~, xj)j 

has rank N, and 

[DSu%,  xk)] = [~02,(xj) ~°2'(xA] k q~2i(xk)t 

so that 
det [DSN(xj, xk)] = {det [q~z,(Xj) q)2~(xj)] } '  2. 

The recurrence relation 

]//~ ÷ 1 ~02i+ l (x)---. ~ / ~  q)21_ l - V 2  (pt21(x) 
18 Commun. math. Phys., Vol. 20 
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shows that in a determinant  containing the rows (P2~+ ~ (x), i = O, 1 . . . .  , j - -  1 

one can replace the row ~o2j-~ l(x) by the row - ~0~j(x), and 

vice-versa. Thus apart  from a constant  the rows q~2j+ ~(x), j =  0, 1, 2 , . . .  
are equivalent  to the rows q~j(x), j = 0, 1, 2 , . . .  when they occur in a 
determinant.  

Thus 

det [DSN(xj, xk)] = const. {det [qgj(Xk)]} 2 - - - - -  const. {QNl(xl, ..., xN)} 2. 

Case fi = 1, N = 2m + 1 odd. 

-@2i+ l(Xj) @ii+l(Xj) 

Pa= [ )[o (Pzi+ l (t)dt CPz'+'(xJ) 

2i + 1 (xO 

- j ~o2,+~(t)dt  
--00 × 

0 

-1 
--00 

- ~o~i+ 1 ( x O -  

-1/a <~(xk) 
(3.31) 

SN(xj, xO + c~(xj) D SN(Xj, xk) + (~(~92m(Xj) q)2m(Xk)- 

SN(x~, x) + a(xO 

Aa = [ SN(xj, Xk) + O~(Xj) DSN(Xj, Xk) + &P2m(X)) q)2m(Xk)] (3.32) 
J SN(x~, xO SN(Xk, X) + C~(XO )' 

Therefore by the argument  following Eq. (3.32) we have: 

detAa = det le(xj, xO- -~-(~ q~2r~(t) dt)- 21 
(3.33) 

x det [D(xj, Xk)+ 3q~2m(X~) q~2,~(Xk)] • 

The first factor on the right of Eq. (3.33) is given by (3.38), while the 
second factor is: 

{ }2 
det [cp21+l (xj) q~i+~txj) ~/3q~2~(xj)~i=o, 1 ...... ~1 

j = l , 2  ..... 2m I )  

= fi {det [~o i_ 1 (xj)]i, j = 1 ..... N} 2 X (const.).  
(3.34) 
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In obtaining the last step we have used the fact that q~i+ 1 (x) is a linear 
combination of q~2i(x) and q~2~+2(x); the presence of ~Ozm(X ) allowing us 
to eliminate then successively the ~0 2i+ 2(X)" 

Case fl = 4. 

1 F 

So that 
f 

det [aN4(xj, Xk)] = const. ]det 
| 

= const. { det 

x5 V2 

--coo 

= const. {det [q)j(Xk ]//2) ~oj(x~I//2)]} 2 

= const. {QN4(xl . . . .  , xN)} 2 , 

In the second step above we have used the fact that in a determinant 
the rows q~zi+ l(x) are equivalent to the rows q~ i(x), apart from a constant. 

In Section IV we write Eq. (4.4) as 

( f l  *f2) (X, z) = 7 f l (  x, Y)f2(Y, z) dy .  (4.4) 
- 0 o  

Then Eqs. (4.5) to (4,10) are valid, while Eq. (4.11) is replaced by: 

aN1 * aN1 = aN1 + E,  (4.11) 

where E(x, y) is an anti-symmetric matrix. The terms cancel each other 
exactly on summing over the ( n -  1)! cyclic permutations of (x 1, ..., x,) 
in Eq. (4.2) which should evidently be read as 

Vu,p(x 1 . . . .  , xu) = ~ [aua(xi, x2) ... aN,(x,, x0 ] .  (4.2) 
P 

The rest of Section IV is unchanged. 

Note. Keeping x~N ~ and OjN fixed at finite values forj  = 1,..., n and 
taking the limit N ~ 0% all the correlation functions P,a are identical for 
the Gaussian and the circular ensembles [4]. Thus the two ensembles 
give the same statistical properties. 
18" 
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