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Abstract. A spherically symmetric solution of the "already unified field theory" 
of Rnr~Ic~ (i.e. of the source-free Maxwell-Einstein equations) is presented which 
represents a static massless charged particle. I t  is not equivalent to the Reissner- 
Nordstr6m solution with zero mass, although both metrics repel uncharged test 
particles. 

§ 1. Introduct ion 

I n  the absence of sources the Maxwell-Einstein equations are 1 (see 
[2]) 

/ .;k + /ki;j + /j~;~= O, ] 
f~;~ = 0 ,  and  !~ (1.1) 

1 1 
Ri~ - ~ gi~ R = 2]tl~/s ~ - -~  g i j  (/~8/r s),  

where the  electromagnetic  field tensor  /is is defined in terms of the  
4-potential  A i  b y  

ft~ = A~;~ --  As;  i . (1.2) 

I t  is well known [2], [3] t ha t  the  system (1.1) is equivalent  to  the alge- 
braic conditions 

Boo ~- 0 ,  

R = 0 ,  and  (1.3) 
1 

R i  JRJ~ = "-~ gi ~ (Ra J R h  J): 

thereby  giving rise to  the  so-called "a l ready  unified field t heo ry"  of 
RA~ICH. I n  fact,  if we are given a metric satisfying (1.3) we can con- 
struct, the  corresponding/ is  in the following manner  (for details see [3]). 

* On leave of absence from the Department of Mathematics, The University, 
Bristol. 

I This note may in some respects be regarded as a continuation of [1] and we 
shall retain the same notation. 
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We solve the equation 

1 1 1 
~ i ~  = - -  ~ E i ~ h ~ - -  ~ ( R r s R r s ) - ~ E i j ~ m E h k ~ m ,  (1.4) 

where 
1 

E ~ h ~ = - ~ (  - i i + -- + 

for ~i~ by  setting (i,  ]) = (h, #) and taking the root of (1.4). We then 
construct the dual of ~ij defined by  2 

,~ 1 .  1 
i ~ = - ~  ( - g ) 2  [i] I c l ] g ~ g ~ r  ~ , (1.5) 

and evaluate the quant i ty  ~ by  solving 

a~ 1 
ax ~ - ( - g ) - ~  [ i ~ k l ]  R ~ ; ~ g S k  ~ / ( R ~ q R ~ q )  . (1.6) 

Then the electromagnetic field t e n s o r / ~  is given by  

~it  = ~i~ cos~ + *~iJ s in~ .  (1.7) 

In  this note we present a spherically symmetric solution of the system 
(1.3), and therefore (1.1), which corresponds to a massless charged 
particle at rest at  the origin. I t  is not equivalent to the l~eissner-Nord- 
strSm solution with the mass t e rm set equal to zero, although under this 
condition both metrics repel uncharged test  particles (hut by  different 
amounts). 

§ 2. The Metric and the Electromagnetic Field 

In  [1] the special line-element 
a ~ 

d s  ~ ---- r y  (c 2 d t  ~ - -  d r  2 - r 2 dO 2 - r ~ sin20 d ~  ~) , (2.1) 

where a is a constant, was discussed with particular reference to certain 
weakened vacuum field equations which have been proposed as alter- 
natives to the Einstein vacuum field equations. In  this section we shall 
a t t empt  to answer the question which arises out of this, viz. to what  
physical field would the metric (2.1) correspond in the orthodox theory 
of General Relat ivi ty  ? As was pointed out in [1], (2.1) has a genuine 
singularity at  r = 0, which we interpret  as a gravitat ional source (isolated 
mass), where a is some quant i ty  associated with the source. I t  is the 
interpretation o~ a which is of interest. 

In  order to answer this question we recall some of the relations 
derived in [1] which are satisfied by (2.1). I f  

x ° = c t ,  x ~ = r ,  x ~ = # ,  x s = ~ ,  

[ i]hk] is the Levi Civita symbol. I t  changes sign on interchange of any two 
adjacent indices and [0123] has the value unity. 
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then 
1 

R 0 0  - -  ~.2 

R = 0 ,  and  (2.2) 

Ri jRJ ~ = l g i  k ( RhjRM ) 

B y  compar ing  (2.2) wi th  (1.3) we see t h a t  the metric (2.1) is a solution o] 
the "already unified field theory" o / I ~ A ~ I c ~  and the reby  represents  the  
in terac t ion  of a g rav i ta t iona l  field with a source-free Maxwell  electro- 
magne t ic  field. So t h a t  we m a y  in te rpre t  a and see exac t ly  wha t  t ype  of 
e lect romagnet ic  field is represented  b y  (2.1), we have  to  eva lua te  /i¢. 
We fit'st calculate  8i~ f rom (1.4). I t  is easily seen t h a t  the  only non- 
vanishing 8ij are 

82a = -- ~82 = a sinz$, (2.3) 

and  the  only non-zero duals of ~i¢ are 

~ 0 I  = = - - * ~ 3 1 0 -  r 2 • ( 2 .4 )  

Subst i tu t ion  of (2.3) and  (2.4) in (1.7) gives the  a r r ay  

0 -fi- sin ~ 0 

a . 
( / ~ j ) =  - r - v s m ~  0 o , (2.5) 

0 - -  a sin v ~ cos a 

where ~ is a solution of (1.6). However ,  since (see [1], equat ion  (2.10)) 

R~J;1~ = 0 ,  
we find 

We choose 

so t h a t  (2.5) becomes 

= constant. 

= ~ : / 2 ,  

( oa 7 ° ° ~  
( 1 - ) =  - 7 °  o . (2.6) 

0 0 0 
0 0 0 

The  componen t s  of the  4-potent ia l  Ai (which axe not  unique) are 
easily der ived f rom (2.6), one set  being 

(° ) (A~) = - T ,  o, o,  0 . (2.7) 
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This 4-potential obviously satisfies the Lorentz condition 

Ai;~ = 0 ,  (2.8) 
as well as the condition 

A i A ~ =  1 . (2.9) 

From (2.6) and (2.7) we thus interpret  a as the charge. Consequen t l y  

(2.1) corresponds  to a mass les s  par t i c le  o / c h a r g e  a a t  rest  at  the o r i g i n / o r  

al l  t ime.  Furthermore,  (2.1) is not the Reissner-Nordstr5m metric [3] 

2 m  e 2 2m ÷ 7 dr2 - 
d s ~ ' =  1 - - 7 - +  7 c 2 d t  2 -  1 -  r (2.10) 

- -  r 2 d 0 2 - r 2 sin 2 0 d ~ 

in a different coordinate system even for the case m = 0, for in tha t  ease 

R ~  Ri~  = 4e4/r 8 , 

whereas for (2.1) 
R ~  Ri5  = 4 /a  4 = cons tant .  

We can therefore conclude tha t  there ex is t s  at  leztst two d i s t i nc t  spher i -  

ca l ly  s y m m e t r i c  metr ics  w h i c h  correspond to a mass les s  par t ic le  o / c h a r g e  a,  

viz. (2.10) with m =- 0 and e --~ a, and (2.1). At tempts  have been made 
to generalize Birkhoff 's theorem [4] (according to which every spheri- 
cally symmetr ic  solution of the vacuum field equations 

Ri~ = O 

may  be reduced, by  a coordinate transformation, to the Sehwarzschild 
metric) to the Maxwell-Einstein equations (1.1). I t  has been shown 
[5, 6, 7] tha t  any spherically symmetric solution of the Maxwell-Ein- 
stein equations must  be static. However, the remarks made above show 
tha t  i t  is not true tha t  every spherically symmetric solution of (1.1) 
may  be reduced, by  a coordinate transformation, to the Reissner-Nord- 
strSm metric. 

If,  for the case (2.1), we consider the trajectories of (uncharged) test  
particles we find tha t  the equations of motion (for v~ = ~/2, ~ = 0) m a y  
be writ ten in the form (see [1], equation (4.9)) 

r '~" = c 2 - -  b2/r ~ , (2.11) 

where a prime denotes differentiation with respect to t and b is a constant. 
However, in the Reissner-NordstrSm case (with m = 0), the correspond- 
ing equations of motion are 

i 2 = h - e2/r 2 , (2.12) 

where a dot denotes differentiation with respect to s and h is a constant. 
The formal similarity between (2.11) and (2.12) is str'~king, but  it should 
be stressed tha t  the independent variables are t and s respectively. 
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Never theless ,  b o t h  met r ics  p red i c t  t h a t  a m a s s t e s s  c h a r g e d  p a r t i c l e  w i l l  

r e p e l  a n  u n c h a r g e d  t e s t  p a r t i c l e  a l though  b y  differen~ amoun t s  3. 
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A t/heorem analogous to that proved in the Appendix of [1], may also be 
proved for metrics of the form 

ds~ _~ 2 c  2 dt~ __  ~-1 d r  ~ _ _  r ~ d 0 ~ - -  r ~ s in  S 0 d ~o ~ , 

where ~ is a positive, strictly monotonically decreasing function of r alone. 


