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Abstract. Semiboundedness of the total Hamiltonian is proved for a se]finter- 
acting Bosch field in two dimensional space ~ime. The interaction is given by a 
Wick polynomial : P(q~) : .  The polynomial P is required to have even degree and 
its leading coefficient must be positive. A space cutoff is introduced in the inter- 
action Hamiltonian. 

§ 1. Introduction 

In  [10] NEnsos  considered the following problem. Let  ~ be a neutral  
scalarfictd of mass #0 > 0 in two dimensional space time and let 

H = H o ÷ g f: ¢~(x) : d x ,  (1.1) 

where H o is the free Hamil tonian for the  mass tic and g > 0. I f  the 
system is placed in a box with periodic boundary  conditions then Nelson 
proved tha t  H is bounded f rom below. H thus has a natural  selfadjoint 
semibounded extension (the Fricdrichs extension), which can (presum- 
ably) be used to solve the SchrSdingcr equation. I n  [5], Jaffe con- 
sidered the related Hamil tonian 

H = H o + f :  P(O(x))  : h(z)  d x ,  (1.2) 

P a polynomial,  again in two dimensional space time. Jaffe showed H 
to be a symmetr ic  densely defined operator;  no box is needed here. I n  
this paper we apply  Nelson's method to Jaffe 's  Hamil tonian  (1.2). Our 
main result  is 

Theorem A. Let h be a nonnegative /unction in L I f3 L~. Suppose that 
the polynomial P in (1.2) has even degree and that the leading eoe]ficient is 
positive. Then H is bounded from below. 

B y  elementary methods  we also show tha t  the I tami l tonian  

e N  + f : q)~(x) : h2(x) dx  (1.3) 
is bounded f rom below, where e is any  positive number  and N is the 
number  of particles operator.  This bound on (1.3) permits  an improve- 
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ment  in the results of [2]. In  [1], we defined a renormalized Hamiltonian 
Hre n for Fermi and Boson fields with ¥ukawa  coupling (and with a 
space cutoff). The Hamiltonian was shown to exist as a bilinear form. 
In  [2] we showed tha t  

0 ~- 2-1F,  ~ //re n + 8 f :  q52(x) : h~(x) dx  -~ c I .  (1.4) 

Here F ,  is an operator defined in [2], and all tha t  concerns us is its 
property:  

2v __< F~. (1.5) 

Also 8 is a number which may  be taken as small as desired, but  is 
bounded above, 8 ~ 80, and in general 80 is negative. Combining the 
bound on (1.3) with (1.4) and (1.5), we have the following theorem. 

Theorem B. The bilinear /orm Hr~n o] [2] is bounded /rom below. 
Furthermore/or any a in [0,2 -1) and/or any number 8 there is a c = c (a, 8) 
such that 

0 ~ aF,  ~ Hre n + 8 f :  ¢2(x): h~(x) dx  + c I .  (1.6) 

Thus the upper bound on the 8 in (1.4) is removed and any choice 
of 6 is possible. I f  our model were realistic (h ~ 1, four dimensions) we 
would then choose 8 so tha t  the spectrum of the operator on right side 
of (1.6) agrees with experiment. See [7] for a further discussion of this 
point. One would like to know how the spectrum depends on 8. The 
idea expressed in [1, p. 345] on the removal  of the space cutoff was 
first advanced by  Gv~Nn~ [3]. GuENn~ proposed tha t  if A is an observable 
associated with a bounded region and h ~ 1 on a larger region then 

e-~*HAe~*H 

is (formally) independent of h for small t. See [12, Theorem 3] for a 
further development of this point of view. 

S~oAL [12] and SYMANZlK (unpublished) have studied Hamiltonians 
such as (1.2). As par t  of a general s tudy of Wick products, [12, 13], 
SEGAL has announced a new proof of Jaffe 's  theorem tha t  (1.2) is 
densely defined. SrMANZlK observed tha t  Nelson's methods were not 
limited to fourth powers in the interaction and tha t  the periodic boundary 
conditions in a finite region (as used by  NELSON) could be replaced by  
other~ for example Diriehlet, conditions. 

In  Theorem A, H 0 could be replaced by  N with only trivial changes 
in the proof. 

§ 2. k Domain for H 

We use the Fock space representation for our field qS. The Foek 
It i lbert  space ~ is a direct sum 

n = O  
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and :~r n is the space of 
variables. Let  

Then 

symmetric square integrable functions of n 

,u (1~) = (fro ~ + k~)~/~. 

4 -  (x) = f d*  ~ a (~) ff (k)-I /*dk (2.1) 

4 + (x) = f e i k ~ a * ( -  k) ff (k)- l/u d k (2.2) 

and 4 - 4 -  ÷ 4+, where a and a*  are the annihilation and creation 
operators, 

[a(k), a*(k ' ) ]  = ~ ( k -  k ' ) .  (2.3) 
By definition, 

or in other words, the Wick product differs from the ordinary product in 
tha t  all the annihilators are placed to the right and the creators axe 
placed to the left. : qS~ (x) : is not an operator, but  it is a densely defined 
bflinear form. 

We take Fourier transforms to compute 

f :4~ (x):h(x)dx 

= ~ .  ( ~ ) f a * ( - k l ) . . . a * ( - k i ) a ( k , + i ) . . .  a(k~) (2.5) 

x/~(kl + " ' "  + k~) I l f f  (ki)-l/~dk~ 

where ~ is the Fourier transform of h. We assume h is in L~, and so/~ 
is in L 2 also. Since # (k) ~ [k I for large k, one can show tha t  

fi(k 1 + " "  + k~) I [#  (k~) -1/~ ~ Ls. (2.6) 
i 

I t  is well known tha t  (2.6) implies tha t  each integral on the right side 
of (2.5) is an operator defined on the domain ~(N~/2) of N ~/~'. This 
domain is the se~ of ¢ = ¢o, ¢1 . . . . .  ¢i ~ ~*J 
with 

Z '  il~'V%,lP < ~ .  
Thus (2.5) is an operator defined on ~ (zy~/2). Sir[d]ax]y 

Ho + f : P ( 4 ( x ) ) : h ( x ) d x  

is an operator defined on the dense domain, ~ (/t0) ~ ~ (Na/2), where d 
is the degree of the polynomial P. 

§ 3. 82¢ + f : ~ ( x ) : h 2 ( x ) d x  is positive 

In  this section we suppose h 2 E L~ so tha t  the operator (1.3) is defined 
on ~ (N). W e  set  

4 ( k )  = a(k) + a * ( - k )  . 
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Then 

f :  ¢2 (x) :h 2 (x) dx 

= f £2(k + l) ¢(k)  q~(1)/~ (k)-1/2#(1)-1/2 dk dl (3.1) 

= f ~ (~ ÷ k) ~ ( -  ~ ÷ l) q)(k) qS* ( -  l)# (k)-I/~# (/)-~/2 dk dl d~.  

We assume h is real, so tha t  £-(k) = )~(-k).  Then (3.1) is equal to 

f :A(~)  A*(~) :d~ 
where 

A (~) = f ~(~ + ~) ~(k)~ (~)-i/2 dk. 
Let 

Be= f :A(~7)A*(v):d~ 7 (3.2) 

and set (3.1) equal to 
? B~+ B~. 

We assert tha t  Bq is semibounded and tha t  B~ is small relative to N, 
for large Q. The second s ta tement  means tha t  

B~ g e (N ÷ I )  (3.3) 
I 

if Q ~ ~o = ~o(S). To prove (3.3) we note tha t  Bq can be written as a 
sum of four integTals of the form 

B = f v(kl, ks) a@(kl) a@(k2) dkx dk~, 

with a @ = a* or a @ = a and with v E L2. Moreover v depends on ~ and 
lIvl[~-+ 0 as e -~ 00, I t  is k n o w n  tha t  

(N -4- I) -~/2 B(N ÷ I)-~/2 < const. ]Iv]]2I , 

and so (3.3) follows. 
To prove tha t  B e is semibounded we use the commutat ion relations 

(2.3) to remove the Wick ordering from (3.2). We find 

:A (~) A* (~) := A (~) A* (V) - f fi(~ + k)i2# (k) -~ dk I 
and so 

B e= f A(~) A*(~)d~ + f f  fi(~ ÷ k)lU# (k) -~dkd~I .  

The first, t e rm on the right is obviously positive and the second is a 
finite multiple of the identity. Thus BQ and also 

e.N --}- f:~U(X) h2(X) dX 

are semibounded under the assumption tha t  h 2 is normegative and in Lz. 

§ 4. Reduction to a Problem with Discrete Momentum 

We follow a procedure of NI~LSON [9] for approYimating (2.5) by  a 
finite sum. 
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Choose numbers y and ,~. (Later  we let 7 -+ 0, ~ -+ c¢). We define 

] ' =  { n ~ : n  = O, _A: 1 . . . .  } 

and 

a~ (k) = y--ll~ f a@~ (k + l) dl  
o 

where a :~ equals a or a* and k ~ F.  Then 

{10 if k = /  
[a~(k), a* (l)] -: ~kz = otherwise 

Le t  
Ho~ = Z ~ (k) ~*(k) aN(k). 

(4.1) 

(4.2) 

fi~,(k) = f e ~ h(x) dx  

[k] = sup {l :l C/ ' ,  1 < k} 

is the integral par t  of k relative to the lattice P.  Since h E L1,/~ is 
continuous and 

~ ( Z  [k~]) H ~  ([k~])-l/~ _~ ~ ( X  k i ) / / S  (kD -li~ 
i i 

uniformly. Let  ~ be the set of states ¢ = {¢0, ¢1,. • .} with Cn (kl . . . . .  k~) = 0 
for n or ~ tkil large. I f  ¢ and ~o are in ~ then  

lim (3P,: Cv~ (h) : ¢) = (~, f :  qS, (x): h (x) dx  ¢) (4.5) 
~,-->0 

Thus the bilinear form of 

Hr~ = H0r ~ ÷ ~ b~:q~v~(h) : (4.6) 

converges to H on ~ × ~ where b o ,b~ , . . ,  are the coefficients of 
x °, x l , . . ,  in the polynomial  P(x) .  Hence if the Hy,  are semibounded 
with a lower bound independent  of y and ~ then H is semibounded also. 

and 

where 

One can check tha t  each ¢ in ~ (Ho)  is in ~ ( H 0 ~  ) also and t ha t  

lim How ¢ = H o e .  (4.3) 
~,-+0 
x--> o~ 

Nex t  we approximate  (2.5) by  

P p 

S=o '"  ~,~E s~ (4.4) 

X a~,(kj+l)...a,(kv)~r(~[ki])H]~([lQ])-l/' 
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Let  ~-v be the subspace of ~ consisting of functions which are 
pieeewise constant between lattice points. In  other words, 

¢ =  ¢o,¢~ . . . .  ~ 

¢ ~ ( h , . . . ,  k,~) = ¢( [~]  . . . . .  [k~]) . 
Let  ~v~ be the subspace of ~'v defined by  the restriction 

for somei ,  1 g i g n .  
The operators a*r(k ) and a~,(k), k E iF,,, leave ~ ' ~  invariant and act 

irreducibly on ~ w "  We set 7 = 2-~, ~ ---- 2~, and observe that  ~-2-~ s, 
increases monotonically with v and that  

is dense in ~" and 
g C (H t 2 ' ) - .  

Here H l ~ '  denotes the restriction of H to ~ ' .  Thus it is sufficient to 
prove the semiboundedness of 

H ~  I (2 (g0)  ~ 2 ( ~ / ~ )  ~ ~ )  

with a lower bound independent of ~ and u. 

§ 5. Diagonalizing the Potential 

So far we have used a representation of the Hflbert space in which 
H 0 is diagonalized, or is represented as a multiplication operator. In this 
section we give a new representation of ~'~w in which the interaction 
term :~ (h ) :  is a multiplication operator while the free Hamiltonian 
becomes more complicated. Let  

q~k~ = (1 /4f f  (k))l/~ [a,(k) + av* (k) + a~ (-]~) + av* ( - k ) ]  

q-ikl = i(1/4,u(lc))l/9[--av(lk]) -~ at* (]kl) + a~(-Ikl)  - aT(-Ik])]  

PI*I = i(,u (k)t4)1l 2 [at (]c) - a T (k)-b av(-I t )  - a T ( - k ) ]  

P-I~i = (~(~)14)~/~ [a~(l~[)+ a*(lkl) - a t ( - l k l )  - a~*(- lkl)]  
for 0 =~/c E F and let 

qo = (112~Uo) 1/~ [a~(0) -~ a T (0)] 

Po = i (~u012)11 ~ [a r (0) -- a* (0)]. 
One can compute that  

Hor~ = ~ 2-~[P(k) s +/~(k)2q(k) 2 - / ~ ( k ) ] .  (5.1) 
kE/'x 

As in [9, § 3 - 4 ]  we replace p~ and q~ by  unitarily equivalent operators. 
Let  

~ f r ~ =  ® ~ .  
kE.Px 

2 Commun. math.  Phys,, Vol. 8 
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where d/z~ is Z 2 of the real line with respect to the Gaussian measure 

¢~ (q) dq = (~ (k)/#)1/2 exp ( -  ~ (k) q~) aq .  (5.2) 

There is a unitary equivalence bebween Jt~v~ and ~ v ,  which sends qe 
into multiplication by q in the factor ]E~ and p~ into the operator 

¢ ;1  i(d/aq) ¢~ 

again acting in the factor d~f~. The proof of this statement is essentially 
yon Neumann's uniqueness theorem for irreducible representations of 
the commutation relations. We identify ~ f ~  and ~ ,  and we identify 
q,, etc. with its image, multiplication by q, etc. Let 

H~(k) = 2-1¢~ 1 [ -  (d/dq) 2 + # (k)q 2 - / ~ ( k ) ]  ¢~ 
(5.3) 

= - 2-~(dldq) ~ + l~(k) q(dldq) ,  

acting on .~f~. Now -~%f~¢k) is the infinitesimal generator of a known 
Markoff process and furthermoro the operator e-t~(~> is an integral 
operator and the kernel can be computed explicitly, [10]. In  particular 

(e-t%(k)~) (q) = f pt(q, q,) ~(q,) ¢~ (q,) dq' (5.4) 

~or ~ E 5~fk, where 
, [ ~(q'-  e-~'qp ] 

p ( q , q ) = ( 1 - e - 2 , ~ ) - l / ~ e x p  -- 1 - e - : ,  ' + # q , 2  (5.5) 

Let q now denote a variable in a Euclidean space R~ and let q have 
coordinates q~, k E/~.  Then 

¢~(q) dq = 1 I  ¢~(qk) dqe (5.6) 

is the product of the measures (5.2) and 

H ~  = L~(¢i(q)dq).  

In addition to the ~unct, ioi1 space L~, we will have to consider 

L,  = L~(¢~ (q) dq).  

Sincef¢~(q) d q = l ,  we have L~, C L~, if r~=<%. 
Lemma 5.1. e x p ( - t H o v ~  ) is a contraction operator o n l y ,  1 ~_ r g ~o. 

When T ~ t, 1 < p and r < co it is a contraction/rein L~ to Lr, ~or some 
T not depending on ~ or ~. I]  p is bounded away/rom one and r is bounded 
then T does not depend on p or r. 

Proo/. I f  W ~ Leo, then by a change of variables, 

t( e - ~  ~) (~)l 
_ (#/z):P(1 - ~ L ] - - - ~  ] ~p(q') dq~ 

=< #-1/~ llv,]]~ f exp(- ~i ~) dq~ - - - -  IlvIloo, 
and so exp ( -  t h e y ,  ) is a contraction onLoo. Since Ho~ ~ ~ 0, exp ( -  tHo~)  
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is a contraction on L 2 and thus on L~, 2 < r --< c% b y  the Riesz Thorin 
convexity theorem [8]. Let  I [ e x p ( - t H 0 ~ ) l ] ~ =  C ~  be the norm of 
e x p ( - t H 0 ~ )  as an operator from L~ to L r. The cited theorem states 
tha t  log C ~  is a convex function of p-1 and r -1 in the square 

0 < p - l , r - l g  1 .  

Now e x p ( - t H 0 r ~ )  is symmetric in the L~ inner product, since 
pt(q~, q~) = exp [ -  b(e-~tq~ 2 - 2q~q~ + e-Utq~)] with 

b = /ze -~ t (1  - e-~Vt) -1 . 

Thus by  duality, exp ( -  tHor~. ) is a contraction from Lr to L~, 1 < r g 2. 
I t  is a contraction on L 1 by  taking limits as r -+ 1. 

Let  

Then 

[ ( e - t n  W) (q~)[ _<_ a (qk) I]~h 

by  the Schwartz inequality, so na(q~)Hr bounds the norm of exp ( - the , )  
as an operator from L 2 to L~. For r - 1 < e 2~, Ua(q~)[] r is finite and has 
a bound independent of/~ ~/~0 and t ~ T, for some T, as computed in 
[10]. Let  5/~ be the orthogonal compliment of 1 in 5 ~ .  Since the norm 
of e x p ( - t H ~ ) ,  as an operator from J~f~ to ~ ,  tends to zero as t-~ co, 
the norm of 

exp ( -  ttt~) : ~ -~ L4 

also tends to zero as t -+  c~, uniformly in k. Let  ~ '  E S ~  and let 
~p = 1 + ~p'. Then 

( e ~ p ( -  tH, )  ~)~ = 1 + 2 e x p ( -  the )  ~" + ( e ~ p ( -  the)  ~')~ 

= [1 + c] + [2 e x p ( -  the )  y / +  ( e x p ( -  tHe) ~p')~ - c]. 
We choose 

= 0 '  ( e x p ( -  tH,)  v/) 2) = Hexp(-tHe)~'[1~ 

and then the terms in the brackets above are orthogonal. Thus 

_-< (1 + ~)~ + (e¢~/~ + I [ ( e x p ( - t ~ )  v ' y h )  ~ 
__< (~ + ~)~ + s~ + 2 II(exp(- t//~) ~o')'[1~ 
= (1 + c) ~ + 8c + 2 ][exp(-  tHe,) YYH~. 

For large t, 

t i e x p ( - t ~ )  ~lt~ < 1 -b 2 IIVII~ + ll~'Ilt = II~llt • 
and so e x p ( - t H ~ )  and e x p ( - t H o ~ )  are contractions I rom L l to L~. 
The lower bound T on t does not  depend on u or y. 

We apply the Ricsz Thorin convexity theorem to the maps 

e x p ( - t H o v ~ ) : L  ~ -+ L a 

e x p ( -  t H o w  ) :L~ -+ L ~  
2* 
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and conclude that  for large t 

e x p ( - t H o r ~ ) : L  r -~ L~r 

is a contraction, r ~ 2, We take products of several of these maps and 
conclude that  e x p ( - t H 0 v .  ) is a contraction from L~ to L r for any 
r < ~ ,  if t is large. By duality it  is a contraction from L~ to L 2 and hence 
from L~ to Z~ for any p, r E (1, c~), and the lower bound on t is inde- 
pendent of y, u, p and r if p is bounded away from 1 and r is bounded. 

Now we show that  the interaction term :¢~.(h): is a polynomial in 
the q' s. 

Let 
¢},g (x) = ~21/2 C (a~ (]c) + av* (-It))/~ (#)-:/~e ~k ~. (5.7) 

kEr~ 
Since 

qlkt + iq - l k l  i f  k > O 

(a~ (k) + a * ( -  k)) ~ (~)-:/~ = |2:~ qo if k = 0 
[qtkl -- iq-I~l  i f  k, < O, 

tv ,(x)  and also ¢~v(x) are polynomials in the q's .  We use the formula 

[~/2] p! 
¢~.(x) = Z (p _~])tj~ 2-~c~:¢~;2J(x) : (5.8) 

j=0 

tO conclude by induction on p that  :¢~,(x): is also a polynomial in the 
q's .  In  (5.8) the coefficient 

P! 2_ 5 
(p - 2j)~j: 

is just the number of ways of selecting j unordered pairs from p objects 
and c, is defined by  the formula 

c~=7 Z ~(~)-:; 
kEF~ 

we have the bound 
c~ ~ K : t n u  (5.9) 

where K 1 is independent of y and u. Thus 

: ¢~ , (h ) :=  f : ¢~ , (x ) :h (x )dx  
--~fV 

iS a polynomial in the q's, as desired. 
Let  

P ( x )  = b o 4- b:x  4" " " " ÷ b#x ~ 

be the polynomial in (1.2) and let 

Vv, = Z b~: ¢~, (h): (5.10) 

denote our approximate interaction term, as in (4.6). 
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Lemma 5.2. Fo r  some constant Ks, independent o] ~ and ~, we have 

- (ln~)alSK2 g V w . (5.11) 

Proof. We use (5.8) to remove the Wick ordering in (5.10) and obtain  

Vv, = Z a~(c~) f Cr~(x) h(x) dx 
nly 

where a ,  is a polynomial  in c, of degree a t  mos t  [(d - p)/2]. The coef- 
ficients of a~ depend only on the  coefficients of P, and  so we have an  
estimate 

]a~(c~)l ~ K'ct(d-~)121. 
Since a a = b d > 0 and since d is even b y  hypothesis,  i t  follows t h a t  
0 < ~ a~(c~)x~ for K"(c~ + 1) < Ix] ~ and 

- c~a/9" K ' "  ~ ~ a~ (c~) x ~ 

for all x. We bound  c~ by  (5.9) and the proof is complete. 
Lemma 5.3, Vv~ E L~ /or all r < oo and i / 2  <: 

[ I V ~ -  v~ l l~  =< (all)!K~,~-~, (5.12) 
where K a is a constant which is indeTendent o /7 ,  )~ and u. 

Proo[. We use the  particle representation, ~-r~, in place of the  
representat ion ~ = L ~ ( ¢ I d q ) .  Now 1 ~ f ~  corresponds to  the 
v a c u u m  s t a t e  

~ = 1 , 0  . . . .  ~.~:,,~, 
s o  

II v ~  ~ J -  - V,,all2 i -  f (Vw - l%a)~J¢~dq 

= ((v~ - v~)~, (v~ - v~#12) (5.13) 

= II v ~ -  v~#s)l[ ~ . 
We set ). = 0 above and get 

il v~ i l~  = II v~QIl  ~ < 
a n d s o  V ~  E L r f o r  a l l r  < ~ .  We re turn  to  (5.13) and note  t h a t  V w - Vv~ " 
is a sum of d2 a terms of the form 

A = b~ ~ , ~ 2 J  ( ! ;  ~, : H ( ~ ( ±  ~)  ~(~,)-~z~): (5.14) 
k~ \ i = 1  / ~=1  

where in the  summat ion  over ki we have  

k ~ / ~  for  l g i g p ,  p g d ,  and  k~(~F~. 

for a t  least one i. Summing again over the same range of ki, we have 

[ 1] ~ v ~  )~ k~ /x(ki)- ~ Ka). -~ (5.15) 

and  K a is independent  of ~, ~ and ?. 
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Let  ~0 be a state with at most I particles. I t  follows from (5.15) and 
the form of A that  

IIA vll ~ -<-- (~ + p)~l~) gJ,-~ 11 ~oll ~- 
and furthermore A ~o is a state with at most 1 + P particles. Thus if we 
have operators A 1 . . . . .  Aj of the form (5.14), 

IIA1. . .  A~t)l  ~ -<- (dD! SCs,~-i. 
Hence 

II(V~,- v~D~II ~ ~_ (dD! (d2aK4) ~ ~-~ = (dj)! K~ ~-~ , 
and the proof is complete. 

§ 6. Path space 

Let  C be the space of continuous paths q = q (s), 

q(s) C R~, O <= s < oo. 

There is a measure on C intrinsically associated with the semigroup 
exp ( - t H o ~ ) .  To define this measure we set 

Pi(q~, q~) ¢i(q~) dq~ = Pr{qk(t) = q~ I qk(0) = q~}, (6.1) 

the probability that  q~(t)= q~ ff it is known that  q~(0)= q~" ~ is 
defined by (5.5); we have added a. subscript k to indicate the dependence 
on # = # (k). Let  

pt (q, q,) = H pi(q~, ql). (6.2) 
k E_r'~ 

The a-field of measurable subsets of C is generated by the sets 

q(s~) E Bi, 1 <- i ~ ],  (6.3) 

where B t is a Borel subset o f / ~ .  The measure of (6.3) is 
J 

f H p:'-~'-'(q(s,_1), q(sD) ¢~ (q(sD) dq(sD ¢~(q(0)) dq(O) (6.4) 
.Bix"- x.B i i ~ 2  

if s 1 = 0 < % < . . .  < sj. The definition (6.4) is forced by  the definition 
(6.1) together with the Markov character of the process, the stipulation 
that  each coordinate q~ of q defines an independent process and the 
specification of ¢~(q)dq as the probability distribution of the initial 
point q (0) of the path q. 

If V 1 . . . . .  V I  C L~(R~, ts, gQ) then we compute 

f H V, (q (sD) d Q = f Vx (q (0)) ¢~ (q (0)) dq (0) 
i (6.5) 
• [e~p((8o - ~ )  H0~,) V~ exp(@~ - ~ )  SSo~) 

• ( . . .  - yD...)] ( q ( 0 ) )  
and 

(6.6) 
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using (6.4) and the fact tha t  e x p ( - t H o r ~  ) is a contraction on L r. 
Furthermore (6.5) and (6.6) remain valid when some of the times s~ 
coincide. 

Lemma 6.1. Let V be a polynomial /unction on tt~. Then 
t 

f V(q(s)) ds EL~(C, dQ)/or  all p < c~ and 
0 

v (q (s)) ~ -<- t llv[tj ds 

/or j an even positive integer. 
Proof. For a given path q, 

t 

z = f v(q(s)) as = n m  X (fin) V(q(~tln)) 
0 n l 

and since each Riemann approxlmating sum to I is a measurable func- 
tion of q, I =  I(q) is measurable also. Let  In(q) be the n *a Riemann 
approximating sum to I .  Then 

If In(q)J dQ[ <= ti II vli~ 
by (6.6) and 

Ill g const, t(Mt(q)) a 
where d is the degree of V and 

Mr(q)--- Max [q(s)l. 
O g t g t  

Thus the lemma will follow from the Lebesgue bounded convergence 
theorem once we show tha t  M E L~((7, dQ) for all p < oo. 

However the d Q probability of the set 

{Iq~(t)l == a I Iq~(O)l} 
dominates the Wiener probability of the same set if [q~(O)] g a. I t  
follows that  the L~ norm of Mt is dominated by the Wiener L~ norm 
of Mr. This latter norm is finite by known properties of Wiener measure, 
[4, p. 25, 26]. 

Lemma 6.2. Let r E [1, 2). There is a T independent o / 7  and ~ such 
that i / t  ~ T and i / ¢  and V E L2(¢~dq) then ¢(q(0)) v(q(t)) E L~(C, dQ) 
and 

fl¢(q(o)) v(q(t))][,. < 11¢11~ lI~,lI~ 
The T can be chosen independently o] r provided r is bounded away/rom 2. 

Proo]. 
l i¢(q(0)) v;(q(t))ll~ = f l¢(q(0))i  ~ Iv(q(t))i ~ dQ 

= f 1¢]" [ exp( - tHo~) l~ f l  ~] ¢ I d q  

< II I¢I ' l I~, l Iexp(- tH,, : , , , )  Iv'l'II~, 
where p is the conjugate index to 2/r; (r/2) + p - - 1  = 1 . However 

li !¢t'1t~, = ilCll.; 
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and 
l l exp( - tHo~. )  Iv'l% < II Iv'lq=/, = Ilwll~ 

for large t, by Lemma 5.1. 

§ 7. The Feynman Kae formula 

The Feynman Kac formula states that  

(¢, exp(-tH,~)YO = f ¢(q(O))- exp ( -  / V,~(q(s)) ds) ~(q(t))dQ . 
(7.1) 

The right member of (7.1) is bounded by 

,,¢(q(O))- ~o(q(t)),, . exp ( -  / V~(q(s))ds) , 

<: I]¢112 ][~,,= exp(- /V~(q(s))ds)L 

for p > 2 and for t large, by Lemma 6.2. Thus 

Ilexp(-tH,,)lI <= lexp ( - /  V~,(fl(s))) , 
and 

Then 

t 

h = f Vr~(q(s)) ds. 
0 

Let 

(7.2) 

- K~t(ln2)~/2 ~ I~ 
by Lemma 5.2. Let K 5 . . . .  denote positive constants depending only on 
t and the polynomial P and let Pr denote the measure defined by dQ. 
Then 

Pr  { 5  -<- --K2t(ln)O ~/= - 1} =< Pr {II~-/~I-->--- 1} (7.3) 

(by Lemma 6.1) 

__< (aj)! t 2j ~ ,a.-J 
(by Lemma 5.3) 

(djW e-~(~+ 1) 1~ ,~-J 

by Stirling's formula. We choose j so that  

] ~ d-:  K~ -:/~ ~,/d < ~ + 1. 
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Then  
e -  ~ (~ + 1) _ exp  ( -  K~ -ltd )l/d) 

is a bound  for (7.3) a n d  so 

P r  {I~ g - X -  1) < exp  ( - K  s eK, X~l~). 
Thus  

f le-~"fdQ = f e -~z'~ dQ < e -2~ + ~ e x p ( p ( n  + 2)) e x p ( - K  e e K,n~) 
n > l  

is  bounded  i ndependen t l y  of ~ a n d  g and  combining this  wi th  (7.2) we 
have  H w bounded  be low b y  a cons t an t  which is i ndependen t  of u a n d  ~; 
according to  § 4, th is  proves  Theorem A. 

The  fo rmula  (7.1) can  be p roved  b y  s t a n d a r d  methods .  See for  
example  [6, p. 1 6 8 - 1 7 1 ] ,  where  a s imilar  fo rmula  is der ived.  
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