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Abstract. A convex scheme of quantum theory is outlined where the states are not 
necessarily the density matrices in a Hilbert space. The physical interpretation of the 
scheme is given in terms of generalized "impossibility principles". The geometry of the 
convex set of all pure and mixed states (called a statistical figure) is conditioned by the 
dynamics of the system. This provides a method of constructing the statistical figures for 
non-linear variants of quantum mechanics where the superposition principle is no longer 
valid. Examples of that construction are given and its possible significance for the inter- 
relation between quantum theory and general relativity is discussed. 

1. Introduction 

In turn of development of quantum theory eflbrts were made to 
present a geometric description of quantum mechanics independent 
of "wave functions" and "complex amplitudes". The best known such 
description was originated by Birkhoff and yon Neumann [2] and 
completed by Piron I18]. It explores a partial order relation in a idealized 
set of "yes-no measurements" called a "quantum logic". The resulting 
approach though mathematically profound is not physically complete. 
In the last ten years two other approaches have been developed. One 
is the algebraic approach reflecting the physics of operations which can 
be performed on statistical ensembles. This aspect has been introduced 
to axiomatic quantum field theory by Haag and Kastler [t0] and it 
reappears as the main motif in the present day quantum statistics. The 
other approach, originated already in the fourties (Segal [I]) might be 
called "convex". It explores the convex structures of quantum mechanics 
with a special attention concentrated on the convex set of all states (pure 
and mixed) of a quantum system. The description of quantum mechanics 
from that point of view was most systematically explored by Ludwig [14] 
and further developed in [3-6, t 1, 15-17, t 9, 21, 22]; it now becomes one 
of main currents in the foundation of quantum theory. The synthesis of 
the convex and the algebraic approaches has been gradually achieved 
[3, 5, 6, 9-11, 16, 19]. It brought the complete geometrization of quantum 
mechanics including the description of the present dab' formalism of 
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Hilbert spaces in terms of physically meaningful axioms [9, 14, 15, 19, 21], 
the general classification of the operation [6, 1 l], the definition of filters 
as endomorphism of a convex cone of  beams [3, 16] and finally, the con- 
struction of the transition probabilities as affine geometric invariants of a 
convex set [t6]. As a result of that development a generalized convex 
scheme of quantum mechanics has emerged from the point of view of 
which the scheme of the present day theory is not unique but is a particular 
member of a vast family of"quantum worlds" mathematically admissible. 
The conjecture was also rised that the convex set theory might play a 
similar role in quantum physics as the Riemannian geometry in general 
relativity [16]. The aim or the present paper is to take the next step by 
showing that the "convex scheme" is flexible enough to comprise non- 
linear versions of quantum mechanics in which a non-linear wave 
equation would play the role of the Schr6dinger equation. With this aim 
the geometric description of quantum mechanics based on the convex 
set theory is outlined in § 2. In § 3 and § 4 the geometry of a system is 
related with the dynamics which allows the construction of the convex 
manifolds of quantum states for systems obeying a generalized wave 
mechanics. Some applications of the resulting scheme are indicated in 
§ 4 and its relation to other physical theories is discussed in § 5. 

2. Convex Scheme (Outline) 1 

The elements of convex set theory are rooted in primitive concepts of 
quantum mechanics. The most fundamental such concept is that of a 
quantum state. Given a statistical ensemble of objects of any nature, 
the state is the collection of the physical properties of an average ensemble 
individual. For the above notion of a state the following concept of a 
mixture becomes natural. Given certain ensembles gl ,-- . ,  gn corre- 
sponding to states x l , . . . ,  xn and given numbers pl . . . .  , p, > 0, P l + " "  
"" + Pn = 1, one can form a new ensemble g of which a fraction p~ com- 
prises randomly chosen objects of g~ (j = 1, ..., n): the ensemble ~f defines 
a new state x which will be denoted x = p l x l + . . .  +pnxn and called 
a mixture of xl . . . . .  x n. The concept of a mixture induces that of a pure 
state: a state is called pure if it cannot be represented as a mixture (with 
all coefficients non-vanishing) of any physically distinct states. These 
definitions suggest that the set of all states of a physical object should 
possess the structure of a convex set. Some definitions concerning that 
structure are given below. 

Definitions. A convex set is a subset of an affine space containing 
together with any two points the interval joining them. Here, an affine 

1 This section is a review of essentially known material. 
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space is any set E of elements called points with a linear combination 
operation assining to each finite system of points xl ..... x,  eE  (n= 1,2,...) 
and any system of numbers 21 . . . .  ,2 ,e lR,  21 + ' "  + 2 , =  1 a new point 
21 xl  + " -  + 2 ,x , ;  the linear operation has properties which allow one to 
represent E as a plane in a real linear space. An affine topological space 
is an affine space E with a topology in which the linear operation is 
continuous. Given an affine space E and a system of points x l, ..., x , e  E, 
any linear combination PlXa + . . . + p , x ,  with Pl, . . . ,p,>=0, Pl, + "'" 
... + p, = 1 is called a convex combination of xl  . . . . .  x,. For  E an affine 
topological space, a continuous analogue of that operation can be 
introduced. Given a subset X C E with the topology induced by that of E 
and given a positive measure # defined on Borel subsets of X such that 
#(X) = 1 (a probability measure on X) the integral j x dp(x), if it exists, 

x 
is called a convex integral of points x e X over the measure #. The convex 
combination is a special case of a convex integral obtained by taking the 
measure # to vanish outside of a finite set of points. Given an affine 
space E and two points x l ,  x2 ~ E, xl  + x2, the set of all linear com- 
binations E(xl, x2) = {21 xl + 22x2:21, 22 ~ IR, 21 + 2z = 1} is called the 
straight ine determined by xl and x2 while the set of all convex combina- 
tions l (x t ,  x2) = {Pl xl  + p2x2 : PI, P2 > O, Pl + P2 = 1} is called the 
straight line interval joining xl and x2. Any point of 1(xl, x2) different 
from the end points xl and x2 is called an internal point of I(xl ,  x2). 
Given a convex set S C E an element x e S is called an extremal point 
of S if it cannot be represented as a convex combination with both 
coefficients positive of any two distinct points of S. Thus, x is extremal 
if it is not an internal point of any interval I C S. 

The most  general axiom reflecting the phenomenology of mixtures 
in quantum mechanics can be now formulated as follows. For any 
quantum system the set of all states can be represented as a closed convex 
set S in a certain afflne topological space E. The convex combinations 
in S correspond to the state mixtures while the extremal points of S represent 
the pure states of the system. The topology on S reflects the observable 
properties of quantum states. 

Here, physical significance may be attributed to the set S alone: the 
surroundings affine space E is introduced only as an auxiliary construct 2. 
For  reasons of economy it will be assumed that S spanns E. For  quantum 
mechanical systems which are the objective of this paper it will be assumed 
in addition that S contains a set of extremal points rich enough to 
represent any point of S as a convex integral of extremal points. The 

One could think about an axiomatic approach where the convex set S would be 
defined without involving the surrounding space. A step in that direction was recently 
taken by Gudder [22], 
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convex set S plays a fundamental role in quantum statistics; it will be 
further called a statistical figure (see also [t6]). Two simple examples 
of that structure are given below. 

Figure 1 represents the mixtures which can be formed of classical 
objects of three types (for example, red, green and blue balls). The 
statistical figure here is a triangle in a 2-dimensional affine space: the 
vertices are pure states corresponding to one-colour ensembles, while 
the remaining points represent the mixed states with one mixed state 
(the center) distinguished (completely random mixture). A similar 
structure can be obtained by considering mixtures of classical objects 
of n possibles types: in that case the statistical figure is a simplex with n 
vertices in an (n- l ) -d imensional  affine space. The case of n = oo is 
essential for realistic models of classical mechanics. Here, the pure states 
correspond to points of a classical phase space P (endowed with a 
certain natural topology) and the statistical figure S is the convex set 
of all probability measures on P with the topology induced by that of P. 
The convex set of all probability measures on a certain topological space 
is a generalized simplex whose vertices are all point-concentrated 
measures. It is an important property of the simplexes that each point 
of a simplex can be  uniquely represented as a convex integral of extremal 
points. This fact reflects the classical nature of the corresponding objects: 
it is a crucial feature of classical objects that their statistical ensembles 
can be uniquely decomposed into the pure components. Thus, the 
simplexes have to be considered the statistical figures of classical theories. 

A different example is shown in Fig. 2, which represents the polariza- 
tion states of a photon. Here, the statistical figure is an ellipsoid in a 
3-dimensional affine space. The surface of the ellipsoid represents the 
pure polarization states: the equator comprises the linear polarizations, 
the poles are the drcular polarization states and the remaining points 
of the surface correspond to the elliptic polarizations. Each two antipodes 
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of the ellipsoid correspond to the "opposite" polarizations (for instance, 
each two antipodes on the equator represent two mutually orthogonal 
linear polarizations). The internal points of the ellipsoid stand for the 
mixed states with one mixed state 0 (the centre) distinguished (polariza- 
tion chaos). For the above statistical figure the decomposition of mixtures 
into their pure components is no longer unique: each mixed state can be 
represented in many ways as a combination of pure states. Thus, the 
chaos state can be represented as 0 = ~x + ~xl, where x and x' are any 
two antipodes of the ellipsoid. Physically, this means that having a light 
beam in the polarization state 0 one cannot say whether the beam has 
been prepared by mixing two linearly polarized beams or by mixing two 
circularly polarized beams or in any other way. This fact illustrates a 
certain general "impotence law" coded in the geometry of S. 

Principle of Impossibility 

The law which emerges from the example in Fig. 2 might be given the 
following form. Having a mixed statistical ensemble of non-classical 
objects one cannot determine uniquely its pure components and find out 
how the mixture has been prepared. Two mixtures created in two distinct 
ways by taking different collections of  pure states may be physically 
indistinguishable. This statement is one of the most general negative laws 
limiting the perception of quantum ensembles: it might be called the 
first principle of impossibility of quantum theory and considered the 
main manifestation of the non-classical nature of microobjects. The 
above law is not exclusive for the orthodox theory but it can be read 
from the geometry of any statistical figure S which is not a simplex (see 
Fig. 3). A non-simplicial shape of S is a geometric expression of non- 
classical character of the corresponding objects. 

"First impossibility": 

x -~p lX  t +p2x2 

x = ql Yt + q2 Y2. 

Yl 

Fig. 3 
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Counters 

Though it was known for a long time that the shape of S reflects the 
physics of the corresponding quanta, it was only recently discovered that 
this shape contains the complete information concerning the properties 
of quantum states. In reading that information the following concept 
of a normal functional is essential. 

Definition. Given an affine space E, a functional ~b:E~IR is called 
linear if ~b(21 xl + . . "  + )., x~) = 21 ~bxl + . . .  + 2 ,¢x ,  for any xl . . . . .  x, ~ E, 
21 . . . .  ,2,eIP,, 2 1 + ' " + 2 , = 1 .  Given a convex set S in an affine 
topological space E, a linear continuous functional ~b:E~IR is called 
normal on S if 0 < ~b x _<_ 1 for every x e S. 

The normal functionals admit a simple geometric representation. 
Any non-constant linear continuous functional ~b in an affine topological 
space is completely determined by a pair of closed parallel hyperplanes 
on which it takes the value 0 and 1. Now, q~ is normal on S if the set S 
lies in between the hyperplanes ~b = 0 and ~b = 1 (see Fig. 4). 

If the convex set S is a statistical figure for a certain physical system, 
the normal functionals possess a natural physical interpretation. A. 
meaningful theory besides physical objects describes also measuring 
devices. The typical measuring device of quantum theory is a particle 
counter. Given a counter 4~ and a state x ~ S the number q~x will mean 
the average fraction of systems in x-state detected by the counter 
~b (0 <~bx < t). Since counters considered here react only to individual 
systems of the ensemble (without taking into account the interrelations 
between them), it follows that for any mixed ensemble the total number 
of particles (systems) detected is the sum of the corresponding numbers 
for all the components of the mixture. This leads to: ~(Pl x~ +... + p.x.) 

2'=0 

4=0 

Fig. 4 
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=p~Oxl + ... +p,4)x, and so, each counter defines a certain normal 
functional on the statistical figure S (and thus, on the whole of E). The 
question now arises: how rich is the set of all normal functionals which 
correspond to certain physical counters? As no counter-example is 
known, it will be assumed that each normal functional represents a way 
of detecting a property of the system which, at least in principle, could be 
realized by constructing an adequate counter. For example, if the 
convex set in Fig. 4were a statistical figure for certain physical particles, 
the pair of planes ~b = 0 and 4) = 1 would represent a counter registering 
unmistakenly all particles in state x ("x-particles") and blind to all 
y-particles, whereas the planes )~ = 0 and Z = 1 would represent a counter 
registering all z-particles, 1/2 of the y-particles and blind to x-particles. 
Since for the convex set of quite arbitrary shape the non-trivial normal 
functionats might not exist, some general assumptions as to the structure 
of S are still necessary. What will be assumed below is that the shape of S 
allows the existence of a class of normal functionals rich enough to 
distinguish the points of S: the convex set with that property is called 
bounded. 

The assumptions up to now can be summarized as follows. For any 
quantum system the set of all states is a closed and bounded convex set S 
(called a statisticaI figure) in an affine topological space E. (The physically 
essential structure here is S while the surrounding affine space E is spanned 
by S as an auxiliary construct.) 

The statistical figure S uniquely determines the class of normal func- 
tionals represented by all pa#~ of parallel hyperplanes enclosing S: every 
normal functional corresponds to a quantum mechanical counter which 
might be used to test the system properties. 

On these assumptions, all the physical information contained in the 
geometry of S may be now decoded. One of the most familiar such in- 
formation is the "quantum logic" of Birkhoff, von Neumann, and 
Piron [2, 18, 12]. 

Quantum Logic 

In the geometry of convex sets the following concept of a wall is of 
importance. 

Definition. Given a convex set S, a wail of S is any convex subset 
S'C S such that, whenever S' contains an internal point of any straight 
line interval I C S, it must also contain the total interval I. Thus, S' is a 
wall if the following implications hold: 1) xl,  xz ~ S', Pl,P2 >0, Pl + P2 
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= l ~ p i x l  +p2x2~S'; 2) X1,x2ES , plxi +p2x26S' with p l ,p2>O,  
Pl + P2 = 1 ~ x i ,  x2 ~ S'. 

The above concept of a wall generalizes that of an extremal point: the 
extremal points are simply one-point walls of S. Geometrically, a wall 
can be associated with an intuitive idea of a "maximal plane fragment" 
(of any dimensionality) of the boundary of S. Each convex set has at 
least two inproper walls: the empty set ~ and whole of S. For  any 
convex set S the walls form a partially ordered set with the ordering 
relation =< meaning set theoretical inclusion. As is immediately seen, the 
common part of any family of walls is again a wall: hence, the walls form 
also a lattice (where for any family of walls the intersection of all upper 
bounds defines the lowest upper bound). If S is a statistical figure this 
lattice admits a natural physical interpretation. It is an old question 
whether the formalism of quantum theory is adequate to describe the 
properties of single systems. What is verified directly in the most general 
quantum experiment are rather the properties of statistical ensembles. 
However, the properties of single systems can be introduced by an 
abstraction process [12, 16]. One can agree, that a property P of quantum 
ensembles defines a property of single systems provided that it is "additive" 
and "hereditary"3: if any two ensembles have the property P their 
mixtures must have it too. Conversely, if any mixed ensemble has the 
property P, so must have each of the mixture components. These con- 
ditions mean that the subset of all states with the property P should be a 
walt of S. One thus guesses that the lattice of walls of S represents the 
set of all possible physical properties of a single system ordered according 
to their generality. In axiomatic approaches to quantum mechanics an 
important role is attributed to the notion of completely exctudin9 
properties. This notion finds a simple geometric description too. Given 
two walls (properties) $1, $2 E S and a normal functional ~b, it will be 
said that q~ completely separates Si and $2 if either ~b xi = 0, and ~b x2 = 1 
or q~xl = 1 and ~bx2 = 0  for every xl ~Si  and x2sS2 (i.e. if the corre- 
sponding counter is completely blind to the particles with one of these 
properties and detects all the particles with the other). Now, two 
properties (walls) are called excludin9 or orthogonaI ($12_$2) if there 
exists at least one counter completely separating them. The set of all 
physical properties of a microparticle with the relations of inclusion __< 

Not every property of an ensemble is of such a nature that it can be attributed 
to each single ensemble individual. An example can be obtained by considering a particle 
beam and a semi-transparent window: the fact that the average beam particle penetrates 
the window with probability 1/2 reflects a certain property of the beam as a whole. This 
property does not necessarily concern each single beam particle: for it may happen that 
the beam is a mixture of two distinct types of particles one of which is completely trans- 
mitted and the other completely absorbed by the window. 
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and exclusion _1_ is what  one tradit ionally calles a logic of the particle 
or quantum logic 4. 

Hence, in the present approach  the quan t um  logic is no longer a 
fundamental  structure but one of  the particular aspects of  the geometry  
of  S. 

Second Principle of Impossibility 

Besides the structure of the "logic" the geometry of S allows one to 
read a numerical  relation between pure states generalizing the basic 
invariant  t(~, q~)t 2 of  the o r thodox  theory. Let x and y be two extremal 
points of a statistical figure S and let Q(y) denote the set of all normal  
functionals taking the value 1 at y. If  x_t_y, there exists in Q(y) at least 
one functional vanishing at x. In general, however,  such a functional in 
Q(y) may not  exist because of the geometry of S. An example of this 
si tuation is shown on Fig. 5. 

For  the convex set here each point  of the arczl"-22 is o r thogona l  to 
the extremal point  y: suitable separating functionals are determined by 
all possible pairs of parallel support  lines Pj, Pj one of which supports  S 
at y and the other at an arbi t rary point  of z"7"z2. A similar separating 
functional, however,  does not  exist for the pair of points x and y as there 
is no  parallel pair of straight lines suppor t ing S at x and y. As seen on 
Fig. 5 the smallest value possible at x for the functionals of the family 
Q(y) is 1/2 and is accepted by the functional q~ represented by the pair  
of lines P1, P[- Thus, if the convex set in Fig. 5 were a statistical figure for 
certain physical quanta,  it could be infered that  no  counter  can be con- 
structed registering all y -quanta  and less than the average fraction 1/2 
of x-quanta.  This illustrates a certain general impossibility law coded in 
the geometry  of the statistical figure. In order  to formulate it more  
precisely the following geometr ic  quant i ty  is needed. 

Definition. Given a closed convex set S and a pair of extremal points  
x, y e S the ratio x : y is the lower limit at x of all normal  functionals 

4 The so introduced concept of a logic is wider than in the majority od axiomatic 
approaches. The notion of orthogonality employed here is more primitive than the usually 
introduced concept of negation. Given the lattice W of walIs with the orthogonality L, 
the physically interpretable negation can or cannot be introduced dependingly on the 
structure of the relations J_ and < on IV. tf for an a e W the family a l =  {xe W:xLa} 
contains its lowest upper bound, this element can be denoted a' and called the "orthogonal 
complement" (negative) of a. If not, then no unique negative can be assigned to a. For an 
arbitrary convex set the resulting logic W(<, L), in general, does not admitt the con- 
struction of the orthocomplementation a ~ a'. 

tt is, an open question whether all the walls of S should be considered the physically 
essential elements of the "logic" or some regularity requirements should be suplemented 
(stating, for instance, that only the closed walls of S correspond to "physically verifiable 
properties"), An extensive discussion of an equivalent problem is due to Giles [8]. 
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taking the value 1 at y: 

x : y =  inf q~x. (2.1) 
4,EQ(y) 

For any convex set S the ratios of the extremal points are uniquely 
defined by the shape of S and can be determined by an abstract con- 
struction employing support planes [t6].  

If S is a statistical figure of certain physical systems, the non-vanishing 
of the quantity (2.1) reflects an inavoidable lack of selectivity of quantum 
mechanical measurements. Given two pure states x and y no counter can 
be constructed which detects all y-systems and less than a fraction x : y 
of x-systems. More 9enerally, every physical process leadin9 to a certain 
macroscopic effect for all y-systems must inavoidably lead to the same 
effect for at least x : y of x-systems. The above statements form one of 
essential quantum laws which will be further called the second principle 
of impossibility. Because of their role in that principle, the ratios of the 
extremal points of any statistical figure will be called the detection ratios 
(see also [16]). 

A particular form of the "second impossibility" is observed in 
orthodox quantum mechanics. Here, the statistical figure is the set of all 
density operators in a certain Hilbert space ~ :  Sac= { x ~ ( J g ) : x  + 
= x > 0, Trx = 1 }. The extremat points of Sac are the simple projection 
operators of the form t~P x ,p[ where ,p are the unit vectors in ~ .  For an 
arbitrary pair of extremal points Jtp x tpt and IcP x q~] the detection ratio 
has been found in [16]: 

I~P x tpl : tq~ x q~l = I(% q~)P- (2.2) 
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This thct allows one to deepen the statistical interpretation of the 
quantities [(W, q))12 in orthodox theory. According to the traditional 
interpretation these quantities possess the following meaning of the 
transition probabilities. Given any pure state [q~ x q~] the theory assumes 
the existence of a measuring device testing for miscrosystems in that state. 
When this device is applied to an ensemble systems in another state 
1W x tpl a fraction T(W, q~)t z of them, on average, passes the test with the 
result positive. What may be infered now however, is not merely the 
existence of this sort of verifying device, but also the basic impossibility 
of any more selective apparatus. Given two pure states corresponding 
to unit vectors h0, q0 e ~e, no particle absorber is possible transparent to 
all ~0-systems and transmitting less than a fraction [(W, (~)12 of W-systems. 
Generally, no physical process is possible which tolerates all q~-systems 
and less than a fraction I(W, ~o)12 of W-systems. The quantifies I(~, (0)12 
establish an absolute selectivity limit for quantum experiments. The 
above facts, though proved analytically [16] possess a simple geometric 
meaning. As an illustration consider polarized light beams. If x and y 
are the states of the circular and linear polarizations of a photon re- 
spectively, there exist a device transparent to linear y-photons and 
transmitting ony half of the circular x-photons (the Nicol prism with 
its polarization plane coinciding with that of the y-photons). However, no 
window can exist more selective than the Nicol prism, that is, transparent 
to linearly polarized photons but absotbing more than a fraction 1/2 
of circularly polarized photons. The impossibility of such a device follows 
immediately from the geometry of the ellipsoid in Fig. 2 (construction 
with the support planes), whereas the analytical representation of the 
points of that ellipsoid by density operators in a Hilbert space is much 
less obvious. 

It is worth while to notice that the "second impossibility" exhibits an 
implicit dynamical contents of the statistical figure. In fact, the assertion 
about the impossibility of certain physical processes is a genuine 
dynamical statement limiting a priori the class of evolution processes 
admissible. This limitation is present on the apparently pre-dynamical 
level of the theory, as a necessary condition for the applicability of its 
mathematical language. Thus, in supplementing the structure of quantum 
states by dynamical equations the precaution must be taken to respect 
an "innate" dynamical information contained in the geometry of S. This 
seems to be a special case of Haag's general idea about the necessary 
consistency between the primitive measurement axioms of quantum 
theory and its mature form of a dynamical theory 5. 

; The importance of this type of consistency for quantum theory was pointed out to 
the author by Professor R. Haag during the winter school in Karpacz, February 1968. 
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Problem of Generality 

As becomes clear, the convex set theory introduces into quantum 
mechanics a flexibility similar to that which the Riemannian geometry 
achieves in the space-time physics. Indeed, it is significant that one can 
describe the structure of quite an arbitrary convex set in terms of typically 
quantum mechanical concepts such as the "detection ratios" and the 
"quantum logic". When the set S deviates from the traditional manifold 
of "density matrices", those concepts do not loose their sense: they only 
change the geometry. This allows a consistent description of generalized 
systems where the geometry of the "transition probabilities" and the 
structure of "logic" would not be originated by the Hitbert space theory. 
Thus, one might think about a possibility of non-orthodox "quantum 
worlds" where the "logical" axioms of Birkhoff, yon Neumann and Piron 
[2, 18] would be relaxed and the "operational" axioms of Pool [19] and 
Gunson [9] would not hold. One might also construct hypothetical 
systems with the lattice of "properties" being not orthocomplemented 
and the axiom of Ludwig [14] about the "sensitivity increase of effects" 
broken. The simplest example embodying all those non-orthodox 
features is represented by a hypothetical statistical figure of the form of a 
square in a 2-dimensional affine plane: 

--Qx  

Fig. 6 

Here, the pure states are the vertices x, x', y, y' and the remaining 
points of the square are mixed states with one mixed state (the centre) 
distinguished as the "total chaos". For any pair of pure states there 
exists a separating normal functional (thus, e.g., the pair of support lines 
P, P' in Fig. 5, defines a normal functional separating x and y from 
both x' and y'). Hence, the detection ratios vanish and there is no second 
impossibility. Still, the first impossibility is present: the mixtures ½x 
+½x 'and½y  1 , + ~y are indistinguishable as they both define the "total 
chaos". The logic of properties forms a Dedekind's lattice (there are 
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4 types of walls: the empty set ~Z~, the vertices, the sides, and the whole 
square). However, it is not orthocomplemented: for any pure state x, 
among the walls orthogonal to x no greatest one exists, and so, no 
unique negation in "quantum logic" can be defined. 

A question now arises: is it so, that a statistical figure like that on 
Fig. 6 could indeed reflect the statistics of some real objects, or it is 
bound to represent a kind of science fiction structure in the framework 
of axiomatic quantum mechanics? In spite of known arguments [9, t 8, 19] 
the answer to that question would be still premature. Instead of looking 
for plausible axioms limiting the structure of S to that of the orthodox 
theory it is better to analyse first what what the other structures might 
bring. A programme for such an investigation has been raised in [t6]. 
In the present paper the "convex scheme" is used in whole generality: 
it will be shown that only this unrestricted scheme is wide enough to 
describe the possible non-linearities in quantum mechanics. 

3. Relation to Non-Linearity 

The non-linearity may affect various levels of quantum theory. One 
can deal with certain physical quanta which, when propagate in vacuum, 
are well described by linear wave equations: nevertheless their dense 
clouds (approximately described by c-number fields) obey non-linear 
propagation laws 6. This kind of non-linearity will be called secondary. 
One can also think about more basic type of non-linearity affecting not 
only the macroscopic fields but also the isolated quanta: so, that even a 
free particle in vacuum would not propagate according to a linear 
equation. The non-linearity of that kind might be called primary. A 
hypothetical experiment in which such a phenomenon could be detected 
can be imagined as follows. Suppose, one has a quantum beam and a pair 
of slids like those in Young experiment. The beam intensity is low and an 
analogue of Fabricant experiment is performed: the quanta pass the 
slids and drop separately onto a screen behind. Suppose now, that the 
statistics of quantum hits on the screen reveals the interference fringes. 
However, unlikely to the traditional quantum mechanical experiments, 
the intensity of the fringes is not a sinusiodal function of the screen 
cartesian coordinate: the phenomenon, though typically quantum in 
spirit, fails to fit the scheme of the orthodox quantum mechanics. The 
question then arises: what sort of quantum mechanics could be con- 
structed on the basis of such a hypothetical experiment? An interesting 
variant of this question is obtained by assuming that the shape of the 
interference fringes can be associated with a certain non-linear wave 

6 This happens in quantum electrodynami~ where each single photon in vacuum, 
although "dressed", propagates according to Maxwell equations, whereas the intense 
photon beams exhibit non-tinearities because of photon-photon interactions. 
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equation. The question then becomes: how can one construct a non-linear 
analogue of quantum mechanics with a non-linear wave equation playing 
the role of the SchriSdinger equation? 

To give an answer, one is led back to the origin of quantum mechanics. 
The development of that theory involved two basic heuristic steps: 
1) the guess of the manifold of the pure states (to be that of Schr6dinger's 
waves), and 2) the guess of the statistical interpretation (stating that the 
transition probabilities are determined by the scalar products). In 
attempts of generalizing quantum mechanics the problem of the pure 
states is not the main difficulty, because some natural imitations of the 
step 1) are possible. The most obvious of them arises if one starts from 
a certain generalized "Schr~Sdinger equation" (linear or not) which admits 
a certain conserved quantity e(q~) > 0, characterizing the solutions cp and 
interpreted as a "total wave charge". In that case, one can define the set 
of all "normalized" solutions q~ with e(q~) = t : one might assume that the 
solutions ~0 ~ ~b represent the pure states of certain hypothetical quanta. 

The choice of the statistical interpretation is much less obvious. 
For waves obeying non-linear equations the scalar products, in general, 
are not conserved by the time evolution and so, they are not appropriate 
to define the transition probabilities. The question thus arises, which 
functions of the non-linear waves should substitute the orthodox 
quantities I(~P, ~o)t 2? One of advantages of the convex scheme, is that this 
question does not need to be answered a priori. Indeed, in the approach 
outlined in § 2 the transition probabilities are not fundamental but 
secondary: it is enough to have the statistical figure in order to reconstruct 
every detail of the statistical interpretation. The problem which becomes 
now essential concerns S as a whole: how can one reconstruct the shape 
of the statistical figure starting from some minimal physical information? 
In particular: how can one find the structure of the mixed states if it is 
assumed that the pure states obey a non-linear wave equation? In the 
axiomatic approaches the structure of S was usually determined by 
some universal regularity arguments always leading to the Hilbert space 
form of S. A possibility of a more general construction has been noticed 
in [16]; it yields S provided that the following two elements are given: 

1) A topological manifold • of elements ~0, tp . . . .  which are candidates 
to represent the pure states of a hypothetical system. The correspondence 
between the elements ~o ~ ~ and the pure states needs not to be one-to- 
one: each pure state, in general, may be represented by a whole subclass 
of elements of (b 7. The topology on ~b should be compatible with the 

7 It is also no harm if ~ covers a submanifold of quan tum states wider than just  the 
set of the pure states. This may happen in case of superselection rules, when ~ is taken to 
be the unit sphere in a Hilbert space, but  some elements of ~, because of the structure of 
observables, are a posteriori identified with mixed states of the system. (For an interesting 
discussion of that point the author  is indebted to Dr. S. Woronowicz.) 
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observable properties of the pure states. In what follows ~b is called a 
manifold of pure states. 

2) A class of real continuous functions on • representing the ob- 
servational data and called the observables. 

The second of the construction elements quoted here differs from the 
traditional algebra of observables and deserves a special description. 

Observables 

The concept of an observable in the present day theory has a complex 
status. It stands for both the measurement operation and its numerical 
output. The mathematical entities used to unify these two aspects are the 
self adjoint operators with their spectral decompositions. Below, this 
"conceptual union" will be split. The operator entities will be reserved to 
represent the transition processes rather than the observation acts [161. 
The idea of observable will be associated with a purely numerical result 
of a measurement mathematically represented by a c-number function 
of the pure states. 

Definition. Given a manifold of pure states ~ an observable or a 
statistical quantity is any function f : ~ I R  whose values f(~0) are 
interpretable as the statistical averages on various pure states ~0 ~ ~ of 
a certain quantum mechanical measurement. 

Here, the quantum mechanical measurement stands for any ex- 
perimental mechanism assigning real numbers to the members of a 
quantum ensemble. The limiting assumption is that the mechanism 
should be sensitive only to the properties of the single ensemble indi- 
viduals and not to their correlations within the ensemble. Since no other 
limitations are present, the above introduced concept of observable is 
wider than the orthodox one: it stands not only for an average indication 
of a "perfect" measuring device composed of ideal filters (as in majority 
of papers adopting yon Neumann's approach) but can also describe 
average effects shown by "imperfect" or "mixed" devices [8] or even by 
quite arbitrary macroscopic bodies sensitive to the presence of quanta 
and endowed with numerical scales (thus coinciding with a more general 
concept of effects introduced by Ludwig [14]). In spite of that generality 
it is not at all so that every function on the set of pure states is an 
observable. To the contrary, the structure of the present day theory is 
precisely due to the fact that the observables form a relatively narrow 
subclass of all functions on ~. Indeed, the manifold ~ here is the unit 
sphere in a Hilbert space and the statistical averages are all given by the 
scalar products (~p, A~p) (tp e 4~) where A are the self-adjoint operators. 
Thus, in the orthodox theory only the quadratic forms are observables: 
the other functions of ~p, though the), can be experimentally determined, 
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are not statistical averages of any quantum mechanical experiment. 
The above distinction is one of intriguing features of orthodox quantum 
mechanics: there is some mystery in the fact that for a microsystem 
certain functions of the pure states can and certain cannot be measured 
as statistical averages. 

Since this is so, it is reasonable to assume that a similar distinction 
should also exist in case of a general theory. This fact is so essential 
that it might be choosen a new fundamental aspect of quantum theory 
competitive to "quantum logic" and "algebra of observables". Given the 
set of pure states of a certain hypothetical system, the nature of the system 
should be characterized by indicating which functions on the pure states 
are the observables. From now on the class of these functions will be 
denoted F. Given the pure states, the contents of F may serve to classify 
the theories: the richer the class of observables than "more classical" the 
theory. Some general statements concerning the structure of F can be 
made. Thus, F should be a linear class: given two devices destinated to 
measure two observables f t , f2  e F, a new device can easily be con- 
structed which would measure, as a statistical average, any linear 
combination 41 f l  + 22 f2 (41, 4 2 ~ ) .  Because of the continuity of the 
macroscopic world some assumptions asserting the closed character o f f  
should also be adopted. It would be too strong to assume that any 
point-wise limit of functions from F must also belong to F. This could 
lead to the appearence in F of some discontinuous functions of the pure 
state corresponding to over-idealized measuring devices inconsistent 
with the "physical topology" (see also the discussion by Giles [8]). In 
what follows, a weaker property will be only assumed, namely, that F is 
closed in the set C(~) of all real continuous function on ~b endowed 
with the topology of the point-wise convergence. This property will be 
called the relative closure of F. 

The possibility of describing quantum systems in terms of observables 
suggests the following formal definition. 

Definition. A quantum system without dynamics is a pair of entities 
(~, F) where ~b is a manifold of pure states and F is a relatively closed, 
linear class of continuous real functions on ~ called "observables". 

Before exhibiting the relation with the convex scheme of § 2 it is 
worth while to notice that this definition is naturally suited to the 
particulae task of constructing non-linear variants of quantum mechanics. 
In fact, suppose that the manifold of pure states • coincides with a 
certain set of "non-linear waves". The most natural next heuristic step 
then is not so much to guess the character of quantum logic or the shape 
of S but rather to postulate the class of observables F. Here, some 
natural hints exist based on the character of the non-linear wave dynamics. 
One feels, that a class of functions should be found which would reflect 
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the structure of a non-linear wave equation as naturally as the class of 
the quadratic forms reflects that of linear equations. 

The derivation of the observables from the dynamics of the 1p-wave 
is to be treated in § 4. Now, it will be shown that the description of a 
quantum system in terms of pure states and observables is complete: 
given the pair of entities (~, F), the statistical figure of the system can be 
uniquely constructed. 

Construction of S 

Indeed, suppose that {b and F are known. Then, consider the set H 
of all the probability measures ~z defined on Borel subsets of ~ for which 
the integrals ~f(q})drc(q}), ( f e  F), are convergent. The set / /  has an 

innate structure of a convex set: given two probability measures re1, re2 ~ H 
and two numbers Pl, P2 ~ 0, Pl +P2 = l, the linear Combination pitt1 
+ P2 re2 is again a probability measure and it belongs to/7. The elements 
of/7 have a natural physical interpretation. Every n ~ H is a prescription 
for preparing a mixed state: the prescription sais that for any Borel 
subset Q ( • the fraction of the pure components from f2 taken into the 
mixture is re(g2). Thus, / - /might  be used to label the mixed states of the 
system. However, the correspondence between the elements rc~/ /  
(prescriptions) and the resulting mixtures is not necessarily one-to-one: 
this still depends upon the observable properties of the mixed states. 
For any f ~  F and rc E H the value of the observable f on the mixed 
state prepared according to the prescription n may be defined by the 
integral f(~z) = ~[ f(~o) dn(¢). The numbers f(rc) ( f~ F) represent the 

collection of the observable properties of the mixture ~r. Now, two 
measures 7z, r( are called equivalent Or-r() iff f(rc)=f(rd) for every 
f e  F. Any two equivalent measures are interpreted as two prescriptions 
for producing mixtures which lead to physically indistinguishable 
mixed states. The equivalence relation -= is a crucial element of the con- 
struction which accounts for the "first impossibility principle". Having 
given that relation one now defines a state (pure or mixed) as a class of 
equivalent probability measures. Consistently, one constructs the 
statistical figure S as the convex set of all equivalence classes S = I I / - .  

While H is a generalized simplex, the quotient set S, in general, has 
a distinct structure: its geometry reflects the physics of the hypothetical 
quanta. Having given S one can reconstruct the whole rest of the scheme 
as described above. This shows that the class of observables F is indeed 
the key element of the theory which provides a unique construction of 
the generalized quantum scheme. A particular example of this con- 
struction accounts for the origin of the orthodox quantum mechanics. 
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Orthodox Theory 

That theory borrows some essential features from the linear classical 
field theory. Its main assumption states that each pure ensemble of 
quanta can be described by a complex field ~ (a "wave function") which 
obeys a linear wave equation. Since for the linear equations the densities 
of the typical conservative quantities are quadratic in the field, it is 
natural to assume that one such quadratic density (which will be denoted 
by ~p+ (x)~p(x)) represents the average space density of the ensemble and 
the corresponding integral (~, ~) = .I ~*(x) ~(x) d 3 x is the total expected 

number of the ensemble particles. Since the total particle number does 
not enter into the description of a state, one can thus label the pure 
states by those tp-fields for which (tp, ip) = 1 : this leads to the manifold 
being the unit sphere in a Hilbert space. At this moment certain elements 
of the statistical interpretation are already clear: it is decided that the 
probability of finding an average ensemble particle in an arbitrary space 
domain f2 is given by the quadratic form P~0P)= S tp*(x)tp(x)d3x. This 

assumption will be further called the primitive statistical interpretation 
and the forms p¢~ will be called the primitive observables. In agreement 
with the previous consideration the construction of the statistical figure S 
requires the knowledge of the total class of observables F. The main 
indication as to the nature of that class follows again from the linearity 
of the quantum mechanical evolution equation. As seems reasonable to 
assume, the general quantum mechanical measurement upon ~p-wave 
can be accomplished in two stages. First, the Ip-wave undergoes a 
preliminary evolution process which is mathematically described by a 
certain norm conserving operation ,p~ T~p. Because of the linearity 
of the evolution equation, the operation T too is linear. Second, some 
primitive observables are measured upon the evolved wave q /=  Tp. 
This is done by capturing the particle in one of disjoint reception domains 
f21, f22 .... characterizing the structure of the measuring apparatus. 

If the reception domains f2~ are labelled by real numbers 2j (the scale 
of the apparatus) the statistical quantity measured is f=21p '~  
+ 22P}~2+ "", where pb are the "evolved" primitive observables Pb0P) 
= po(T~). Now, since pe are quadratic and T is linear, the evolved p~ 
are again quadratic and so is the statistical quantity f .  This implies 
that only the quadratic forms are measured as statistical quantities in 
quantum mechanical experiments. A question now arises as to how 
large is the set of quadratic forms which are observables? The simplest 
assumption is, that each real, continuous quadratic form on 4~ is an 
observable and can be measured, at least in principle, as a statistical 
average of an adequate experiment. (A motivation of that assumption 
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will be given in § 4.) With these assumptions made the whole scheme of 
the orthodox theory can be uniquely deduced. Indeed, let n be a prob- 
ability measure on the unit sphere q~ and let f be an observable. Since f 
is quadratic, there exists a linear functional f defined and continuous on 
a subset of the tensor product space <g~®~, such that f (~)=f([ ip  x ~[) 
( ~  ~). Hence, f(~) is determined by values of f on o@®<gP: 

f(rc) = j" f( ' Ip) drc(~) = .t" f ( l ~  x tpt) d,(,TJ) = f (.r tip x 'q-'t drc('lP) 1 - (3.1) 
t@ / 

This formula implies that the physicaUy essential properties of the 
mixture produced according to the prescription rc depend only upon the 
following hermitean, positive, unit-trace element of D(~®<~f called a 
"density matrix": 

x.  = .f I~ x ~1 d~(~) .  (3.2) 

This is how the orthodox "density matrices" emerge from the division 
o f / 7  into equivalence classes. The resulting statistical figure S is iso- 
morphic with the convex set of the entities of form (3.2): S = {x e cg(~) : x 
= x* > 0, Trx = 1}. The rest of the orthodox scheme follows. The whole 
structure is essentially conditioned by the choice of F: one might define 
the orthodox quantum mechanics as a theory of such a c-number wave 
for which only the quadratic forms are the observables. If another class 
of observables were choosen, different from that of the quadratic forms, 
the same mathematical mechanism would produce a distinct statistical 
figure corresponding to a different theory. In order to illustrate that 
dependence, a sequence of hypothetical schemes will be now discussed. 

Higher Order Schemes 

Similarly as before, let 45 be the unit sphere in 3/g. Now, however, 
assume that the class of observables F is not the set of the quadratic forms 
like in orthodox theory but the set F2, of all the continuous 2n-th order 
forms f given by 

fOP) = h(~, ..., ~p; tp, ..., qJ), (3.3) 

where h(4oj ... . .  , ~o,; q)l . . . . .  lp,) are hermitean multiforms in ~ linear in 
the variables ~pj and antilinear in q~s's. Since 0P, ip) = 1 on 4~, each 2n-order 
form f s F 2 ,  coincides on 4~ with some forms of higher order: fOP) 
= OP, tP)kf(IP) (k = 1, 2,...). Hence, F2 C F4 C F6...  and so, the classes of 
observables F2, correspond to hypothetical theories with extending 
varieties of macroscopic measuring devices. A characteristic property of 
such a sequence of theories is a step-wise recess of the "first impossibility": 



240 B. Mielnik  

the wider the class of observables the more selective the perception of the 
mixed ensembles and more kinds of mixture become physically distin- 
guishable. 

Denote now by S(Jg, 2n) the statistical figure constructed for F = F2,. 
An analytic description of S(Yg, 2n) is possible similar to that employed 
by the orthodox theory. Indeed, suppose that f is a 2n-order form. 
Then, there exists a linear, hermitean form f, defined and continuous 
on a subset of d(~®... ® ~ ® ~ ® . . .  ® i f  such that f(to) = f ( ~ ® . . .  ® ~  

n tt 

® ~ ®...  ® tp) (to e 4~). Hence, for any n e H : 

f (~) = ,[ f (to) dn(to) = ,[ f (~®- - .  ® ~ ® ~ ® . . - ® t o )  dn(to) 
(3.4) 

This formula implies that the physical properties of the mixture 
prepared according to the prescription n are fully determined by the 
following hermitean, positive, unit-trace element of ~®. . .®247  
@ Jg @... ® ~(¢ which is a natural generalization of the orthodox "density 
matrix": 

x ~ = j ~®. . .  ®~®to®. . .  ®to d ~ @ ) .  (3.5) 
2~ 

The entity (3.5) might be called a "density tensor". The S(W, 2n) is 
precisely the convex set of all density tensors of form (3.5) (the subset of 
all the positive, unit-trace elements of 2 @ . . . ® ~ ® . . .  which are 
decomposable into convex integrals of the simple multitensors 
tT®- ' -®~®to ® ' "  ®to). One thus arrives here at a new realization of 
the old scheme of quantum states, quantum observables and expectation 
values: the states are now the decomposable density tensors of an even 
order, the observables are arbitrary hermitean tensors of that same 
order and the expectation values are given by the tensor contractions. 

The generalization introduced by S(af', 2n)'s is formally similar to 
that achieved by the introduction of higher order multipole moments to 
the description of a density distribution. In fact, what the orthodox 
theory amounts to is the description of the probability measures rc ~/7 
in terms of their hermitean quadrupole moments with respect to the 
centre of the unit sphere ~. In case of S(~,  2n) (n> 1) higher order 
multipole moments of ttie measures are used. Since for the measures 
distributed over the unit sphere the higher order moments determine 
the lower order moments, the information contained in the subsequent 
"density tensors" is increasingly precise. Consistently, the statistical 
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figures S(~, 2n) are "increasingly classical": each~next of them represents, 
from the point of view of each previous, a kind of a "hidden parameter" 
scheme with an increased manifold of the mixed states and recessed 
impossibility principles. This leads to a temptating question: is the 
impossibility of measuring as statistical average of anything but quadratic 
forms of~p indeed so fundamental as assumed by the present day quantum 
mechanics or is it only a technical barriere? Are the higher order forms 
of ~ basically beyond the reach of quantum statistics or, perhaps they 
could be measured if only sufficiently subtle experimental techniques 
were employed? 

Forbidden Measurements 

Though no indications exist about the incompleteness of the present 
day theory, it is one of advantages of the "convex" approach that it 
exhibits some areas in which that theory, at least in principle, could be 
broken. Since the quadratic character of the observables is conditioned 
by the linearity of the evolution processes the most obvious such area 
consists in hypothetical evolution processes in which the quantum 
mechanical wave function would undergo a non-linear change. The 
most formal way of introducing such processes would be to assume some 
new couplings between the wave function and the external world. Thus, 
for instance, having a spinorial wave ~p of Dirac electron one might 
assume the existence of a hypothetical external scalar field q~ coupled 
with tp according to Lin t = G(~/p)(p ( G ' +  const) and making ~o to evolve 
according to the non-linear equation 

(7" ~ - im)w + ~o G'(t7 ~)~p = 0. (3.6) 

The evolution (3.6), though allowed by the general principles of 
constructing couplings between c-number fields, would nevertheless 
break the consistency of the orthodox quantum mechanics. In fact, if an 
external field q~ was created catalyzing a non-linear behaviour of ~p, 
this field could be used to measure, as statistical averages, some non- 
quadratic forms of ~p: in order to do that it would be sufficient to let a 
pure electron beam pass an external field ~o and then measure, upon the 
evolved q~, some conventional quantum mechanical observables. As a 
result, the orthodox impossibility principles of quantum mechanics 
would be broken and the traditional manifold of the "density matrices" 
would become insufficient to represent the enriched set of the mixed 
states. Hence, if one assumes the sufficiency of the orthodox scheme, 
one must also assume the impossibility of non-linear response processes 
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like (3.7). This exhibits a limitation of quantum theory close to Haag's 
consistency requirement: the orthodox electron cannot enter into 
arbitrary couplings without loosing its identity. 

The above example is of rather theoretical merit: it seems not probable 
that quantum mechanics will be broken just by inventing new types of 
external fields. However, the non-linear processes might arise from less 
artificial sources. The partial differential equations of quantum me- 
chanics (like those of Schr6dinger or Dirac) concern, in essence, only such 
evolution processes in which a microparticle interacts with an infinitely 
heavy macroscopic surrounding which is a not affected by the presence 
of the particle. The processes of that kind form the proper domain of 
quantum mechanics and are well described by the known types external 
potentials none of which violates the traditional linearity. The situation 
is less obvious if the microparticle interacts with an object which, though 
macroscopic, is not infinitely inert but "subtle" and can modify its 
properties under the influence of the approaching particle. In that case 
one is tempted to consider the possibility of a hypothetical interaction 
process in which the wave function of the micro-object would undergo 
a non-linear change. The process may be described as follows. 

There are two objects participating in the interaction: a micro- 
particle and a macroscopic system. The microparticle is described by a 
certain wave function whereas the state of the macrosystem is determined 
by a set of classical parameters. The state of the whole of micro + macro 
system is simply the pair of states of the systems components. At the 
beginning of the process the microparticle and the macroscopic medium 
do not yet influence each other: the state of the microparticle is given 
by a certain wave ~ which, at least approximately, evolves according 
to a linear wave equation whereas the macrosystem is in a certain 
standard initial state. Then the mutual interaction starts: the state of the 
macrosystem (which has the "subtle" ability of reacting to the particle 
presence) is modified under the influence of the approaching particle. 
This, in turn, modifies the way how the particle propagates. Thus, the 
wave function of the microparticle interacts with itself by modifying its 
own macroscopic environment. At a certain conventionally choosen 
final moment the interaction is again insignificant: the microparticle 
is now in a new state ~p' which depends upon the initial state ~p: ~p' = A0p). 
The result of the microparticle self interaction via the macroscopic system 
is the non-tinearity of the operator A. 

Note, that such theoretical schemes find some concrete realizations 
in the framework of the existing theory. Thus in the quasi-classical 
electrodynamics the electron is represented by a spinorial wave ~o which 
is supposed to interact with a classical electromagnetic field. The wave ~p 
here is assumed to produce a classical field A¢, which, in turn, influences 
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the propagation of the wave: 

Au(x )  = j Aret(x - x ' ) j . ( x ' )  d 4 x '  ; Ju = ev-PY, lP ; (3.6) 
o o  

(3.7) 

According to the orthodox quantum mechanics the schemes like the 
quasi-classical electrodynamics or the theory of a "self-consistent wave" 
cannot describe correctly the propagation of single quanta but can 
only provide approximate data concerning the average behaviour of 
clouds of many interacting particles. However, attempts are also made to 
assign to them an exact meaning [13, 20]. According to that point of 
view, the electromagnetic field would be classical in nature and the 
quantal effects of electrodynamics would exclusively follow from the 
behaviour of fermions involved. Not entering into details of the discussion 
it is interesting to notice, however, that the serious assumption about the 
classical nature of the electromagnetic field would imply some deep 
changes in the quantum mechanics of fermions themselves. Indeed, the 
classical electromagnetic field interacting with the electron would be an 
example of a "subtle" macroscopic medium leading to a non-linear 
behaviour of the electron wave function tp. This non-linearity, even if 
quantitatively small, could be arbitrarily amplified by adequate electron 
transmitters employing the classical character of A u. One such hypo- 
thetical device is represented in Fig. 7. 

The device on Fig. 7 is composed of an electromagnet and a sensor 
registering the intensity of the electric field at a detection point P. When 
the electric field at P is above a certain critical value, the electromagnet 
responds connecting its own magnetic field; otherwize it remains 
inactive. Obviously, the device reacting in this manner could produce a 
strongly non-linear transformation of the electron ip-wave and so, it 
would allow one to get out of the "enchanted circle" of the quadratic 
observables a. An intriguing question thus returns: are the non-linear 
response processes of the quantum mechanical wave function indeed 
impossible? Or, perhaps, they could be produced if the experimental 
techniques were advanced enough to construct some "subtly reacting" 
macroscopic devices as that suggested in Fig.7 ? 

8~ By employing the classical character of A ~ one would be able to construct a large 
family of non-orthodox measuring devices based on the detection of the electromagnetic 
field. For instance: a counter which clicks only when the value of ~pt~, at a certain detection 
point is great enough; a counter which may not register the electron at a point A if ~p*~p at 
another point B is too big, etc. 
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I t 

Fig. 7 

From the point of view of the present day theory the answer is 
decisively negative. However, it must be replied that the orthodox theory 
should not be used to prove the unphysical character of non-linear 
response processes in quantum mechanics. It may not be excluded that 
the scheme of the modern theory of coupled systems with its formalism 
of tensor products (which is the alternative of non-linearity) plays a 
similar role in particle physics as the epicycle structure did in ancient 
kinematics. In that case the "forbidden processes" would not be im- 
possible but to the contrary, they would form a natural area to look for 
new quantum phenomena. 

4. Dynamics and Geometry 

The scheme of the generalized quantum mechanics begins now to 
emerge. As is clear from th e second impossibility principle, there is a link 
between the dynamics and the geometry of quantum systems (see 
discussion in § 2). As follows from the considerations of § 3 an important 
element of that link is the class of observables F. Now, the link will be 
completed by constructing the class of observables for systems with given 
dynamics. 

Similarly as in § 3 a hypothetical system will be considered with the 
manifold of pure states 4~ being the set of all "normalized waves" 
~p = {~p(x)}, where the values ~p(x) (x ~IR 3) belong t o  a certain finite 
dimensional real or complex vector space N and the normalization 
condition is given by e(~)= .[ I(tp(x))d3x = t, I(~) being a positive 

03  

functional of the vector variable ~ e = For so normalized waves the 
preliminaries of the statistical interpretation will be defined by the 
quantities pr~(tp)= ~ IOp(x))d3 x which will be called the primitive ob- 

o 
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servabIes and interpreted as the probabilities of localizing the system 
in a pure state ~p in various space domains f2 C IR 3. 

Given the primitive observables, the knowledge of dynamics happens 
to be the only element necessary to reconstruct the total class of ob- 
servables F and so, to determine the shape of the statistical figure. 

Dynamics 

In classical field theory the dynamics is usually introduced by 
postulating an evolution equation which governs the propagation of the 
fields. This point of view must be now modified. What, in fact, is the 
dynamics is not so much one evolution law but rather a whole family 
of such laws, determining the behaviour of the system in various "external 
environments". Indeed, what one deals with in case of SchriSdinger or 
Dirac dynamics are whole families of structurally similar partial 
differential evolution equations with arbitrary potentials representing 
the "external world": it would be dynamically empty if one knew only 
the vacuum versions of the Schr6dinger or Dirac equations. This leads 
to the following notion of dynamics as a complex entity. 

Definition. An evolution law is any law (equation) which allows one 
to reconstruct the evolution of a physical system if the initial conditions 
are given. The dynamics is a class of evolution laws defining the behaviour 
of the system in various external conditions. 

The concepts used here are open to further specifications. Thus in 
non-relativistic theories the initial conditions define the state of the 
system in a certain initial time moment and the knowledge of the evolu- 
tion in the knowledge of the system states in all other moments. In the 
relativistic case the initial conditions stand for the Cauchy data defining 
the properties of the system on a certain space like surface and the 
knowledge of the evolution is the possibility of reconstructing the 
system behaviour on the whole rest of the space time. It is also open how 
rich a variety of data should be substituted for the external conditions. 
One might be interested in simplified models of dynamics with relatively 
poor classes of external conditions (as, for instance, the dynamics of a 
wave diffracting on a rigid, macroscopic body). In practice, more complex 
models of dynamics are important with the external reality described 
by at least arbitrary potentials. Some examples are listed in Table 19 

9 For the non-linear equations of Table 1 the problem about the precise shape of the 
corresponding dynamics is still open. It is to be decided whether the theory should deal 
with the singular solutions, which are likely to appear in case of non-linear wave equations, 
or, perhaps, it may be restricted to the regular tp-waves at the cost of limiting the external 
potentials and the initial conditions involved. 
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Table 1 

External Dynamics Normalization 
Potentials 

&p h: 
1 V ih Atp + V~p ,f ttpl2d3x = 1 

gt 2m o~ 

2 V ih O~p h 2 
~3t 2m 

&p h ~ 
3 V ,U  ih Ot 2m A~°+Vtp+UI~PI=~P J" 1~°12d3x=l 

oo 

4 V ih O~p h 2 3(1~ol2to)+ v~ j" 1~14d3 x = 1 
Ot 2rn 

&p h 2 
5 V ih Ot 2m A(IWJzw)+VI~PIztP ~ [wl4d3x=l 

o o  

All the examples of Table 1 are the generalizations of the non- 
relativistic Schr/3dinger's dynamics which occupies the Position 1. 
The Example 2 has the vacuum propagation law identical with the 
Schr6dinger vacuum equation but represents a distinct case of dynamics 
because the field ~p is coupled distinctly to the external world. The 
dynamics of Example 3 is essentially richer than those of Example 1, 2 
for it assumes an external reality in which two different types of potentials 
are present. In all three Examples 1-3 the quadratic form ~ [~pl z d3x is 

cO 

the basic conservative quantity used to define the normalization and 
thus suggesting the coice of the primitive observables. It is no longer so 
in case of the Examples 4 and 5 which are based on the different vacuum 
propagation law: 

ih d~p h2 
O--f- = - 2--~ A(IWIzW)" (4.1) 

For that law the 4-th order form .[ [tpl 4 d3x plays an analogous role 
cO 

as ~ Itpl 2 d 3 x in case of the Schr6dinger equation. Hence, if Examples 4, 
cO 

5 reflected the dynamics of a certain quantum wave, the origins of the 
statistical interpretation could be based upon [~pl 4 as a fundamental 
statistical density. Examples of wave dynamics for which the form 
I~l k (k > 0) would be a basic conservative quantity could be as easily 
constructed. 
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Motion Group 

In what follows the decisive role belongs not to the dynamics itself 
but rather to a certain superstructure generated by the class of dynamical 
laws. In order to define it precisely the relative character  of quantum 
states must be recalled. It is convenient to agree that the waves tp con- 
sidered here represent the pure states in Schrbdinger's picture. These are 
relative entities: by telling that a state of a system is given, one has in 
mind the situation which takes place on a certain space-like hyperplane X 
in Minkowski (or Galileo) space-time as perceived by an inertial observer 
for whom ~ is a plane of simultaneous events with the time coordinate 
t = 0. Hence, the exact entity to which the concept of a (Schrbdinger) 
state is refered is a space-like hyperplane endowed with a cartesian- 
frame of three space-like coordinates and with the "past" and the "future" 
sides distinguished. Each such entity will be further called a framed 
hyperptane. In order not to complicate the scheme at this stage, all the 
framed hyperplanes considered below will be assumed to determine a 
common direction of the future in space-time. 

Let now X and Z' be two framed hyperplanes and let the state of a 
hypothetical object on ~ be described by a certain wave ~p. Assume, 
that the dynamics of the ~p-wave is known and that some definite external 
conditions in the space-time exist. Then, a definite dynamical law is 
valid which determines a new state on X' described by a certain wave tp'. 
Given the dynamics, the mapping ~p---, ~p' depends upon the pair of framed 
hyperplanes Z and Z' and upon the external conditions involved: 
~, = Tz,z,,Ext.(~p) lo. 

The operators Tz,z,,Ext. : ~  represent the possible evolutions of 
the tp-waves (inbetween various pairs of framed hyperplanes and in 
presence of various external conditions) consistent with the dynamics 
assumed: they will be further called motions. The dynamical information 
essential for the structure of a quantum system can now be synthetized 
by introducing the following concept of a motion 9roup which gatheres 
the totality of all could be motions of the system. 

Definition. Given a manifold of pure state ~0, the motion 9roup M 
is the smallest relatively closed group of transformations ~ ~ con- 

a0 IncaseofdynamicslikethoseofTable I the dependence ~o -~ ~p' should be determined 
by solving the Cauchy problem for a partial differential equation. Given a wave ~p = {~p(x)} 
as an initial condition on the framed hyperplane S and given the external potentials in the 
partial differential evolution equation one has to find put the unique space-time extra- 
polation {~c,(x, t)} of the initial wave ~p such that ~p(x, 0) = ~p(x) (the coordinates x, t are 
induced by the frame on ~). The values tp(x, t) at points (x, t) ~ X' after being transformed 
to the coordinate frame of 2' (according to their covariant character) determine the required 
wave tp'. For the non-linear wave equations the mapping ~p--*W' may produce singular 
solutions on 2' which might indicate that the theory should be opened toward singular 
Cauchy data. 
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taining all the operations rx,2, Ext.. Here, the relative closure of M means 
that every homeomorphism ~--* ¢ which is a point-wise limit of trans- 
formations belonging to M must also belong to M. Thus, the group M is 
closed in the set of homeomorphisms of • endowed with its natural 
topology. 

The above motion group is essentially wider than the sometimes 
employed dynamical group of a system. It contains all one-parameter 
transformation groups corresponding to all admissible turns of evolution. 
Since 2 and 27 can, in particular, be two distinctly framed versions of the 
same geometrical plane, the group M, appart of genuine dynamical 
processes, must also contain purely kinematical transformations of cb 
corresponding to isometries on a fixed hyperplane in the Minkowski 
(or Galileo) space-time: it might be said that M reflects the total 
"kineto-dynamical mobility" of the system. 

The group M provides an essential information concerning the 
structure of the observables. Indeed, having any measuring device 
destinated to measure a certain statistical average f e  F one can produce 
more observables by alternating the measurement process. Instead of 
measuring straightforwardly the statistical average f on a given wave 
~p e ¢ one can let ~ undergo first a certain preliminary kineto-dynamical 
process Te M and only afterwards measure f on the evolved wave 
~p'=T~ thus obtaining a new statistical quantity: ( f T ) ( ~ ) = f ( ~ ' )  
= f(T(~)). In this way the existence of "motions" prevents one to assume 
too poor a class of observables: having any observable f e F one must 
also assume the existence in F of infinity of other observables of form f T 
generated by all possible evolution processes which the system might 
perform under the influence of various external forces. This suggests the 
following formal assumption: 

Assumption. The class F is invariant with respect to the motion 
group M. 

With that assumption made, there is now only one heuristic step 
necessary to complete the generalized quantum scheme. 



Generalized Quantum Mechanics 249 

Main Assumption 

One of simplifications made by the present day theory consists in 
attributing an equal status to all the observables. Each self-adjoint 
operator in a Hilbert space is assumed to represent a physical observable: 
each of them is as well measurable as any other. It is a feature of quantum 
phenomenology, however, that is fails to reflect this abstract equality: 
for what one observes in reality is a distinguished role of the position 
measurements. Indeed, the known quantum experiments seem to follow 
the same general scheme in which the act of the localization is the 
ultimate experimentator's tool to extract the physical data 11. The scheme 
consists in letting the particle wave function undergo a certain preliminary 
evolution process as a "preparatory stage" of the measurement and then 
in detecting the particle in one of spatially separated "reception domains". 

As already noticed (compare § 3) the statistical quantity measured 
in so arranged experiment is a linear combination of the "evolved" 
primitive observables f =  ~ 2ipa~T where pe~ are the position ob- 

J 
servables corresponding to the space domains f2j (pa(~p) means the 
probability that a particle in a pure state tp will be localized in (2 and T 
denotes the operator of the preliminary evolution process). This indicates 
that an arbitrary observable f e F  can be either expressed or at least 
approached by linear combinations of the quantities p T where p are the 
primitive observables and T are the motions of the system. The uni- 
versality of this measurement technique does not seem to be conditioned 
by the particular character of the orthodox quantum mechanical 
evolution equations (like that of Schr6dinger or Dirac) but it rather forms 
on immanent feature of the macroscopic measuring techniques. Hence, 
it is reasonable to believe that the reducibility of the general to the 
primitive observables should also exist in a general theory, though the 
operators T are no longer linear there. This leads to the following 
general assumption which represents the required guess of the ob- 
servables for a system with a non-linear dynamics. 

Assumption. Given a manifold of pure states ~, a collection P of 
real functions on • interpreted as the "primitive observables" and a 
motion group M, the complete class of observables F is the smallest linear 
and relatively closed class of continuous real functions on 4~ containing P 
and invariant under the group M. 

This assumption is the last heuristic step relating the geometry of 
quantum system to the dynamics assumed. Once this step is taken one 
has no longer freedom of specifying further the structure of quantum 

11 The author appreciates a stimulating discussion of that point with Professor 
J. Werte. 
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states and the statistical interpretation since those elements are already 
determined: having given F one uniquely reconstructs the shape of the 
statistical figure and subsequently, all other geometric aspects of the 
theory. It is worth while to notice that from the heuristics just completed 
a certain abstract description of quantum systems emerges which is not 
even restricted to the particular domain of quantum theories based on 
wave equations. 

Group-Theoretical Model 

In fact, for the applicability of the constructions here outlined it is 
not essential to assume that the pure states correspond to certain c- 
number waves. Instead, one can take • to be a topological manifold of 
elements q0, ~, ... of arbitrary nature. The primitive statistical interpreta- 
tion, too, does not need to depend upon the possibility of constructing 
positive conservative densities for some wave functions. Instead, one 
might just pick up a certain class P of real functions on • and decrete them 
to be the "primitive observables" (the problem whether the elements 
p E P represent localization experiments and, eventually, how are they 
related to the space domains f2 C IR 3 is to be resolved on the level of 
concrete theories). Finally, in order to fix the "dynamics" one has to 
choose a certain group M of transformations ~--*~ and decrete it to 
cover the totality of the kineto-dynamical processes which the system 
can undergo in various physical circumstances. This leads to the 
following group theoretical model of a quantum system. 

Definition. A quantum system with dynamics is a set of five entities 
(~b, M, P, F, S) where: 

t) ~b is a topological manifold of points ~p, (p . . . .  covering the pure 
states of a hypothetical physical system (the correspondence between 
the pure states and the elements ~o ~ ~, in general, is not one-to-one). 

2) M is a relatively closed subgroup of homeomorphisms ~ 
called the motion group and representing the dynamics of the system. 
(There is a generating subset of elements in M which can be identified 
with the evolutions of the system in various external conditions.) 

3) P is a class of continuous functions on • which are called the 
primitive observables and interpreted as statistical averages of some 
"elementary measurements" which can be performed upon the system. 

4) F is the total class of observables constructed as the smallest linear 
and relatively closed class of real continuous functions on ~ which 
contains P and is invariant under the transformation group M. 

5) S is the statistical figure constructed according to the prescrip- 
tion of § 3. 
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The intrinsic structure of quantum mechanics described by this 
definition might be represented in the following scheme. 

I Pure states I 

Motion group ~ t 
Primitive ~- 

observables Observables Statistical 
figure 

One of the most traditional realizations of that scheme is the non- 
relativistic quantum mechanics of one particle. 

One-Particle Orthodox Quantum Mechanics 

For simplicity, a non-relativistic particle in one space dimension 
will be considered. The pure states then are represented by complex 

waves y) = {v2(x)} (x e IR 1) with the normalization ~ I¥~I 2 d x  ~ i and the 
- - t O  

manifold ¢ is the unit sphere in the complex Hilbert space 9 f  
= L2( - 0% + oe). The dynamical laws are of SchrSdinger's form 

ih-02- = h2 ~21P + V(x)tp (4.2) 
8t 2m OX 2 

where V are arbitrary potentials. The quantity fWI 2 is a positive con- 
servative density of the evolution laws (4.2); one thus guesses that it has 
the meaning of the probability density for the localization experiments 
(Born) and consistently, one chooses the primitive observables in the 
form: 

P~OP) = S I~Pl 2 dx  ; f2 C IR 1 . (4.3) 
/2 

The motion group of the system is now to be determined. This group 
should contain all the unitary one-parameter subgroups of form 

- ! H ~  
U = e ~ (z e IR 1) where are the Hamiltonians with all possible external 

h 2 0 2 
potentials: H = 2m 8x 2 + V. The further considerations form only 

an outline and have to be completed by exact proofs. Since the group M 
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is relatively closed, hence, together with any two families of operators 
etA, e ~B (where A and B are imaginary operators in ~ )  it should also 
contain any operator of the form e ~a+pB. This may be seen by applying 
the Trotter's formula: 

e ~A + pB = ~irn k e ~ -  e ~ -  ] . (4.4) 

Similarly, if eta, e~n~ M (z s 1R1), the group M should contain the 
unitary subgroup of the form e ~tA'B~ (provided that the commutator 
[A, t3] = A B - BA is well defined). This may be shown by employing the 
following approximation formula 

eEA,m = lim (e A/n e BIn e- A/n e- n/,,)n~ . 
n---~ o o  

(4.5) 

These facts imply that the set of the imaginary operators K for which 
e ~K ~ M for all z s IR 1 forms a Lie algebra with respect to the commutation 
[A, B] = A B - B A .  This algebra can be justly called the "Lie algebra" 
of the generalized "Lie group" M and denoted adM. Now, taking 

h 2 9 2 h 2 9 2 
A -  2m ~3x 2 and B =  2m ~x 2 + V, where V is an arbitrary 

potential, one infers that V = B - A ~ a d M .  Similarly, the operator 
0 ~ h2 V' is an K l = - ~ x  f (X)+ f (x)  _ . .  = [ A , B ] e a d M ,  where f = - - 2 - - m  

arbitrary function. The K 1 happens to be the most general operator of 

form K = k(x, p) which is linear in p = - ih --~U~" In turn, by commuting 
62 

~x--- ~ and K 1 one shows that K 2 e adM, where K 2 is the most general 

imaginary function k(x, p) quadratic in p. By induction one shows that 
adM contains any imaginary operator k(x,p) which is analytic in p. 
Since M is relatively closed, this indicates that a d M  coincides with the 
set of all imaginary operators in ~ and so, M coincides with the unitary 
group acting on the unit sphere ~b. The reconstruction of the class of 
observables F now becomes the problem of the representation theory: 
the required F is the smallest linear and relatively closed class of continu- 
ous real functions on ~b invariant under the unitary group and containing 
the quadratic forms Pe- The known facts of the representation theory of 
the finite-dimensional unitary groups indicate that this class is just the 
set of all bounded quadratic forms on ~. The rest of the "genezis" of the 
orthodox theory was already described in § 3. 

Note, that the construction presented above exhibits some new con- 
sistency relations between the known elements of the orthodox quantum 
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mechanics. Indeed, in the traditional presentation of that theory some 
essential elements of the statistical interpretation (such as the general 
expression for the transition probabilities by 10p, q~)] 2) are introduced in 
form of separate assumptions apparently independent of the primitive 
facts of the theory. This is not so in the group theoretical model just out- 
lined. Here, once it is assumed that the wave ~p obeys the Schr~idinger's 
dynamics and once the Born's interpretation is accepted of ttp(x)t 2 as the 
probability density, the whole rest of the scheme, together with the 
general expression for the transition probabilities, uniquely follows via 
construction of S. Thus, the group theoretical model yields a deepened 
insight into the "anatomy" of orthodox quantum mechanics. 

General Programme 

The possibility of more general realizations of the scheme is now 
open. An obvious thing to do would be to consider the known examples 
of classical non-linear wave dynamics with some naturally choosen 
"primitive observables" and then, to use the group theoretical model in 
order to see, to what kind of quantum systems do they lead. Mathe- 
matically, this involves a wide programme of structural investigations 
of non-linear field theories centered around two problems. 

• One has to find out the motion groups for non-linear theories. 
This task, though it does not present a fundamental difficulty, is non- 
trivial as far as the effective knowledge of the motion group is concerned. 
As is already clear, for some non-linear versions of the SchriSdinger's 
dynamics (like Examples 2, 3 in Table t) the resulting motion group is 
significantly richer than the unitary group 12. An essential question 
arises, as to, when M coincides with the group of all homeomorphisms of 
the wave manifold ~? The theory in which this happens would lead to the 
class of observables F coinciding with the set of all continuous real 
functions on • and so, the resulting statistical figure would be a 
generalized simplex. It would be interesting to know what kind of non- 
linearities in the quantum mechanical wave equation imply, in this way, 
the return to a classical theory. 

• • Given a motion group M acting on a wave manifold 4~ and 
given a class of primitive observables P one has to reconstruct the 
total class of observables F. Mathematically, this ammounts to looking 
for a class of continuous real functions on ~ which would be a minimal 
representation subspace of the group M containing P. The effective 
solution of that problem requires the development of the representation 
theory of infinite dimensional Lie groups and the theory of special 

~2 Authors notes. Unpublished. 
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functions on infinite dimensional differential manifolds. Those branches 
are already taking their first steps (see e.g. [-7]); they form a natural area 
to look for the way out of the 50 years old formalism of Hilbert spaces 
in quantum physics. 

5. Consistency Problems 

Though the question about the practical use of the generalized 
quantum scheme is still open, this scheme already exhibits some essential 
consistency relations between quantum mechanics and other physical 
theories. This can be seen by applying consistency ideas of Haag's type 
to interacting physical systems. 

Suppose, there are two generalized quantum systems A and B. The 
phenomenology shows that the structure of A can be described by a 
manifold of pure states ~A and a class of observables FA. Similarly, B 
can be described by a manifold of pure states ~8 and a class of observables 
FB. Suppose now, that a theory is formulated which tells, how A interact 
with B. In this moment the problem of consistency arises. Indeed, when A 
is assumed to interact with B a certain new technique of measuring the 
statistical averages upon A-states is created. The techniques consists in 
letting the members of an ensemble of A-systems interact with replicas 
of B and then in measuring some statistical quantities on the evolved B 
instead of A. 

Obviously, with the help of such a techniques any observable 
of F B induces a certain statistical average to be measured on the states 
of A. The question is: are these induced quantities already included in FA? 
If SO, the theory of interaction is consistent with the originally assumed 
structure of A. If not, the scheme is inconsistent and must be modified 
in at least one of three directions. Either one can interpret strch a meas- 
urement as a sort of "subtle device" which yields a deeper insight into 
the real structure of A and consistently, requires an extension of FA. 
Or, one can infer that the assumptions concerning the structure of B were 
premature and the consistency must be repaired by removing from FB 
some functions which are not indeed observables. Or, finally, one can 
suspect that there is something to be changed in the assumed interaction 
mechanism. A typical example of an inconsistent interaction scheme is 
that of quasi-classical electrodynamics described in § 3. It seems, that there 
is no way how the classical electromagnetic field could be coupled with 
the orthodox electron without introducing too rich a class of observables, 
inconsistent with the orthodox structure of the electron states. This 
causes no difficulty in the present day electrodynamics where the 
mechanism of the inconsistency is removed by quantizing the electro- 
magnetic field. The situation is much less obvious as far as the interaction 
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between the microparticles and the gravitational field is concerned. 
Though some schemes with quantized gravitation are already emerging, 
the opinions also exist that the gravitation is an immanently classical 
phenomenon, even on the micro-level. If that was so, the consequences 
of that fact for quantum mechanics would be much deeper than generally 
recognized. Indeed, the classical gravitational field interacting with the 
electron would be a "subtly reacting medium" as described in § 3 and the 
measuring devices based upon gravity detection would provide a 
method of measuring non-quadratic observables against one of funda- 
mental prohibitions of the present day quantum mechanics. This might 
indicate, that we are facing the following alternative: either the gravitation 
is not classical or quantum mechanics is not orthodox. It is possible (though 
there is no mathematical proof at the moment) that, under the assump- 
tion about the classical nature of gravitation, the detectors of the gravi- 
tational field ofa microparticle would allow one to measure, as a statistical 
average, any continuous functional of the microparticle pure state. 
This would lead to even stronger alternative: either the gravity is quantum 
or the electron is classical. These alternatives exhibit a somewhat peculiar 
situation of the present day theories: though it may be very difficult to 
quantize the gravitation, it is even more difficult not to do it. The in- 
completeness of the present day science at this point is, perhaps, one more 
reason why the scheme of quantum mechanics should not be prematurely 
closed. 
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