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Abstract. Using fixed point theorems for local contractions in Banach spaces, an 
existence and uniqueness proof for the Hartree-Fock time-dependent problem is given in 
the case of a finite Fermi system interacting via a bounded two-body potential. The 
existence proof for the "strong" solution of the evolution problem is obtained under 
suitable conditions on the initial state. 

1. Introduction 

In general, starting from a quasi-free (or generalized-free) state 
of a finite or infinite Fermi system at the time t = to, the natural evolution 
of the system gives rise to a state Qt which does not remain quasi-free for 
t>to, and trustworthy methods of successive approximations for 
solving the evolution problem except in trivial cases are not known. An 
approximate procedure for solving this problem is provided by the 
time-dependent Hartree-Fock theory, first obtained by Dirac [1] and 
afterwards generalized by Bogoliubov [2] and Valatin [3]. These 
equations can be obtained by considering the evolution of the one- 
particle density matrix T and assuming that ~o t remains quasi-free in a 
given time interval. Perturbative solutions of such equations for super- 
conducting systems have been studied by Di Castro and Young [4]. 

In spite of the simplicity of the approach, the equation of motion 
for the one-particle density matrix T is non-linear so that the existence 
problem is not easy even in the most simple physical cases. Written in 
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matrix form the equation in the gauge-invariant case is of the type (see 
e.g. Ref. [5]): d T 

i ~ 7 -  = [ A +  U, r ] _  (1.t) 

where A is the kinetic energy operator and U is the self-consistent 
potential which is a linear function of T. U is the difference of two terms: 
U = U , -  U~x, where U D denotes the "local" part and U~x the exchange 
part. Neglecting the spin coordinates, which are completely unessential 
for our purposes, and denoting by q the space coordinate, by ~p a one- 
particle wave-function, by v(q, q') the two-body potential, and by T(q, q') 
the "matrix element" of T in the coordinate representation, we have: 

(Up (p)(q)= [,[ v(q, q') T(q', q') d 3 q'] q~(q) (1.2) 

(UExq~) (q) = - ,( v(q, q') T(q, q') q~(q') da q ' . (1.3) 

Of course, Eq. (t.1) has to be solved with the given initiaLcondition 
T[,= o = T o. 

We give here an existence and uniqueness proof for the solution of 
Eq. (t.1), assuming that the total number of particles is finite 
(N = ~ T(q, q) d a q < + oc) and the two-particle potential v(q, q') is 
bounded: sup {v(q, q')[ < + oo. 

q,q' 

2. Notations and Hypotheses 

We denote by: 
E a Hilbert space with inner product <., .) ;  
5~(E) the set of all bounded linear operators defined in E, equipped 

with the norm topology ]j. 1t. 
~ t (E)  C ~ ( E )  the set of trace-class operators, equipped with the 

usual norm H" ttl = Tr].t. 
£,e(~ 1 (E), ~(E))  the Banach space of all linear continuous mappings 

2",(E)--+ 2~'(E), equipped with the usual norm Ill" [ti topology. 

H(E)= {T, Te~,C~(E), T= T*} 
H,(E) = {T, Te ~,(E), T= T*} 

C (0, "C; H I(E)) = { f  ; f : [0, z] -+ H, (E), f continuous} 

z > 0 ;  C is a real Banach space equipped with the norm where 
llfll = sup {!lf(t)lll, t e  [0, ~]}. 

Let ~elR+, ToeHI(E) ,  A : D A ( C E ) ~ E  a 
B e  2'(~1(E),  £a(E)) such that: 

Te HI(E)-+ B(T ) e H(E). 

self-adjoint operator, 

(2.t) 
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We consider the following problem: find a function T(.) e C(0, r; Hi(E)) 
such that: 

i ~ = [A, T]  _ + [B(T), T]_ (2.2) 

T(0) = T O . 

Definition 2.1. A function T~ C(0, ~; Hi(E)) is called a mild solution 
of the problem (22) if the following equality holds: 

t 

T(t)x = e -ira ToeitAx 4;- i .(e-i(t-s)A[T(s), B(T(s))]_ ei(~-~)Ax ds (2.3) 
0 

for every x ~ E. 

Definition2.2. A function T~C(O,z;HI(E))  is called a classical 
solution of problem (2.2) if the following conditions are satisfied: 

i) T(.) is continuously differentiable on the interval [0, z]; 
ii) V x ~ D a, V t ~ [0, ~-], we have r(t)  x e D A and 

I dT(t) x i - -~--  =Ar( t ) x -  r(t)Ax + [B(r(t)), r(t)]_x (2.4) 

r(O) x T ox . 

It is easy to show that if A is a bounded operator defined on E the mild 
solution is also a classical solution. 

3. Preliminary Results 

Definition 3.1. For every T ~  Hi(E) we define a mapping ~or:D A 
x D A ~ IE by the following relation: 

q ~ r ( x , y ) = - i ( r x ,  A y ) + i ( A x ,  r y ) , V ( x , y ) ~ D A x D  A . (3.1) 

If ~PT is continuous on D~ x D A with respect to the product topology, 
we denote by the same symbol the unique extension to E x E of Or. 

Definition 3.2. Let a be the linear mapping defined by 

D, = {T; T e  Hi(E), q)T is continuous with 
respect to the product topology of E x E} (3.2) 

( a ( r ) x ,  y)  = oPT(X, y) V r e  D,, Y(x, y) e E x E .  

It is easy to show that T e  D,, x e DA implies T x  e D a and the following 
equality holds 

a(T)x  = - i A T x  + i T A  x (3.3) 

(see Ref. [8]). 
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Lemma 3.3. Let  a have the same meaning as before; then the spectrum 
a(a) C ilR and 

¢o  

(2--a) -1 (T )x=  .f e - Z t e - i t A T e " a x d t ,  
o (3.4) 

V2slE, R e 2 > 0 ,  V x ~ E ,  T 6 H I ( E ) .  

P r o o f  A detailed proof of relation (3.4) can be found in Ref. [8]. 
The statement a(a) C iIR then follows easily, 

Proposition 3.4. a is the infinitesimal generator o f  a contraction semi- 
group in HI(E ) and the following relation holds: 

d a ( T ) = e - ~ t A T e  ~tA, V T e H I ( E  ) . (3.5) 

Proof. Since e ira is unitary, we have 

f[ e-irA T e ira Ill = tl T f{l" (3.6) 

The semigroup property can be checked in a trivial way, so that we 
have only to prove that: 

lim e - i t A r e i t A = T  V T e H I ( E  ). (3.7) 
t ~ O  + 

Since the set of finite rank operators is dense in ~1 (E) in the trace- 
norm topology Jl" [J 1, we can restrict ourselves to prove Eq. (3.7) for an 
arbitrary projection operator of rank one. 

Let T be defined by 

T x = ( x , y ) y  V x ~ E ,  Ilyll = t .  

We have: 

(e - " a  T e ~tA - r ) x  = (x ,  e - " A  y )  e - " A  y - -  (X, y )  y . 

The two-dimensional subspace generated by y and e - " A y  is invariant 
with respect to the operator e -irA T e  "A - T;  so the eigenvalue problem 
is easily solved and one finds for the non-vanishing eigenvalues of 
e - °A  r e  i*A -- T:  

)~ = +( t  --l(e-itAy, y)12) ~ . 

It follows that 

lie -i'A T e  ira - Tll I = 2~/i -[(e-~tAy, y)[Z--TX--d=--*0. 

Hence the semigroup defined by (3.7) is strongly continuous. By Lem- 
ma 3.3 a is the infinitesimal generator of this semigroup. 

Let 
~/(T) = - i [ B ( r ) ,  T] V T ~ H I ( E )  (3.8) 
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then v : HI (E) ~ HI (E) is a continuous mapping and 

tI7(T)[t 1 < 2ltlntll (ll TII 1) 2 • (3.9) 

Proposition 3.5. The following statements are true: 
i) ), is locally lipschitzian on H I(E). 

ii) ? is differentiabte and 

7'(T) • S = - i[B(S), T] - i[B(T), S] . 

iii) The following inequality holds 

[[T][~ < ]]T-aT(T)[[1, VT~HI(E),  V ~ I R + .  (3.10) 

Proof. i) Let ItTlll, tISII1Nr, r > 0 ;  then 

II~(r) - "y(S)}I ~ = IT[B(T), T] _ - [B(T), S]_ + [B(T), $3 - - [B(S), S]_ II1 

_-< II [B(T), T -  S]_ 111 + I] [B(T - S), S-J _ I11 

< 4111BIll rl fT-SIl~ ; 

ii) can be directly verified. 
iii) Let ~ > O, T~ Hi(E), and 

T -  eT(T) = S. (3.11) 

Denot ing by {2i} the set of the eigenvalues of T and by {ui} a corre- 
sponding set of or thonormal  eigenvectors, we can write: 

T x  = ~ 2i(x, ui)u i . (3.t2) 
i=1 

Defining: 

since 

it follows that:  

~r(T)x = ~, sign(2i) (x ,  ui)u i (3.13) 
i=1 

I r l x =  ~ 12~1 (x,u~>u~ (3.14) 
i = i  

Tr[~(T) a(T)] = Tr[a(T) 7(T)] = 0 

II TIll = ½ Tr(Sa(T) + a(T)S) 

<= ½ Tr(ISa(T) + a(T)S[) <= t}6(T)II IIStll = llSlll 

which proves (3.10). 

(3.15) 

(3.16) 



t 88 A. Bove  et  aI. 

4. The Existence Theorem 

Let X be a real Banach space (with norm tt t[x), C(0, z; X)the Banach 
space of the continuous mappings [13, z] ~ X equipped with the norm 
I]' ][ = Sup{]l'(t)l[x, t~ [0,z]}, M the infinitesimal generator of a con- 

traction semigroup t ~ e  TM in X. f : X - o X  a locally lipschitzian 
mapping 1 such that: 

[IXllx < IIx-c~f(x)qIx V~>0, x e X .  (4.1) 

We consider the following integral equation: 
t 

u(t) = em uo + .[ e(t-~)'U f[u(s)] ds (4.2) 
0 

where uo is a given element in X and u sC(0, z; X). 
Then the following theorem holds: (for the proof see Refs. [6, 7, 11]). 

Theorem 4.1. There exists a unique solution of the problem (4.2). 
This solution depends continuously upon the initial condition. Furthermore, 
if Uo ~ DM and is differentiable in X, then u is differentiable in [0, ~], 
u(t) e D~ V t ~ [t3, z] and we have 

du(t) 
dt - Mu( t )+ f[u(t)] (4.3) 

u(O) = Uo. 

Applying Theorem 4.1 to our case, we obtain: 

Theorem 4.2. V T o ~ H 1 (E) there exists a unique mild solution T(.) of 
Eq. (2.2). Furthermore, if the mapping 

( x , y ) ~ ( r o x ,  A y ) + ( A x ,  roy )  V(x ,y)eDAxDA 

is continuous with respect to the product topology of E × E, then T(.) 
is a classical solution which depends continuously upon the initial condition. 

Proof. It is enough to apply Theorem 4.1 with f = y, M = a, X = H 1 (E) 
and use Propositions 3.4, 3.5. 

Proposition 4.3. I f  T(.) is a mild solution of problem (2.2) then for 
any t ~ [0, z] there exists a self-adjoint operator K(t) such that 

T(t) = e-ix(o To eiK(t~ . (4.4) 

Proof. Let T o s D~ and T(-) be the classical solution of problem (2.2). 
We put Q(t)= B(T(t)), t s [0, z]; Q is a Lipschitz continuous mapping 
[0, z]-~ H(E). It is easy to see that for the linear problem 

. du : (A + B(r(t))) u(t) 
-dT (4.5) 

u(to) Uo 
1 By locally lipschitzian we mean that for any r>0, ueX, veX, ]lUllx<r, IlVklx<=r, 

~N) > 0 such that [If(u) - f(v)llx < Nr IIu - Vllx. 
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that the there exists a unitary Green function U(t, s). It follows [8] 
problem 

l i dS(t___ ) = [A+B(T(t)),S(t)]_ 
dt (4.6) 

S(0) = T O 

has a unique classical solution given by 

S(t) = U(t, 0) To U ( -  t, 0). (4.7) 

Furthermore T(.) is obviously a solution of (4.6), so that, from the 
uniqueness of the solution, we have S = T. 

For any t~  [0, z] let K(t) be the self-adjoint operator such that 
U ( -  t, 0) = ei~(°; Eq. (4.4) then follows. 

If To ~ Ha(E) we can prove (4.7) by a straightforward argument of 
density, since Da is dense in//1 (E). 

5. The Hartree-Fock Time-dependent Problem 

We now give sufficient conditions in order that Eq. (1.1) be solvable 
by the methods of Section 4. 

Let E = ~2(R3) be the one-particle Hilbert space. We assume that 
the two-particle potential v(q, q') 

v : IR3 × IR a _,IR (5.t) 

is a real bounded measurable function verifying the conditions: 

v(q, q') = v(q', q) 

Iv(q, q')[ ~ V, Vq, q '~ IR3 (5.2) 

Let {~Ok} be a complete orthonormal system in E. We write the one- 
particle density matrix in the form 

T ~ (q, q ) = ~ 2kCPk(q) ~k(q') (5.3) 
k=l  

The positivity condition for the gauge-invariant quasi-free state 
defined by T implies [9, 10] 

0 < 2k < t .  (5.4) 

Since we consider only systems with finite total number of particles, 
we have 

~ 2 ~  < oo. (5.5) 
k=l  
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T(q, q') determines an operator T s  HI(E) such that 

Of course 

T~  = ~ 2k(tp, ~Ok)~O k . 
k = l  

We define 

(5.6) 

fJTHI= ~ 2k= ,[ T(q,q)daq. (5.7) 
k =  1 ~:3 

B~x(" ) : HI (E)~  H (E) Bo(') : HI (E)~  H(E), 

by the equalities 

BD(T)q~ = L~q~, BEx(r)~o = l.,~xq~ V~o e E (5.8) 

where U D and Uex are given by (1.2), (1.3) respectively. 

It is easy to see that B o is bounded and 

[]IBD[[I < V. (5.9) 

Since 

o 7 
(5.1o) 

2 < gllrl]l < V 2k 
k 

also HlB~xtt j < V, so that B(T) = BD(T) + BEx(T ) satisfies the hypotheses 
of Section 2. Hence the existence theorem applies and Proposition 4.3 
guarantees that T(t), t ~ ]0, z] satisfies the positivity condition (5.4) if T o 
satisfies (5.4). Hence T(t) defines a quasi-free state. Furthermore the 
state remains pure if it is initially pure (To z -- To). 

The existence of the strong solution is guaranteed by the following 
condition on the initial state 

R T g D  ~ . (5.tl) 

This condition is physically reasonable in the greatest majority of the 
applications, where A is either the kinetic energy operator, or the kinetic 
energy plus a central field. If (5.1 t) holds, A T O is bounded so that Eq. (3.3) 
holds. 
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