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Abstract. In the framework of the .5f.5C~'. formalism, the crossing property is 
proved on the mass shell for amplitudes involving two incoming and two outgoing 
stable particles with arbitrary masses. Any couple of physical regions in the (s, t, u)- 
plane corresponding to crossed processes are shown to be cormected by a certain 
domain of analyticity. For every negative value of t, the amplitude is analytic in the 
cut s-plane outside of a large circle. 

1. Introduction 

I n  this paper  we propose to prove  the  p rope r ty  of "crossing" for  the  
scat ter ing ampl i tudes  involving four  stable particles A~. (j = 0, 1, 2, 3) 
wi th  a rb i t r a ry  non-zero ma~ses m~, within the  f r amework  of the  ~f .  5f. ~.~. 
formal ism [1]. 

I n  this fo rmahsm the  ampl i tudes  corresponding to  the  processes 

A I +  A 2-+ A a +  A o (and C.T.P.) (1) 

A v ~  Z ~ - +  Z 2 + A o (and C.T.P.) (2) 

A a +  A2 -> A1 + Ao (and C.T.P.) (3) 

are different bounda ry  values of a holomorphic  funct ion H (k) of the  set 
of complex four-vectors  

/~= k0, k 1 ,k  a ,k  3; ~ / ~ = 0  ; H(/c) i sdef ined  

and  analyt ic  in a cer tain primitive domain** A in C 12. More preeiselyif  P~ is 
the  f o u r - m o m e n t u m  of the  particle A t (orAl)  (P~ E V +, fo r j  = 0, 1, 2, 3) and  

* C.N.R.S., France. 
** For a description of this domain and for relevant references, we refer the 

reader to a previous paper [2], the notations of which will also be used in the 
present paper. 
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if T(0 (Pj) denotes the amplitude of the reaction (i) (i = I, 2, 3), then 
we have: 

T(i) (P~) = t im H(k) ,  k, ~ ei~P~. (4) 

In these formulae, the limit has to be taken in the sense of distributions 
for k lying in certain tubes contained in A ; the number 8i# is equal either 
to + 1 or to --1 according to whether the particle Aj (or A~) is incoming 
or outgoing in the reaction (i). 

Actually, it turns out that  the section of the primitive domain A by 
the "mass shell" manifold {k; k~ = m~; 0 =< ] ~ 3} is empty. 

The purpose of this work is to prove that  the envelope of holomorphy 
(A) of A always contains a connected open set of the mass shell manifold 

which connects the physical regions of the reactions (1), (2), (3); this is 
what we mean by "crossing." Of course this property has to be supple- 
mented by the fact tha t  the formula (4) still holds true in the sense of dis- 
tributions when we replace H (k) by  the well-defined analytic function 
which is the restriction to the mass shell of the analytic continuation 
of H (k) ; however we postpone the proof of this point to a further paper 
and are only concerned here with the questions of analy~icity domains. 
A typical consequence of the property of crossing is that  the knowledge 
of one of the amplitudes T(i) (Pj) should in principle be sufficient to 
determine uniquely the amplitudes of the crossed reactions. 

In order to describe our domain of crossing, we introduce the usual 
Lorentz invariant coordinates: 

s = (7c1+ ~)~; t =  ( h +  ~)~; u = ( ~ +  k3) ~ 

5 =  ~ (] = 0, 1, 2, 3). 
These variables are related by the formula: 

3 

s + t + u =  Z 5 .  (5) 
i=0 

Let us denote I the mapping k ~ (s, t, u, ~j), and put: 

]2~ - 1 1 
1 ( u -  C~- Q (s, t, u, ¢¢) = I (S--~l--~e) ~2 T 

1 

(defined on the manifold (5)). Q (1(2)) is the Gramian of (k~, k~, ka) 
(or of (~,  k~, to), etc.). 

When C~= m~ (~ = 0, 1, 2, 3), there are three real regions in the space 
of the variables s, t, u (the Mandelstam-plane), denoted S, T, U, corre- 
sponding to all possible values of s, t, u in the processes (1), (2), (3) 
respectively (or their C.T.P. transforms). As it is well known, these 

16" 
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regions are bounded by branches of the cubic {Q (s, t, u, m]) = O} (see 
Fig. 1). 

We shah prove that  JC (A) contains an open connected subset of the 
mass shell which has the following properties: 

a) This domain is invariant under complex Lorentz transformations 
and can be defined by 

{~: ¢j= ~ ;  (s, t, ~) ~ ~}, 

Fig. 1. The physical regions S, T, U in ~he (s, t, u) - plane 

where f2 is a connected open set (domain) in the space of the variables 
(s, t, u) related by: 

s+t+u=Zm]. 

b) The open set ~ contains six disjoint subdomains S ±, T ±, U ± of 
the following form: 

S ± = , g ' ( S )  CI {(s, t, u) : ± Im s > 0 ; Q (s, t, u, m~) 4= 0} 

where wf" (S) is a certain open connected neighbourhood of S (on the mass 
shell). T ± and U ± have similar forms. 

When/~ tends on the mass-shell to a point of S, T, U from S +, T+, U+ 
respectively, the restriction of H(k) to the mass-shell will tend to the 
physical amplitudes of the reactions (1), (2), (3) respectively. 
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c) For any real negative value t 1 < 0, there exists an open subset 
$2 + (t~) (resp. £2~- (tl)) of Y2 of the form: 

{(s, t, u) ;  I m s  > 0 (resp. Im s < 0); Is I > R(tl); l t - t l l  < e(tl, s) ) . 

2 + (tl) connects S + and U-;  2/-(tl) connects S -  and U +. Analogous 
domains Y2{ (sl) and $2~ (%) can be constructed by  obvious permutations 
of the variables : f2 + (ul) comaects T + and S-  ; ~2 u (ul) connects T -  and S +, 
2 + (sl) connects U + and T -  a n d / 2 ~  (81) connects U- and T +. The an- 
nounced domain Q can be taken to be the union of S ~, T ~, U ± , I2~ (sl) , 
~(2~ (tl), ~2u ~ (ul) (for all negative s~, ~, ul). This is clearly a connected set. 
One notices that,  to pass from one physical region to another within Q, 
one must follow a path which approaches the third physical region from 
the "unphysical side": for instance a path going from S + to U + must 
intersect T- .  

The only assumptions needed on the masses of the theory are the 
usual stability conditions (see [2] § 5), and the existence of a strictly 
positive minimum mass for all states other than the vacuum. 

We first note the following facts which play an important role for the 
rigour of the proof. 

1. The hypothesis tha t  there is a minimum mass in the theory 
implies t ha t / J  contains the origin 0 of the coordinates, and is star-shaped 
with respect to 0. I t  can be shown that  5ff(/~) is then necessarily a 
star-shaped domain in C t', i .e .  it is sehlicht. Therefore, if a point of 
~ f  (A) has been obtained by two different methods, the colTesponding 
continuations of H (/c) will nevertheless agree at that  point. 

2. ,~(A)  is necessarily invariant under the complex Lorentz group 
L+ (¢).  This follows from 5¢F (zl) being "schlicht," and from a process of 
analytic completion described in reference [3] and [4]. I t  is also invariant 
under reflections, because zJ has this invariance. Hence: d~(A) is 
invariant under L(¢) ,  the full complex Lorcntz group. 

3. The following property has been proved by I-I~I~ and WmHT~AN 
in [5]: let k and /~' be points having the s~me set of scalar products 
/¢~- kj = k~. ~,  and having non-zero Gramian Q (I  (/~)). 

Then there exists A E L(G)  such that  Ale'=/c.  I t  follows that  once 
the manifold {Q ( !  (/¢)) = 0} is removed from ~ f  (A), on obtains a domain 
which is the whole inverse image of its image in the invariants: in the 
terminology of ttEP1~ [6], Ji~(A)N { Q ( I ( k ) ) 4  O} is an /-saturated 
domain. 

The property a) of our domain will be a trivial consequence of these 
general facts, once we have checked that  all the above enumerated sets 
the union of which constitute /2 avoid the manifold {Q (I( lc))= 0}. 

The proof of the property b), namely the existence of the domains 
S ±, T ±, U ±, can then be deduced from the fact, proved in [2], tha t  3F (/I) 
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contains cut neighbourhoods of all physical real points. (It is to be noted 
that  the latter result can be obtained without the use of the Steinmann 
identities. For instance, to obtain S ~, it is sufficient to apply a local edge 
of the wedge theorem to the "tubes" (3"+ + J ' ~ )  fl G/'1~ and (~-~+ ~-+) 
N 0 F12. The argument is exactly similar to that  of [2], § 5). 

The remaining sections of the present paper are thus devoted to 
proving the property c). A heuristic sketch of the proof can be given as 
follows. 

Two kinds of domains of analyticity invariant under L ( ¢ )  are 
constructed. Their images in the invariants are of the types DO) and D(*) 
which will now be described. 

The momentum ~ransfer t = (kl+ ka) ~ is fixed at  a negative value 
and the variables Cj are restricted to satisfy: 

G - - ~ = ~ - - m ~ ( O _  k <  j <  3); 

the only remaining variables are then: 

which satisfy (see (5)): 
~ - - s - - u = t .  

Da) is an open neighbourhood of the topological produc~ of a part Re) 
of the negative real axis in the S-plane, by the upper half-plane in the 
variable s (see Fig. 2). 

~-p/~zze 

Fig. 2, Domain D(1) (shaded) 

D(~) is an open neighbourhood of the topologieM product of a domain 
R(2) of the ~-plane by the union of two half-lines S{~), U(2) of the s-plane 
(parallel to the real s-axis) having the following properties (see Fig. 3): 

R(2) contains R( 1} and the "physical point" 
3 

1 = 0  

Se) = {s; Im s = e > 0; s --  sl > 0} 

U(~)= {s; I res  = s > 0; s - - s2< 0} 
with 

s 2- s I < 0; Im s I = Im s~---- e; 

S( 2) C S  +; U{ ~)C U - .  

An analytic completion of DO) U D(2) is then performed (see section 5) 
by using a certain application of the semi-tube theorem (local version). 
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The intersection of this extended domain with the manifold 

eont~ains a domain in s of the form: 

{8: Ims > ~; Isl > R(0},  
~-Z/ane s-zlaze 

ZZZ,ZZZZZZ;~ ~H/H~HN~J 

Fig. 3. Domain D(2) (shaded) 

which yields a connection, on the mass-shell, between S(2) and U(2), and 
therefore between S + and U-. 

I t  may be noticed that ,  apart  from the method of analytic completion, 
the geometrical situation is somewhat sim~ar to that  of the classical 
woofs of dispersion relations ([7--11]) in tha t  it uses a domain of 
type D(1) and the complex variables 8 and ~. 

In  order to obtain domains of type D(1) and D(~), we study the 
restriction of H (k) to a linear submanifold ~ .  In section 2, the manifold 
$/" ~4ll be defined and studied, and a glimpse of the construction of D0) 
and D¢2) will be given. In  sections, 3, 4, 5, the proof ~_11 be given in detail. 

2. The Manifold 

The manifold $r is defined uniquely up to a sign by the following 
conditions: 

i) The fout4h components kJ 3) of /Co,/6, k~, ka are taken to be zero, 
i. e. one considers only vectors of a 3-dimensional space-time. 

ii) /6 ÷ k a = --  (k z + k0) is held fixed, real, along the third coordinate 
axis, with (16+ ka) ~= t < 0. 

iii) The third components of/6,  k 2, k s are held fixed and real. 
iv) The manifold ¢ / m u s t  contain points on the mass-shell i. e. the 

system k~ = m~ (0 < j < 3) must be compatible on ¢/. 
The manifold 3e" so defined may  be parametrized by  two complex 

vectors ~ and ~2 of a two-dimensional space.time as follows : 

/6 = ( ~ ' - - @ _ ~ - - -  

t m ~ - ~ + t  , 0) /~ = ," ~ ,  ~ -  

/ka 
__ (__~1,  m~--m~--t 0) (6) - - ~ ,  

ko= (-:r, ,  ~ - ~ + t  o) W--i-t ' 
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The vector z~j = (z~ °), 7~ 1)) (] = 1, 2) will often be represented by iso- 
tropic coordinates: 

Their scalar products in the Lorentz metric can be expressed: 

(s) 
~(0) ~(0> Z~(1 ) 7~(21) 1 7/: 1 " g2---= ¢v I w~ 2 - -  = ~ -  (qA 1 V 2 +  U 2 Vl)  • 

We notice that  in the manifold $/', two mass differences are held 
fixed, namely: f$1-- ta = kl -- k~ = m~ --m~ 

/ 
By Theorem 4 of [2] the intersection of JfF(A) with t z  contains the 

eight following tubes, which are "faces" of the tubes Y ~ ,  ~'-~: 

d = ((z~, a2) ; I m  Ul E V- ; I m  (zv~ ÷ ~2) ~ V+) 

~ ' =  { (Y/ l '  7/:2) ; I m  Y/~l ~ V ÷  ; Im (zl -- ~2) ~ V-} 

-- {(zl, ~.) ; Im ~2 ( V- ; Im (~1 + z2) E V +} 

~ ' =  {(zl, z~2) ; Im z 2 E V- ; Im (~1 -- 7~) C V-} 

Fig, 4. Symbolic representation of the 8 tubes in P ;  the arrows indicate the direction where the 
corresponding vectors  lie in  V + 

and their opposites (see Fig. 4). These tubes are mutually connected by 
certain open sets of ~ ( A )  I7 ¢z near certain real poinM [2]. In particular 
WF(A) I'l $z contains open sets ~t z i~ ( ~  + ~)  and MF'A (~'- t-  ~ ' )  
connecting ~4 with ~ and ~/ '  with ~ ' ,  respectively, where ~ is an open 
complex neighbonrhood (in Of) of the real points in ¢/" satisfying 

and ~jz, is an open complex ncighbourhood of the real points in ~ such that  
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Here, one has defined: 

.~¢2 = min M 2 _ _ ~ ( t + m ~ _ m 2 , S M ~ _ l ( t + m ~ _ m ~ )  s s ,  , (12) 

Jt'~ = min M~ - - ~ -  (t + m~ --  ~2,s.oo,, ~'~o~I~ _~/_  (t + m g  --  m~) s. (13) 

~g~o = M~o-- ~ (m~ - ~ + ~ - ~ ) s  04) 

]//-2 3_  [a,~2 ~g~12 = "-~ 12-- 4t '"°~ --  m~ --  m~ + m2) s . (15) 

(5¢ + ~ )  (resp. d ' +  ~ ' )  denotes the convex hull of ~ U ~ (resp. 
~¢ '0  ~ ' )  namely {(al, ~s); Im (a t+  as) ~ V +} (resp. {(a s, as); Im (a l - -  gs) 

V-}). (I t  is easy to see that  all these properties of JC~(A) f'l $/" can be 
obtained without using the Steinmann identities). 

The domains of the type  of Da) will be obtained by  taking the image 
of certain of these tubes and their boundaries in the invariants. On the 
other hand those of the type of D(2) are given by  images of partial 
analytic completions of the above eight-tube domain. In order to obtain 
them, we shall use the well-known JOST-L]~HMAN2C-DYsoN domains [12,13]. 

The intersection of ~ with the mass shell is contained in the submani. 
fold ¢f~ of ¢r defined by 

~ _  ~ =  2 kl - / ~ 2  = m~ - -  m~ 
or alternatively, by: 

Sf~ = {(a 1, z~); a~ --  7~ = #~ --  tt~} (16) 
where 

1 1 
~ = ~ i  - ~7  (t + m~ - ~ ) ~ =  m~ - ~7  (t + ~ -  ~i)~ (17) 

1 1 
t~ = m.~ ---4-~ (t + m~ - -  m~)~'= m ~ - - ~ -  ( t +  m~-- m~) s . (18) 

We recall the following general fact, which is essential for the rigor 
of our proof: let A be a domain and M a (regular) complex submanifotd 
of C~. Then the envelope of holomorphy of A N M (in M) is contained 
in the envelope of holomorphy of A (see [14]). This shows, in particular, 
tha t  every point K = (K1, Ks, K~) which we shall obtain by  analytic 
completion in ¢/~ is an interior point of J%f (A), i. e. H (k) can be analyti- 
cally continued in some neighbourhood 

{k: nk~--K1] + I[k~--K~I 1 + ][ks--Ks] [ < e} 

of K. This can also be understood by remarking tha t  our methods of 
completion can always be, in principle, reduced to the "disk theorem." 
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3. Passage to the invar iants  in $/~ 

The  two following sys tems of variables will be used in the  manifold  Y/'. 

(I) Ul, vl, us, vs, or: u +, v +, u , v , where 

u ± =  u~ ± u s (19) 
and  v ± vl ~. vs 

( I I )  

/ z l =  ~ = ul  vl 

Z2= JE2 = ~2 V2 
zs= (~1+ ~s) s =  (u~+ u2) (vl+ v~) (20) 

=t/~ • 

The  sys tem of variables  (II)  corresponds to choosing three  indepen- 
dent  Lorentz  invariants ,  zl, zs, z~, and  a var iable  ~ represent ing a complex 
Lorentz  t rans format ion  in two-dimensional  space-t ime.  To s tudy  the  
regular i ty  of this change of variables  we write down the  inverse formulae:  

~ 1 =  V {  g , v l = V ~  - 

~ s =  :V{ [ ~ - z ~ - ~ +  VZ-(~ z .  z~)] (21) 

1 Z2-- ]/~ ($8' Z2)] v s -  2 ~ V {  [z .~--z l - -  zl, 
where 2 (z 8, zz, z~) is the  symmet r i c  fo rm 

(zs, zl, z2) = (z~-- z~-- z~) s -  4zl z s=  

= z~ - -  2 ( z l +  z~) z a +  (z  1 -  z2) 2 =  (Ul v 2 -  u s  v l )  s • (22) 

The  above formulae (21) imply :  V2 (z~, z~, z2) = u s v 1 -  u 1 v s. No~e tha t ,  
on Sf :  Q ( s ,  t ,  u ,  ~j)  = - -  t 2 (Zl, Z2, ZS). TWO manifolds of critical points  
appea r  in the  formulae;  name ly  

(z .  z~, z3) = 0 
and 

z l = O  

I n  order to  avoid the  critical points  of the  submani fo ld  z~= O, we 
int roduce in ~ the  cut :  

= {(~, vl, us, v2) ; u I v 1 ~ R-} (23) 

( R - =  se~ of all real numbers  g 0). 

The only domains  of ¢" of which we shall use the  images in the  space 
of the  variables  (II)  will have  to  be conta ined in 

Of'---- $/~ - -  ~ .  ( 2 4 )  
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The manifold 2 (z 1, z s, z3) = 0 is a manifold of ramification which can 
be suppressed as follows. The domain Yf (A) f3 ¢ "  is invar iant  under  the 
Lorentz  t ransformations : 

1 
u~->o~u¢, v¢ >~V1(?'= 1 , 2 ) , = E C - - { 0 }  

and under  the reflection u~-~-+ v~ (j = 1, 2). Let  X be a subdomain of 
JYf (A) N ~ ' .  The union X '  of the t ransforms of X under  all t ransforma- 
tions of the above type  is again in ~ f (A) [7  ~/~'. I n  particlflar X '  is 
invar iant  under  the  following t ransformat ion (which is non-singular 
on ~ ' ) :  

qz 1 
ul, vs > ~ u i=  v 1 va ~ v-~ Vs= 

(25) 
q-£2 -'-> ~-~- V2Vl ~ VS -->" ~ U2 • 

The restriction of the  4-point funct ion to  X' ,  

H (k s, k 2, ka) / X '  ~ F (u s, v l, u s, vs) 

can then  be wri t ten 

-~ (Ul' Yl' U2' V2) = -~1 (Ul' Vl' U2' V2) -4- (U2 Vl - -  ~hl V2) F2 (q~l' Vl' US, VS) (26) 

where:  

2 F s (ul,  vi, us,  vs) = F (u s, v l ,  u 2, v2) + F ua, vs, vl ' ul / 

-~ (u. vl, u~, v~) - -  F u~, v.  - -  
2 F2 (va, vi, u2, v2) = vl ' (28) 

~g vl - -  '/¢1v~ 

-~1 and F 2 are analyt ic  in the same domain as F and one can write : 

F1, 2 (u 1, u s, v i, v~) = /1 , s  (z~, z2, zs, ~) (29) 

where/1 and ]8 are holomorphie functions of the variables (II)  having no 
singularities on the manifold 2 (Zl, z2, Za) = 0. Their domain of analyt ie i ty  
is the whole image of X '  in the space of the  variables (II). The computa-  
t ion  of the envelope of ho lomorphy  of X '  is therefore equivalent  to  the 
computa t ion  of the envelope of ho lomorphy  of its image in the  vari- 
ables (II).  

We also define 

~ ' =  ~ -  v = ~ ' n  { ( ~ ,  ~s, ~2, ,2): ¢ ~ s -  ~2 v2 = ~ - ~ }  (30) 

I n  $W', we shall use, for later analyt ic  completions, the  invar iant  
variables s, u, and z, where z is defined by  the  formula 

3 
z = X (~ '~ - -  m~) - -  ~ (31) 

1=0 
where 

= 4 m m  ( ~  - -  ~ )  = 4 m m  (~g~ - -  ~ ,  ~ - -  ~ ) .  (32)  
0_~i~3 
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[The last equality follows from (12), (13), (17), (18)]; according to (5) 
s, u, and z are related by:  

s ÷ u + t = z  + Zm~ + qb. (33) 

By virtue of the formulae (6), (17), (18), (20), s, u, and z are related 
to the invariants zl, z~, and z 3 by  the formulae: 

s = z a + ("*8 - -  m~ + ~ - -  m~)~ 
~t (34) 

u = 2 (za+ % ) -  % + ( m , ~ - - ~  + ~ - - ~ ) ~  4t 

z = 2 ( z ~ -  ~ )  + 2 ( z ~ -  ~ )  - ~ .  (35) 

Due to the equation (16), which defines ¢F, we can also write : 

z = 4 (z 1 -  # ~ )  - -  ~b = 4 (z 2 -  # ~ )  - -  ~5 o n  Of" ( 3 6 )  

4. Domains of analytieity in ¢f  and their images in the invariants 

Certain domains which will be described in ~his section can be used 
only for #~ > tt~. According to (17) and (18), this amounts to the following 
restriction on the momentum transfer t: 

(m~+m~2--m12--m~)t=> ' ~ -  0, --2 (37) 

When the opposite inequality holds, one must  use analogous domains 
obtained by  exchanging the roles of 7~ and ~ .  

a) Domain G1 
I t  has been shown in reference [2] (Theorem 4) tha t  all points of $/" 

belonging to the boundaries of the eight tubes, described in section 2, are 
in ~ (A), provided they do not belong to one of the cuts: 

{(ul, v .  u2, v~) : u~ v~ = d /~  + Q~, Q1 => 0} 

{ ( u .  v .  u~, v~) : u2 v~= ~ ' ~  + e~, e2 > 0} 

{(~i, Vl, U2, V2): (Ul+ ~2) (Vl+ V2) = ¢~/~2 + ~3; ~3~ 0} 

f lu .  v .  us, v~) : (u~-  u~) (v~- v~) = ~Zo~ + e~, e~ > 0} 

(Here again, it is easy to show tha t  this result can be obtained without 
using the Steinmann identities.) In  particular the following sets of points 
belonging to the boundary of ~ / ( a n d  of ~4') lie inside ~ ( A ) :  

i) u 1 = v~ real > 0; u~ < J [~;  I m  u~ ~ 0; I m  v2 > 0 .  

ii) vx= 0; u~ real > 0; I m  u~ ~ 0; I m  v~ > 0 .  

iii) u ~ :  - -  v~ real > 0; I m  u~ ~ 0; I m  v~ > 0 .  
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Let  J denote the continuous mapping  which associates to  every point  
(u 1, v 1, u~, v2) of ~ the point  (z 1 = u 1 vl, z 2 = u 2 vs, z 8 = (u 1 + us) (v 1 + vs) ) 
of C 3. We shall now verify tha t  the  image under  J of the  points just  
described contains the  following set:  

E = {(zl, %, z~) : z 1 real < d/~ ; z 2 real ~ 0 ; I m  za > 0} (38) 

(i) 0 < z 1 < J /~ ;  u 1 = vl = l /~ ;  if one fixes z~= u2 v2 real < 0, the 
conditions I m  u~ > 0 and  I m  v 2 > 0 become equivalent ;  one then has : 

and it is clear t h a t  z a varies over the  whole of {Im z 8 > 0} when v~ varies 
over { Im v 2 > 0}. 

(fi) z 1 = 0; u 1 reM > 0; vl = 0; one fixes z~ = ueve real < 0. The variable 
za= zs÷  ulv s varies over { I m % >  0} when v s varies over { I m v  s > 0}. 

(iii) z 1 < 0; u 1 = - -  v 1 = }/22 zl; one fixes z s = u s v 2 real < 0; then  

z 3 = z 1 + z~ ÷ }/~zlz 1 v2---~- ~ ; when v 2 varies over { Im v~ > 0}, z 3 varies 

over a whole cut  plane, in part icular  i t  takes all values in the  upper  
halLplane.  

I n  the three cases, the limiting case z2= 0 can be obtained by  sett ing 
u s == 0. Then z 3 = z 1 + u~ v~; hence z 3 again takes all values in the  upper  
half-plane when v 2 varies in { Im v~> 0}. 

We now come to  a ra ther  fine point  in the  argument ,  regarding the 
passage to  the  variables (II).  The reader ~411 notice ~hat certain analyti-  
c i ty  points described above ((ii) and (iii)) belong to the  cu t  ~ (formula 
(23)) which should be avoided. But ,  in  effect, since these points are in 
5~f(A), which is open and  Lorentz  invariant ,  we know t h a t  there exists a 
certain open neighborhood ~ ,  in ~ ,  of the  union af all points described 
in (i), (ii), (iii), wi th the following properties:  

1) ~ is invariant  under  the  complex Lorentz  t ransformat ions  
1 

u~-~:u~, v~-~-v~, ~: ~ ¢ -  {0}. 
2) ~ is invar iant  under  the  reflection u~*-~ v~. 
3) ~ C~(A) n ~ .  
I n  order to  obtain  a domain  in the  space of the  variables (II) [see 

(20), (21)], consider the  following holomorphic mappings  

{~: (Ul, Vl, U2, V2)~ ~'~'-~ (Z1, Z2, Z3, 6f)~ C 4. 
(u~, v~, u~, v~) ~ "//'--> (z~, z~, z~) ~ ~ .  (39) 

I t  c~n be verified t h a t  the  mapping  J is open  at  all the  points de- 
scribed in (i), (fi), (iii). (The only points  where a careful verification is 
needed are those for which 2 (z~, %, za) = 0, i. e. the vectors  ~ arts ~ are 
colinear: there, the  rank  of the  mapping  is no t  maximal.)  I t  follows tha* 
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J (f¢1) is a neighborhood of E (defined in (38)). Because of the invarianee 
of ~1, we have 

We can state: 
Lemma 1. The functions/:,~ (zl, z~, z~, o:) are analytic in a domain G~ o/ 

the following/orm: 

G 1 = {(z 1, z 2, z 3, ~): lz1--Z1] -~- Iz2-- Z2I -~ Iz~-Z~l < ~ ( z .  z~, z~),  
(Z. z~, Z~) 6 E ; z~ ¢ ~ -  ; a # 0}. (4O) 

The domain G~ can be obtained by removing the points z a ~ 0 from a 
neigborhood of the set 

El  = {(z~, z~, z a, a): zx real < J / ~ ,  z~ real < 0 ; 

Imz~ > 0;  ~ #  0}. 

b) Domain Gz 

We shall now describe a domain in the manifold ¢/" which is contained 
in the envelope of holomorphy ~ f d ~  of the union of the tubes d and 
and of a small open set ~ N ( Im (zqq- z2) E V +} connecting d and 
(see section 2). We recall tha t  ~ is a complex neighborhood of the real 
region 

{ ~  < ~g~ ; ~ < ~ ; ( ~ _  ~)~<  ~g2o}. (lO) 

For each g > O, let ~ be the complex submanifold of ~ defined by  
setting 

u = u a +  u s =  a (41) 
V + ~  Vl-]- V2= (Y. 

In  ~ a  one can take as variables the coordinates u - =  31-- u~ and 
v - =  v 1 -  v 2 of the vector 7~ 1 -  7~. 

Let  ~ denote the Jost-Lehmann-Dyson domain defined in of ,  as the 
envelope of holomorphy ([13]) of the union of the tubes 

3-  2 ---- {(u +, v +, u-,  v-): 4- Im u-  > 0; 4- Im v- > 0;  
u+= v + = a} (42) 

with a neighborhood of the real region: 

~ =  (u+,v+,u-,v-): u + =  v + =  ~; ~ = ¥ ( u - +  ~) (v-+ ~) < d ~ l ;  
(43) 

~ = -i- ( u - -  ~) ( v - -  ~) < ~ ;  (~1-  ~)~ = u v < ~ 0  • 

J ' +  (resp ~--2) is contained in the boundary of the tube .~  (resp. ~) ,  
and ,~. is the trace of the region (10) on the manifold .£~o. Therefore 
~ C ~ =  ~4 r 13 .~a. Every  point in .Sf~ belonging to 3 -+ U oq'~- U ~ 
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has a neighborhood whose intersection ~Jth the tube {Ira (Tq + ~2) E V +} 
is contained in a%f~. On the other hand, every point M = (a, a, u o, %)  
of ~ ,  belongs to the envelope of holomorphy of some relatively compact 
subdomain K M of 3"+ (J 9-~- U .A/'~ (see, for instance, the process of 
analytic completion, using disks, given in [13]). One can therefore 
associate with KM a positive number ~ (KM) such tha t  the domain 

{u +, v +, u-, v-: (a, a, u-, v-) E KM; ]u+-- a[ + Iv+-- a[ < 0 (KM) ; 

Im u+> O, Im v + > O} 

is contained in Yfd~ .  This domain being a topological product, so is its 
envelope of holomorphy. Therefore the following set of neighboring 
points of M: 

{(u +, v +, u-,  v-); Iu + -  a I + Iv + -  a] < ~ (K~) ; 

u -  = u~-, v - =  v o ; I m  u + > 0, Im v + > 0} 

is contained in 5~fd~, hence in 9~ (A). 

Thus it has been finally shown that  Yf (A) contains a domain of the 
form: 

o~ 0 flu+' v+' ~-' v-): (u-, v-) C ~ ;  I ~ + -  ~I + I v + -  ~l < e (u-, v-); (44) 
I m u  + > 0 ,  I m v  + > 0 } .  

Henceforth we shall restrict a to values such that  

a > ~ '~+  ~¢~. (45) 

In this case, it turns out that  the inequalities Z~l < ~ and 7~22 < ~/~ 
imply (7~ 1 -  a2) 2 < Jg210, so that,  in the variables u-  and v-, the region 
~ ,  is bounded by the two intersecting branches of hyperbolae (see Fig. 5) : 

(u-  + a) (v- + a) = 4 J/~'~; u -  + a > O. (46) 

(u---  a) (v--- a) = 4 ~ ;  u - - -  a > 0 .  (47) 

Since our purpose is to consider these domains in the neighborhood of 
the manifold ¢/z __ {(u +, v +, u-,  v-): a l  --  ~ = #~ --/~2}, we shall study, 
for every a > Jr '  1 + ~'2, the intersection of ~ with the manifold 
~ a =  £e, gl ¢/z. According to (8), (16), (41), J ~  is defined in .Lf~ by the 
equation: 

q (u -+  v-) = 2 ( ~  - ~ ) .  (48) 
Define: 

U - - - - V -  

x -- 2 (49) 
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In ~#o one can take as variables either x or the Lorentz-invariant 
variable z defined by (31): according to (35), (41), (48), (49), z is related 
to x by 

z = - - x ~ +  ~ - -  2 (,U~l + ,u~) + (~'~-- ~)~ - ~ (50) 0.2 

• / 

Fig. 5. Coincidence region for the Dyson domain in ~ a  

\ 
\ 

In  order to simplify the calculations, we replace ~ by a subdomain 
~ which is the Jost-Lehmann-Dyson domafll corresponding to the (real) 
region ~ "  defined by the inequalities: 

and 

w h e r e  : 

(u ' -+  a') (v ' -+ a') < 4 ~  '* 

(u ' - --  a') (v'--- a') < 4 ~'~ 

(51) 

(52) 

(53) 

(54) 

(55) 

u ' - =  u -  ( ~ - -  ~ )  , 
(J 

v ' - =  v -  ( ~ - -  ~ )  , ~y 

o-" = cr + I ~ - - 1 4 1 ,  
t7 

( :_) ~g/2= max #~ + ~-,/z,~ + . (56) 

I t  can be checked that  ~ is contained in ~ . ,  so that  ~ C ~ .  The 
advantage of ~ is that  it is symmetric with respect to the straight line 
u ' - +  v'----- 0. 

According to (48), (49), (53), (54), the manifold, d / .  is defined, in the 
new variables, by the equation: 

u ' - +  v ' - =  0.  (57) 
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One also has: (u'- - v'-) 
x - 2 (58) 

By using the classical method [9, 12], it is easily seen that  the 
"admissible hyperbolae" have the equation: 

( u ' - - -  ~) ( v ' - +  ~) - -  ~2__ 0 (59)  

where the point (~, ~) belongs to the following set 1" (see Fig. 6) 

F = y + U y - U ~  
with: 

:¢±= {(~, 7) E R~: ~ +  (7 ± 2 ~')~--~'2 _~ o} (6o) 

= {(~, 17) E 1R~: ~--a '~=< O; 17~-- 4 dg ~' > 0}. (61) 

The necessary and sufficient condition for a point of ~ 'o  to be in ~ '  
is, according to (57), (58), (59), that:  

(x - -  ~)2+ ~ # 0 for all (~, 7) E P 
that  is : 

x # ~ ± i l 7 for all (~, '17) E F .  

Thus, the intersection of ~"  and ~ is represented, in the complex 
plane of the variable x (which we can identify with the (~, ~) plane) by 
the complement of /~  (note that  F is invariant under ~ -~ - -  ~). 

(~, 7]) p/one or x-Z&ne z- o/ane 

:Fig. 6. The domain given by the ffost-Lehmann-Dyson domain in the x-plane (shaded) 
and its image in the z-plane 

L e t 2 0  (0 < 0  < -~) be the angle of the two circles bordering ?+ a n d  

y-  (see Fig. 6). In the couformal mapping x -~ z, (see (50)), this angle is 
conserved. I t  can be checked that  the image of 9~ A ~£a in the complex 
plane of z contains the sector 

{~: larg (-~)1 < 0} .  

In particular, taking into account (55), (56), the formula (50) can be 
rewritten 

z = - -  x 2 + a ' ~ -  4 ~  ~ 

Commun. math. Phys., Vol. 1 t7  
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and the intersection points of the two circles bordering ~+ and 7 -  (see 
(60)) are mapped  onto the  origin in the  z-plane. The  value of 0 is given by:  

2 ~  cos 0 = 2~ '  < (62) 

Le t  k be a real positive number  such t ha t  

2 ~  
k > m a x { l ,  ~¢¢~-_~ ~¢~ }. (63) 

and define 
a o = k (J/1 ÷ ~'2) > ~/K1 ÷ d J  2 . (64) 

When  a > ao, 0 is minorized by  the angle 0 o, independent  of a, such 
t ha t  2 

cos 00 = ~ (~ '1+ ~G) " (65) 

We conclude t ha t  3/Z(A) contains a subdomain of the domain (44), 
which has the following form: 

(u +, v +, u- ,  v-):  larg (--z)I < 0o, z (u---v-)2 4 ~- a ' ~ -  4 ~ 2  ; 

U I u- + v- ~ ~ ( u - - -  v-,  a)" o >  [u + -  + iv + -  0`1 + 2 < ' 

Im  u + >  0 ; Im  v+>  0 .  

Taking the union of all t ransforms of this domain under  the complex 
Lorentz  t ransformat ions in 3¢ ~, then  removing the cut  c# (see (23)), we 
obtain a domain, the image of which, in the space of the variables (II) 
(see (20)), has the  form:  

[(z 1, z 2, z a, a): ]arg (--z)[ < 00, z = 2 (z~+ z2--#~ - -  #~) - -  q~ 

G2=a >~Ja. ~ izi-- z2-- ~ t2 ~- /[£21 "~ tZ3 - °"21 < ~ (7"1 -~- z2, 0`) ; (66) 
[ I m z  s > 0 ; z  1 ~ R - ;  ~ #  0 .  

This can be s ta ted as: 
Lemma 2. The functions fl,~. (Zl, z2, z s, ~) are analytic in a domain G~ 

o/ the  form (66), which is obtained by removing all points such that z 1 g 0 
or I m  z a <= 0 from some neighborhood o / the  set 

E~ = {(z z, z 2, za, ~): z 1 -  z~ = l~21 - -  ~u22 ; z z real > a~ ; 

larg (--z)[ < 0o ; ~ # 0}.  

Exchanging the roles of the vectors z ~ ÷  z2 and zx- -x~ ,  (in par- 
ticular, replacing the  tubes ~ ' ,  2 by  ~¢/' and 2 ' ) ,  one obtains, by  identical 
arguments  a domain G a, analogous to  G2, given by  

[ (zl, z~, z8, a): [arg (--z)[ < 00; 
2 ~ [2 - z ~ - 0 ` ~ l  "'z  Ga=,,U>,~o t z l - - z ~ - - # i A - # 2 f ÷  (zx-t-z~) < e  ( ~ ÷ z ~ , a ) ;  (67) 

Im  [2 (zx+ z~)--zs] < O;z~ ~ R - ;  ~ 4  0.  
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We can state: 
Lemma 3. The/unctions/1,2(zl, ze, %, st) are holomorphic in a domain 

G a o/ the/orm (67), which can be obtained by removing all points such that 
z 1 ~ 0 or Im [2 (z 1-F zp) - -  zs] >: 0 / tom some neighborhood o/the set 

2 (zl+ z2) - -  z 3 real > ~ ; {arg (--z)I < 0 o ; ~ # 0}. 

5. Analytic completion in the invariants s and z 

We shall now consider the intersections of the domains Gj with the 
image J (C/z,) of the ma~fold  Of:' (] = 1, 2, 3): 

~ ( ~ / f ' )  = {(Zi, Zp, ZS: (Z) : Z t -  Z2~- /~2 __ A ; Zl ~ R -  ; ~ @ 0}. 

The variables we shall use are s (or u), z, ¢ (see (34), (35)). The 
domains Gj. Fl J (St"') are topological products of certain domains in the 
space C ~ of the variables s, z by  the fixed domain {~ E ¢ --  {0}}: 

G; n J ( - ~ ' )  = {(s, ~, ~) ; (s, z) ~ oj  ; .  ~ ¢ -  {0}} = o; x { ¢ -  {0}}. 

Hence, to complete analytically (G 1U GpU G~) N ~¢ ($4 r ')  is equivalent 
to analytically completing G~ U G~ U G~, and then taking the topolog- 
ical produeb with {¢  - -  {0}}. 

a) Completions o/G~ U G~ and G~ U G~ 
When # ~ -  #2 ~ 0, according to Lemma 1 (or formula (40)), G~ is 

of the form 
~dr(E;) n (Zl= z~+ t t ~ - / ~  ¢ 1R-} 

where ~ (E~) is an open neighborhood of ~he set 

~ = {(~, ~ ) :  ~ real =< 0 ; I m  ~ >  0 } .  

When #~ - -#2  ~ 0, one obtains the analogous domain 

g / (E i ' )  n {ZI= Z2"~- /~2 __#2 ~ R - } ;  

(E~') is an open neighborhood of 

z i '  = {(~, ~ )  : ~ real _-< 0 ; I m  ~ . >  o } .  

I t  may be noticed that  the symmetry in z~ and z 2 is not complete 
because of the unsymmetrical change of variables (I)-+ (II). In  the 
variables s and z, we find the following expression, valid for both signs 
of/~ --/~2 : 

where ~ r  (d,1) is a neighborhood of 

d~ = {(s, z) : z real g --  a (t) ; I m  s > 0} ; 
a (t) is given by  

a(t) = rain (4#~ + ~ ,  4,u 2 -f- ~ ) .  (68) 
17" 
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On the other hand, using (66) and (67) (or lemmas 2 and 3), we find 

a l  = w ( e ~ )  n { Im~ > 0} n {z ÷ 4 ~  + ¢ ¢ R - } ,  

a~ = w ( ~ )  n {Im u = Im (z - -  s) < 0} 13 {z + 4#~ -k ~ ~ R - } ,  

where ¢¥" (#2) and #/f (d~a) are respectively open neighborhoods of 

#~= {(s, z): [arg (--z)] < 0o; s > so(t)} 

#a= {(s, z): larg (--z)l < 00; u > uo(t)}, 
with : 

1 
so(t) = 4 + ~ ( ~  - -  m~ + ~'0 ~ - -  ~ ) ~ ,  

i ( ~  _ ~ + ~ _ ~o)  ~ u0(t) = 4 + ~ 

(69) 

(70) 

In order to find an analytic completion of G~ U G~, we make the 
following change of variables: 

which transforms (G; U G~) fl {z ÷ a (t) ~ R - }  into a domain of the type 

.A z '  (E') FI {(s', z'); 0 < Im s ' <  ~; 0 < Im z ' <  zl} 

where .A z'  (E') is a neighborhood of the "flattened" tube: 

E ' =  {(s', z'): I r e s ' =  0 ; 0  ~ I m z ' ~  z~} U 

U {(s', z'); 0 _--< I m s '  ~ ~; Im z' = zc}. 

A refined version of the tube theorem shows that  the envelope of 
holomorphy of this domain contains the convex envelope of the "flattened 
tube," namely: 

{(s',z'):O < I m s ' <  ~; 0 < I m z ' <  ~; I m z ' >  Ims '}  

which one can also write as a union of topological products: 

U { ( s ' , z ' ) ; O < I m s ' < f l ; f l < I m z ' < ~ } .  (72) 
0<fl<~ 

The value of z corresponding to the mass-shell is z ---- - -  ~b, to which 
corresponds (see (71)) the value z '= iq? such that  

c o s ~ :  1 - - 2  (a~---) ~/°°. (73) 

From (72), we extract  a topological product corresponding to a value 
fl = ~p such that  0 < ~ < ~v < x. Its inverse image in the variables 
(s, z) is a topological product 

{ ( s , z ) : 0 <  a rg ( s - - so )  < ~ ; z  EA} 

where A is a domain containing the "physical point" z = --  ¢ .  
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The boundary of A is a curve with the following properties (see Fig.7) : 
it is convex, symmetric with respect to the real axis and has the asympto- 
tic directions: 

arg z = ~= (~ - -  Z),  
where: 

I t  passes through the real point z = --k~ t, defined, according to (71), 
by  

~Tt = a [sm ~-)  . 

n 

8 

g 

Fig. 7. The domains A and B in the z-plane 

(75) 

One can then replace A by a subdomain B of the following form 
(see Fig. 7): 

B {z: x - - Z  < z+g~  R - }  = arg ~ ~ r~, z + a(t) 

where b is real and satisfies the condition: b > a(t). The boundary of B 
is composed of two arcs of circles with extremities _~r/and --b, and of 
the real segment [--b, --a(t)] .  I t  is clear tha t  B still contains the phy- 
sical point z = -- ~.  We can state: 

Lemma 4. The/unctions h,~ (z~, %, z3, :¢ IJ(¢~') are holomorphic in the 
domain As × {¢¢ ~= 0} where 

As= {(s, z): 0 < arg (s --so) < ~p; z E B} .  

By  applying the same process of completion to G~ U G~, we obtain 
the analogous result: 

Lemma 5. The/unctions ]1,2 (za, zs, za, ~) Lc(cr') are holomorphie in the 
domain A S × {a 4: 0}, where 

Aa= {(s, z); - -  yJ < arg (u - -  %) < 0; z E B} .  
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b) Construction o/the "crossing domain" 

For  reasons which shah be explained later,  we shah not  a t t e m p t  to  
find the  best  possible domain ,  bu t  only  to  prove  t h a t  there exists a 
"crossing domain . "  We shall therefore use only snbdomains  of G~, A 3, zJ3, 
chosen so as to  s implify the  computa t ions  as m u c h  as possible. I n  par t icu-  
lar we shall t r ea t  unsymmetr ica ] ly  the  variables  s and u (related b y  (33)), 
and  use only domains  which are topological  products  in s and  z. I n  
order to  ex t rac t  f rom A a such a topological product ,  we take,  in the  
s-plane, the  intersect ion of all sectors 

{s; - -  yJ < arg (u - -  Uo) = a r g  ( - -s  - -  t ÷ z ÷ 27 m~ + ~b - -  %) < 0} 

s -ple, Te 

rig. 8. A~ is the topological product of B (in the z-plane) by the shaded domain in the s-plane. 
K =--u,--t  + Zm~ + 

i 

for all values of z in B. I t  is clear (see Fig. 8) t h a t  this intersection con. 
rains the  domain  

A~= = {(s, z): z - -  ~o < arg (s - -  s2) < z ;  z ~ B} 
where z 

<7+ s2= ~ ÷ ~ m~ - -  Uo-- t --  b + - - ~  tg ~ i 2 
j = O  

Let  s~ be the  intersection of the  two s t ra ight  lines { Im s = I m  s~} and 
arg ( s -  so) = ~o. 

(b - -  ~ )  tg Z 

Sl= s ° +  2tg~o + i  b--w2 tg~2  " (77) 

We  finally ex t rac t  f rom G~ and A~ U A~ the  following open sets:  

D 1= G [ N  {s: I m  s > Ims~}  

D 2 =  {(s, z): z 6 B;  I m s  > I r e s2 ;  s C ~  ({s = 81-3[- ~, 0 > 0}) 

or  s ~ ~ ({s = s ~ -  o ' ,  e '  > 0) )} .  

Here  ~C ({s = sa+  0, e > 0}), and .4 / ({s = s 2 -  e' ,  e '  > 0}) denote  
open neighborhoods of the  corresponding sets. 

We  app ly  to these domains  the  conformal  mappings  

i g 
s " =  s ----ff ( b - - ~ ) t g ~ -  

z " - -  arg eh {1 - -  2 [ (Z(a-l-__ ttt)(b--a)]nlx}~i_t) (b - -  z) 



Crossing Property in Quantum Field Theory 261 

and denote ~t p t  

81=- 1~e 81, 82 = R e 8 2 .  

The image of B in the complex plane of z" is the strip 0 < I m  z " <  ~; 
the cut --  b --< z --< - -a  has been unfolded and mapped onto the line 
{Ira z " =  ~}; the remainder of the boundary of B is mapped onto the 
axis {Ira z " =  0}. 

The images of D 1 and D, in the variables (s", z") are thus : 

D~' = V~' N {Ira s " >  O, Im z" < ~}.  

D'2' = {(g', z"): O < I m  z" < z~; s" ¢,A/" ({g '= sx" + q, q > 0}) 

or s" C JV({s" = s'2'-- q', q' > 0}) ; Im s " >  0}. 

Here  W ({8" = ~ '  + 5, ~ > 0 ) ) ,  W @ "  = 4 '  - -  e', ~' > 0))  are open  
neighborhoods of the corresponding sets. V~' is an open neighborhood 
of the set: 

{(8", z"): Im z " =  ~ ; Im 8" > 0}. 

Thus D'~' U D'2' contains the intersection of {Ira z " <  ~, Im 8 " >  0} 
with an open neighborhood of the "flattened" semi-tube 

{(s", z"): Im z " =  ~;  Im s"=> 0} O {(s", z"): 0 < I m  z " <  ~ ,  

s " = s l + Q , Q > 0 "  or s ' =  s2"-- e', ~' > 0} . 

A refined version of BI~I~]~I~MANI~'S semi-tube theorem [15] asserts 
that  the envelope of holomorphy of D'I' U D' 2' contains the domain 
obtained by constructing the envelope of holomorphy of the "flattened" 
semitube in the same way as in the ease of an open semi-tube. The solu~on 
of this problem is an open domain, the boundary of which is given by the 
harmonic function 

8 t t _  81 
Im z " =  Im log g ,  s~' - -  arg (s"-- 8~') - -  arg (s"--  st ') ,  

and the domain is defined by: 

{ ( s " , z " ) : I m s " > O ; O < I m z " < ~ ; I m z " > a r g ( s " - - s ' l ' ) - - a r g  (8 . . . .  - -  8. z ) ,  

with 0 < a r g  (s"-- s~') < ~r, 0 < a r g  ( s ' - -  s~') < ~} .  (78) 

Consider the physieM value z = -- ~b, to which corresponds 

z " =  arg ch {1 2 [(~b-- T ) ( b -  a)]~/z~ - ~ - - - ~ ( r - - - ~ T j  ; = 
(79) [ { ~ -  ~,) (b - ~) ] ~ ~,,. 

= i Are cos {1 --  2 [ (-f-~ ~T(~ ~ ~-~ ] l = i  

The intersection of the domain (78) with {z"= i 9"} is given, in the 
upper half s"-plane, by the exterior of a (very large) circle passing 
through s~', and s'2', defined by 

arg (8"-- s~') - -  arg (s"-- 8~') < ~0", Im s" > 0.  
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Going back to  the variables s and  z, one finds t h a t  for z = - -  ~ ,  i. e. 
on the physical mass-shell, the domain of analy~ieity of the functions 
11,2 (zl, z2, z s, ~) contains the region D x {~ # 0}, with:  

D = D (t) = {s: arg (s - -  So) < ~o} U 

U {s: z t - - t v  < arg (s + t + u o - - , Z m ~ )  < zr} U 

U { s : I m s > b ~  t g ~ ' 2  ' 

< arg (s --s~) - - a r g  (s --s2) < ~0"~ . 
% 

O 
J 

(see Fig. 9). 

ZZo Zm~ o 

Fig. 9. The crossing Domain D(0 (shaded) 

We note tha t ,  due to  (64), (69), (70), s = s o and s = - -  t - -  % + 2: m~ 
define points in the physical regions S and U, respectively so tha t  D 
provides the  connection between S + and U -  which is %he object  of this 
study*. To east the result in the form announced in section 1, we notice 
tha t ,  according to  the remarks  in sections 2 and  3 the  point~ (s, $, u, ~5) 

* By using the formulae (32), (64), (65), (68), (69), (70), (74), (75), (76), (77), (79), 
the parameters so, %, sl, s2, Z, ~, ¢P'" which appear in the description of the set 
D (t) can be reexpressed in terms of t, of the various masses m~, Ml, and of the three 
independent parameters k, b, ~; k has to be chosen according to the formula (63); 

and b have to satisfy the relations: 

0 < ~ < ~o(t), 

b > a(t) .  

If we were interested in computing the largest domain possible by this method, 
we should take the union of the domains 39(t) for all possible values of k, b, ~. 
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such that  t < 0, $~ = m~, s E D = D (t) are in the image I (5~ (A)) of ~ (A) 
in the variables s, t, u, $¢. Since D (t) does not intersect the trace of the 
manifold {Q(s, t, u, tj) = 0} on the mass shell, these points are in I (SCF(A) 
f'l {Q(I(k)) # 0)). The mapping I is open on ~f(A) f3 {Q(I(k)) # 0), 
which i s / - sa tura ted  (see [5] and section 1). I t  follows that  : 

Theorem. For every real negative t 1 there exists a certain domain 
Of'+ (t~) in the apace of the variables s, t, u, and 5 (related by (4)) such that 

1) ~¢/r+ (tl) is an open neighborhood of 

{(s, t, u, 5) :  t = tl; 5 =  r,~; s E D(tl)}; 

in particular it contains a set of the ]orm : 

~ +  (tl) = {(s, t, u, ~ ) :  ~j= . ~ ;  k s  > o;  lsl > RM);  I t - -  ill < e M, s )} .  

2) I-~ ¢f'+ (tt)) C ~F (A). 
By obvious permutations one proves the existence of ~2 t (tl), ~Q~ (sl), 

tgu ~ (ul) announced in the introduction. The proof is now completed. 

6. Conclusion 

Several remarks can be made about this result. 

a) In  all cases when dispersion relations have been proved in quantum 
field theory, the crossing property between the corresponding two 
channels has ipso facto been demonstrated*. The new feature of the 
present approach is tha t  it  is valid in all mass cases, and for all negative 
momentum transfers. 

b) We have already called the reader's attention to the fact tha t  the 
proof does not use the Steinmann relations, whereas these relations play 
an essential (although implicit) role in the classical derivations of dis- 
persion relations [7--11]. If  one uses the Steinmann relations together 
with the methods indicated in this paper, one can take advantage, as in 
the classical proofs just mentioned, of the analyticity of the "absorptive 
par t ."  This leads to a much larger domaSn of analytieity. However, 
because it requires somewhat lengthy distribution-theoretical arguments, 
we reserve this subject for a later article. For this reason, we did not 
a t tempt  to compute the largest possible size for the domain obtained 
here; this domain must only be considered as supplying a general 
existence proof for a "crossing" domain of analyticity on the mass.shelh 

* Strictly speaking, these proofs give only the "crossing" in the sense of 
analyticity in one variable only (for instance in s, for fixed t). However the corre- 
sponding points are actually points of analyticity in two variables. This follows 
from the work of H. I~n~Aw~¢ [t6], and can also be seen by the methods used in 
the present paper. 
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c) No properties of Lorentz  covariance have been imposed on the 
funct ion H(k). This makes the  result valid also in the  f ramework of H.  
AI~AKI and R. H~.~o (see [17]). 

d) Using the assumption t h a t  the  Ste iumann functions are tempered,  
it is possible to  prove tha t  H(k) has at  most  polynomial  growth at 
infinity in the domain which has been derived in this paper.  This proof 
will be given elsewhere. This fact, as remarked by  A. M~T~N, allows 
generalizations of "Pomeranchuk  t y p e "  theorems to cases where dis- 
persion relations have not  been proved. 
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