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Abstract. The unnormalized doubly cutoff Schwinger functions converge as the 
ultraviolet cutoff is removed. The limits, the finite volume unnormalized Schwinger 
functions, are tempered distributions and are C ~ in the coupling constant. They have 
asymptotic expansions given by perturbation theory. For 2 sufficiently small they can be 
normalized and then they are the moments of a measure on S~(IR3). 

The P(rp) 2 models are the best behaved models studied in con- 
structive field theory. The Wightman axioms have been verified for 
these theories (for weak coupling), firmly establishing their existence, 
and work related to P(q~)2 is now largely aimed at determining physical 
properties and simplifying earlier proofs. The 2q~ model, which we 
are considering in this paper, is the next best behaved boson model. 
It differs from P(~0)2 by having ultraviolet divergences and by requiring 
ultraviolet divergent mass and wave function as well as vacuum energy 
renormalizations. Work on 2q)3 4 is still aimed at establishing its existence. 
The principal progress in this direction has been the proof of the exis- 
tence [2] and semiboundedness [3] of the spatially cutoff Hamiltonian. 
tn this paper we use the methods of [3] to show that the (unnormalized) 
spatially cutoff Schwinger functions exist, are tempered distributions, 
and are C ~ in the coupling constant. If 2 is small we can normalize 
the Schwinger functions and then they are the moments of a probability 
measure on 5e~(IR~). The next step in the program might involve the 
use of methods developed for P(~0)2 (see [4, 5]) to take the infinite 
volume limit and verify the Wightman axioms. Another open problem 
is that of determining if, as conjectured, the free and (spatially cutoff) 
interacting measures are mutually singular. 

Readers are referred to [3] and [5] for further background material, 
notation and references and for details related to the inductive expansion. 

We will be concerned solely with the Euclidean approach to q~. 
The free theory is given on the path space Lz(Y/{(IR3), dqo ) where dqo 
is the Gaussian measure with mean zero and covariance #- 2 = (_ A + 1)- 1. 

* Supported in part by the National Science Foundation under Grant GP 40354X. 
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The Euclidean fields are the linear coordinate functions on ~0R3):  

~ ( f )  (q)= ( q , f )  

for all q e DPj(IR 3) and f e  D~(1R3). The partition function Z and unnor- 
malized Schwinger functions Z S .  of the doubly cutoff interacting 
theory are just the mass and moments of the unnormalized doubly 
cutoff interacting measure dq(~c, 2g). 

Z(K, 2g) = (l)dq(~,~0) 

Z0c, 2g) S,0c, 2 g ; f  1 .... , f , )  = ( ~ ( f l ) . . .  ~(f,))aq(~,zo). 

The measure is given by 

dq(K, 2g) = e- v(~'ag)dqo 

v(~, ,to) = vi(~, ~g) + Vc(,~, ,~g) 

vx(~, ,~0) =,~ : ¢ :  :(a) 

Vc(K, ha) = ½ ( V2(K, )~g))dqo 

-- ~ ( V? (~, 2g))dqo 

-½22bm2(,c) : 4~2 : (g 2 ) 

6m20c) = - 4 2  x 6 x (2~) - 9  ~ ¢3(3) (k2 -F k 3 -4- k4. ) 

4 
• [ I  g(ki) -2 K2(k~) d3ki • 

i = 2  

Here : : means Wick ordering with respect to dqo,#(k)=-(l+ ]tk]12) } 
and lIklI 2 = k (°)2 + k (1)~ + k ~2~2. We assume that the space cutoff 0=<g_< 1 
is the product of a function in C~ (IR 3) and the characteristic function 
of a union of unit lattice cubes. We also assume that the momentum 
cutoff K is of the form 

:,Uo l" t-S7 -" kw)J 
~(~) __< fl(o 

~(~), fl(i) e {Mo = 0, Mj = M1 (1 +");-~ if j >__ 1 } 
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where M1 > 1 and v > 0 are constants given in [3] and q is a fixed C~0R 1) 
function satisfying 

~(x) = 1 lxr <½ 
0 < l / ( x ) <  1 ½<[x ]<2  

~(x)-- o Ixl > 2. 

(x) = ~ ( -  x) 

By convention q(k/O) = O. 
Note that the scalar counterterms in Vc are those suggested by the 

perturbation theory of the Euclidean Green's functions (i.e. Schwinger 
functions) and hence have a built-in wave function renormalization. 
See [3]. 

Theorem 1. a) There exists a constant K2(}~ ) and a Schwartz space 
norm [.[, such that 

IZ(~:, 2g) S,,(x, 2g ; f l ,  ..., J;,)l < n! Ifll "'" If,,I e K2A(g) 

where A(g) is the volume of  the s a  of  points within a distance one of  
the support of  g. 

b) Z(i ,  2g) = lim Z(~c, Xg) and 
~¢-~1 

Z(1, 2g) S,(1, 2 g ; f l  . . . .  , f ,)  = lim Z(~c, 2g) S,(~c, 2g; j [ ,  . . . , f , )  

exist and obey the above bounds. By  Fc-, 1 we mean 

glb (tlk[I t ~c(k), 1}-~oo. 

c) Z(1,2g) and z ( 1 , 2 g ) S . ( 1 , 2 g ; f ~  . . . .  , f . )  are C ~° in 2. They have 
asymptotic expansions given by perturbation theory. Z(1,2g)~O /f 
o __< ,~ < ,~o (A (g)). 

d) I f  0=<2<20 there exists a unique measure dq(1, 29) o n  ~l~(]R 3) 
such that 

S,(  I, 2g ; f l, . . ., f , )  = ( q~(f l) ... cI'(f ,) ) eq( ,,ag ) . 

Theorems l a)-d) are corollaries of Theorems2-5  respectively. 
These results are very much in the spirit of Symanzik's program to 
formulate field theory in terms of moments of probability measures [6]. 

We will also be dealing with expectation values of somewhat more 
complicated objects than the product of fields 49(fl) . . .  (b(f,). These 
will be products of Wick monomials that have some contractions 
between different monomials. Each monomial of order n is repre- 
sented in graph notation by a vertex with n legs. A contraction joins 
two legs, one from each vertex involved, to form a line. In general a 
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graph G and its kernels w~ are used to represent the function G(q) on 
~ / I ( ]R  3) given by 

G(q)= i II[: rI 
v e V  g~U(v) 

YI +k 2) l YI d 
2 

U 

V = set of all vertices in G; 

L(v) = set of all legs of the vertex v; 

U(v) = set of all uncontracted legs of v; 

coo C U L(Vl) x L(v2) is the set of all contractions; 
V l  ~ V 2  

~(k) = ~((2r0- 3/2 #(k) e ik'x) formally 

--- A*(k) + A ( -  k) in Fock space language; 

w~, the kernel of the vertex v, is a function of kt for all d e L(v). The 
kernel of :~2(g): is given by 

w(kl,. ' ' '  kn ) = (2tO- 3n/2 O(kl + . . .  + kn ) 

~(k~ . . . .  , k.) 1~ #(k~)- 1 

#=1 

where 0 is the Fourier transform of a space-time cutoff and ~c is a 
momentum cutoff. 

The notation G may refer, depending on context, to the topological 
graph G, the function G(q) or the kernel G(ke). The last is the function 
of the momenta of G's external legs given by 

I-I wv I-[ 6(3'(ke~ + ke~) d3ke~d3ke~. 
v s V  ( d l , d2 )~  

By choosing i of the external legs to be initial legs and the remainder 
to be final legs we can view G(k¢) as the kernel of an integral operator 
from L2(IR 3i) to L2(IR3I). [[GII~,s is the norm of this operator, i[GI[n.s. 
is the Hilbert-Schmidt norm of the kernel. 

We will be interested in two different estimates on (G)aq(~,~o). 
The first emphasizes the kernel of G while the second emphasizes the 
space-time density (as opposed to the total number) of external G 
legs. There is a norm on the kernel of G appropriate to each. 

Given 6 > 2c~ > 0 we define 

II GII 1,~,~ = sup sup IIg~C6 MOlGt IlH.s. 

IIGtl2,o,~ = sup sup sup II~MOlDJ-G1 IlH.s. 
• ~g g' D 
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~g, cg, D, °~ M ~, and 1-I are "operators" that modify the graph G and 
its kernel. 

(1) M ~ multiplies each external leg { by Kl#(k<) °. K1 is a constant 
to be chosen later. 

(2) <g is any contraction scheme on G's external legs. cg need not 
contract up all the legs. We identify the contraction scheme c~ with the 
operator ~f that applies it. 

(3) 1.[ takes the absolute value of the kernel to which it is applied. 

(4) ~ takes a collection of identical vertices ~ (the - 

means multiply that leg by # - ' )  and connects each to the graph G' 
on which it is operating, Each vertex may contract only to external G' 
legs but may have from one to four such contractions. They may not 
contract to any subgraph of G' that looks l i k e - - .  X has the kernel 

2 
F(kl +'" + k4) X # -  t (ka)  .."/~(k4)- 1 where F(k) = I ] / t (  k(e))- 1 and is 

8=0 
effectively just a P~ vertex from the inductive expansion. In fact we 
include the ~ operator in our norm so that we can handle the anomalous 
case in which a pe vertex, instead of contracting to at least one P, C, 
or W vertex, contracts entirely to G legs. See Section 5 of [3]. 

(5) D is a monomial differential operator in the variables 
Ik<l< ~U=. U(v)I, that is at most fourth order in t<,fk(°) k(<l), k(# 2)} for each 

fixed #. 
(6) Y is a "translation" operator. Each vertex is thought of as having 

a space-time localization in some cube A~ e ~ centered at r~. ~ is a 
cover of space-time by disjoint unit cubes. J multiplies the kernel by 
l-I I~ e~k~r" in effect translating the external legs to the origin i. 

v ~ e O ( v )  

The norms ]] II~,~,~ are very complicated and the role of each operator 
can really only be understood in the context of the proof of Theorem 2. 
Roughly speaking the DY-opera t ion  will be used in the inductive 
expansion to provide distance convergence factors 

d eib.r~=ir~)eike.r~ ) cf. ~ 

The M 6 operation will be used to provide energy convergence factors. 
cg and N~ appear because contractions and U vertices arise in the 
expansion. 

1 See Appendix 1 for another possible o3.. 
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In practice we estimate the norms by using methods of [3] to 
decompose big graphs into little graphs. For example if a graph H is the 
union of subgraphs hj 

IIHl[. .s .  < 1-[ IIh~lln.s. • 
J 

This implies 

v~V 

where v is the graph of the vertex v. If v has just a single leg 

I l e ( f ) l ]  1,~,~ = I I ~ - / a ~ o l l n . s .  

= (2r0 -3/z K1 I[(-A + 1)-l/z+ofllL= 

=--If[o. 

Theorem 2. Suppose G 1 is a graph having N external legs and G 2 

is a graph having N(A) external legs in A. Then there is a constant 
K2(~, 61, ~2, 00 such that 

[(G1 G2)aqt~,~a)[ = <NN 1-I N(A)N(a)I[Ga[[1,ol,~ 11G2112,~,~ eK2A(a)" 
Ae~ 

The proof is a modification of the estimate of [3] and is delayed to 
later in the paper. 

Corollary 2.1. 

[Z(~c, 2g) S,(~c, 2 g ; f l  , ...,f,)[ < n[ ]fl]o ... If,]o e r:A(°) • 

Proof. This is a direct application of Theorem 2. We have only 
used n ' < n !  K~ and redefined K1 to absorb K3. 

Remark 1. There is a class L20R 2) C H~ C H -  1/z OR z) of distributions 
on IR e for which f s  H~ implies ]f(x) 5(t - to)[o < o0. 

Corollary 2.2. 

[( G1G2e*(f)),lq(~,~g)[ <= NN I-[ N(A) N(a) [161 [[ 1,,h,~ I[G2112,~:,~ eKSA(g) 
A ~  

K5 = K~(lfl'~, 2, 5, 6i, cO 

I f  I; = max(l,  [flo) • 

This is proven by modifying Theorem 2. We also leave this to later 
in the paper. 
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Theorem3. Let I!GI[1,~,~ and [ f [ ~ < c c  for some 0 < a < %  (Co to 

be chosen later). Then l i m / G e  ¢(s)\ exists and obeys the bounds \ /dqOc,2~g) 
~ 1  

of Theorem 2 and its corollaries. 

Proof. Let ~. and ~b be two m o m e n t u m  cutoffs of our  s tandard  
form. Wi thou t  loss of  generali ty we can assume that  ~c b ~ ~c. and that  
nei ther  ~. nor  ~b has a lower cutoff. We construct  a sequence 
~c, = ~:0 < K~ ... < ~c M = ~c b of  such m o m e n t u m  cutoffs. To  get ~h- ~ f rom 
K~ we lower the highest cutoff  in ~h (that has not  yet reached its level in ~c~) 
one notch.  

I f  ~:i(s) = sK~+ 1 + (1 - s) tq 

[( G e~(f))  eq(~b,,~a ) -- ( G e~ ( f))  eq(K~,~g)[ 

M - 1  

< ~, [(Ge~(Y){e -v(~'+*'x°)- e-V(~,,;~o)})dqol 
i=O 

= ~ ds Ge ~(f) VOq(s),2g) e -v(~a~)'z°) • 
i = 0 / d q o J  

d 
ds V(~ci(s), 20) is the sum of a finite n u m b e r  of  P vertices. In addi t ion 

we write g = ~ O)~a so that  each vertex is localized on a cube of  
unit 

cubes A 

unit  volume.  Each P vertex has the p roper ty  that  its m a x i m u m  lower 
cutoff  hi is related to the m i n i m u m  upper  cutoff  ui of ~i(S) by u i __< O (1) 2~ + ~ 
We recall that  for any given leg ~ (vertex v) 

where  

26(2~) - m a x  t~2, a(P)~e 
(e),v 

u -- rain {fll p)} 
(1), P 

- -  t/ '~e 

is the m o m e n t u m  cutoff function in the pth space-t ime direction for 
the fth leg of  v. 

N o w  that  each te rm contains  a P vertex we per fo rm a single C step 
of  the P - C expans ion  precisely as prescr ibed by rules (A) and (B) of  [3] 
Section 2. (G vertices are considered old vertices, while ~ ( f )  vertices 
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are considered C vertices.) This renormalizes the P vertex. 

M - a  1 

i = 0  a ~ G  0 

Each graph G,,~ contains one G graph, one P vertex, at most 16 C 
vertices and at most 12 ~ ( f )  vertices. The only dependence of G,.~ 
on i is in the momentum cutoffs appearing in its kernel. Hence C is a 
finite index set and IG[ depends on G and A(g) but not on K, or Xb. 

The estimate leading to convergence is completed by first using 
the method of combinatoric factors to bound the number of terms in 
the above sum and then bounding the size of each term. 2~, the maximum 
lower cutoff of the P vertex in G~,i, is either 2 or ]v/j where ?dj is the 
upper cutoff of that one component of x~ different from the corresponding 
component in ~c~+ a. This implies that 2~ is independent of cr and is 
monotone non-decreasing in i. Furthermore 2~ can take on any given 
value at most three times. Then 

so that 

[1og2~] - 1 < 3[1og2] - ~ + 3 ~ [log Mj] - a 
i j = l  

=< 3 [log 2] - a + 3 [log M a ] - t ~ (1 + v)- i + 
j = l  

<= K6(M1, v) 

I(Ge*(S))aq(~,ag ) - (Ge*(S))aqt~,,zg)l 

1 

< sup IGI K61og,~i ~ dsl(G,,,ie*(S))dq(~,(~),~g)l 
i , a  0 

< sup K 7 log2i [1G~,il] a,~,~ 
i,O" 

where the constant K 7 depends on almost everything except the tc's. 
(The fact that x~(s) is not quite in the standard form for a momentum 
cutoff is irrelevant as can be seen from the proof of Theorem 2.) We will 
choose 7 later in the proof. 

II~ff~M~IG~,i[ ]Ins. and hence IIG~,iI[t,~,= may now be estimated 
by the methods of [3] Section 5. We divide .~e~MrlG,,~[ into two sub- 
graphs ~ , a G  and Ne,2R where #~,1 includes those ~ vertices that 
contract to G only and ~2,2 includes the rest. (We suppress the #r's, a's, 
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etc. in our notation except when they are needed.) R is the graph 
containing the P, C, and ~ ( f )  vertices. 

If P has four legs contracting to G legs (other than - - )  then choosing 
7 = a/8 

(7) (7) ~,.s II~e~gM~IGj II..s. = ~ , I G  P 

= ~,1 Ge (27) + c~ eea - -  -c~-C~P_a- ~ n.s. 

t (27) + 3~/2 l 
~O(1))1,?~/2 ~e, 1G 3C~/2----3e/2 - ~  P 

3 c ~ / 2 - - - ~  II~.s. 

__< o(1),~/-,/2 ~ G  a ~ _ _ - ~  p 

6 - ~  ItH.s. 
= O(1) 2i -~/2 ll~ff,3 GtlH.s, 

_--< 0(1) 2? ~/2 II Gll x,a,~ • 

The/~:r appears only if that leg is an external leg of G,,~ that is contracted 
by qL ~ 3  contains all the pe vertices in Ne, t plus P viewed as a pe 
vertex (which of course it really is). 

If P has three legs contracting to G then z choosing ;~ < max(f,  t/16) 

O~ --0~ - 0 ~  

H~2~g MrlG~'il Ltn's'= ~'I  G eo: -~  P-Z4:Pe) n.s. 

IIGII~,~,~ - ~  - c ~ P  ~ or 
- - ~  3,1 

2 Most of our estimates on small graphs are either proven in [3] Section 6, or are 

simple extensions of those that are. The estimate on 7 7 is proven in Appendix 2. 

Y 
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<=o(t)2JIIGIII,z,~ 

where we have used _a / / -a - -P- -7  3,1 < 0 ( 1 ) 2 - ;  (provided 3 e - ~ > O ,  

for - ~  --./-~l + 7 < ¼, e < ½) and a similar estimate - P ~ P ~ -  - 
--0~ ~0~ H.S. 

This method is also used to bound P when it has four legs contracting 
to G but one of the G legs is .... . 

-"~" [Hs. tl--ltr~.s.-"~ I - ~ - - - - p ~  _< - ~  p - -  . 

- - 0 ~  - - ~  3,1 

If P has two or fewer legs contracting to G then ~ , 2 R  is precisely a 
P~ graph (in the notation of [3]) with a few factors of p7 thrown in. We 
write 

H~ffgM:'IGJ ftn.s. < IfGLII,~,~II~,2RtlH.s. 

and we estimate the second factor by the same algorithm as used in [3]. 
We use Pc to refer to R with the N~,z vertices, the #~ factors and the 
contractions in cg added in. 

1) Define a "core" subgraph for Pc- If P is a cancelled mass diagram 
this is the core. If P contracts twice to a singie C vertex then P and this C 
vertex form the core. If this is not the case P must contract to four 
different C vertices. Then P plus two of the C vertices form the core. 
We choose the C vertices to maximize first the number of ~4 vertices 
in the core, and then number of internal legs in the core. 

2) Are there any non-core vertices with external legs left in P3 
If not, go to step 3. Otherwise remove one (giving P~'s first, outer C's 
second and inner C's third priority) using 

liB1 n~llH.s. ~ 11/4111~.s. IIH~II~,s 

where i is the number of Hz legs that are internal to Hi//2 and f is the 
number o f / / 2  legs external to HI//2. In our case 3 > i, f >  1 unless 
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Hz = ~( f ) .  If we have removed a / ~  vertex we use 

- a  - a  <O(1) 

- a  1!3,~ 

- ~ - a  <O(1) .  
--0( - - ~  2,2 

If we have removed a C vertex we use 

IlT--M--TllH.s.~O(1)logu~ T<¼ 

I~ 3,1 
__<o(1)u~, 

22  o(1) 
7 < ~ 6 .  

If we have removed a ~ ( f )  vertex we use II--II,.s. ~ 0(0. Now return 
to the beginning of Step 2. 

3) Are there two non-core ~4 vertices that are connected together? 
If not, go to Step 4. If there are, call these two vertices plus any vertices 
that contract only to them/ /2 .  Remove from H2 any ~ ( f )  a n d - - M - -  
vertices using the method of Step 2. This leaves at most three ~4 vertices 
each of which is connected to the other(s). If there are three at least 
one must have external legs. It is removed as in Step 2. Remove a U 
vertex if there is a choice. The remaining cases are bounded by 

',',~7 ~ o(1) ~ < 

711n.s. 

~ '~c  ~ c -~S ____o(1)u~, ~<~0 
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The diagram ~ C - - P e ~  does not arise since this P~ had to have legs 
external to/42. Return to Step 2. 

4) Are there two non-core vertices that are connected together? 
If not, go to Step 5. Otherwise define H z as in Step 3. Again remove any 
45(f) and --M---  vertices, other than the original two vertices. The 
latter are bounded by 

II ~llH.s. ~ II~llH.s, II <11~,3 

< 0(1) logul 

H~M--IIH.s, ~ II--LIH.s. II--M--ilr~.s. 

< 0(1) logui 

II--M--M--IIH.s.  < 0(1) log2 ui 

___< o(1)(logu,) 

M 2~ 7 7 7 
~ H.s. <II~M~IIH's"  ~ 2,2 

=< 0(1) logu i . 

Now return to Step 2. 
5) This leaves only the core, plus some vertices that are fully con- 

tracted to the core. Note that since all the legs left were internal to G,,i 
there are no factors o f /~  involved. We remove all the extra ~ ( f )  and 
- - M - -  vertices. This leaves the following cases: 

a) one or two vertex core: 

II--M--tlH.s. < O(1))v~ -~3 some e3 

II=P=MIIH.s.  ~ I1=P=112,2 II--M--HH.S. 

< O(t) 271/32 logui 

I[~---P=P=[[H.S. ~ 0( t )  ),i- 1/32 
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b) three vertex core: 

l l = P%-M or ~b(f) . . . .  ~/  or q~(f)ll~.s. 

< O(1) log 2 ui [I=P=-IIz,2 

< O(1) log 2 ui 21-1/s 

~ - - C ~  2N.S. 

~ P - - C  
= II tll 

- - P I C  
< 2 = ll--lln.s. I[~---P=P=lln.s. II--C=-C---llH.S. 

< 0(1)log 2 u i 2/- 1/32 . 

All the other three vertex cores are treated in [3] and yield the same 
results. 

Combining all these results together gives us 

sup K7 log2 i I[ a,,ill 1,r,= 

< max {O(1) log2i(log ui) m~ um2e2/-rain(e3' 1/64) 

O(1) 2 -~'/z} with ml, m2 fixed integers. 

< max {O(1) log2i Elog2i]" 211 +~)m2r 

)< 27 min(,3,1/64) 0(1) 2-a/2} 
O(t) 2i- l/2min(e3,1/64,=) 

if we choose y sufficiently small depending on ~3, v, and m2. Note that 
since a < 7/2 this places a restriction on a. ao < 7/2. 

Convergence now follows immediately from the facts that 
2~>2o and 2o~OO as glb{[lkll[t%(k)4=l}-*oo. Q.E.D. 

In view of Theorem 3 we define 

( Ge~(f)) ~, = lim ( Ge~(Y))aq(~,zg) . 

Theorem4. Let 2 > 0 ,  I f l~<oo  and [IGIII,o,:<~ for all a > 0 .  
Then (using a right derivative at 2 = O) 

a) _d" (c, ,*(y)\  NF.(2). The F, are independent of ~: and 
d2" ""~ /aq(~,~g) 

bounded on compact subsets of [0, co). 

d n 

b) lim /G  oe(I)\ exists. 
r-~ 1 - - ~  \ r.. /dq(r , ) ,g)  
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c) (Gee(Y)):. o is C ~ in 2 and 

d" . d" 
d 2" (Gee(f))z" = Jl~ml - - ~  ( G ee(:)) nq("'a°)" 

d) ( G ee(:))x o has an asymptotic expansion at each f le  [0, o~).If 

Gn(fl) = ~ ( G ee(:)) x o 
A = fl 

• d n 

then for each r > 0 there exists a constant R(n, fl, r) such that 

( G eeC:)) z o G m ( f l )  -- , , : o  ~ m. I _-< R(n, fl, r) [ 2 -  ill "+ 1 

for all max(O, fl - r) N 2 <= fl + r. 

Proof. Let i¢,____ ~c b be two momentum cutoffs. (For the proof of a) 
we choose x a -  0.) We construct a sequence of momentum cutoffs 

t£a = /¢0 ~ ~ 1 " "" "~ Nm ~--- RTb 

as in Theorem 3. We again have 

( G eeCf)) aq(Kb,~g) -- ( G ee(f)) aq(~.,zo) 

= - ~ ! ds Ge e(:) V(xi(s), 29 
i = 0 ~ /dqOq(s),~O) 

M - I  I 

i = 0  a ~ O ° 0  

where we have renormatized the P vertex• Note that each P vertex 
has a maximum lower cutoff 2~_= 2. and that the graphs G,,~ depend 
on i only through the momentum cutoffs• Now 

d /c:.,e<:),, d (Gee(Y))dq(~b,~g)- d - 2 " " ~  /~q(~,,~g) 
d2 

= - Z i d s /  d-d G~iee':) ~ 

1 / \ 
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d G, ~ differs from G~ f only in its dependence on 4. The second set 
d2 ' 
of terms above come from differentiating e -v(~'(S)'zg). These terms 
have a second P vertex which, unlike the first, has no lower momentum 
cutoff. We use another C step to perform the renormalization cancella- 
tions for the second P vertex. We now have 

d (Ge~(f))dq(,,~,:~g)_ d (Ge~(:)),~a(,,,,,~g) 
d2 

M - 1  1 

i = 0  "~G 1 0 

Continuing in this manner 

d" 
d2" ( Ge~(:))dq(~b'~°) 

M - I  

_ d" / ~ o f f ) ( f )  \ 

i = 0  e~Cr~O 

Due to our renormalization procedure each graph Ge,i contains at 
most logarithmic divergences and it contains one renormalized P 
vertex with maximum lower cutoff at 2i. We can bound the sum using 
precisely the same argument as in Theorem 3. The only difference 
is that we now have (at most) n P subgraphs instead of one. The fact 
that none of the P vertices, except the first, have lower cutoffs and hence 
do not contribute further convergence factors is irrelevant. All we do is 
choose y sufficiently small (depending on n) that the first P vertex provides 
enough convergence for all the P subgraphs. (Since ~ < 7/2 we need to be 
able to make a small as well.) 

This gives 

d'__/G.¢(S)\ d" (Gea,(S))dq(~.,.~e) 

for some ~ > 0 and some ultraviolet cutoff independent function F,(2). 
Parts a)-c) of our theorem follow. Part d) follows from Part a) and 
Taylor's theorem: 

f ( 2 ) -  ,~=0 ~ f('°(fi----~) (2-fl)m ~. i (2-t)" f('+l)(t)dt" 

Corollary4.1. The results of Theorem4 apply to 
ZS,(1, 2g;f~ . . . .  ,f,). 

Q.E.D. 

Z(1, 20) and 
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Corollary 4.2. The results of Theorem4 apply to S,(1,4g;fl, ...,f,) 
provided we restrict 4 to the interval [0, 2o(A(9))) (i.e. to the interval on 
which Z(1, Lg) is known to be nonzero). 

C(t¢, 2g ; f )  = Z -  1(re, 4g) <ei~(f)>aq(~z,.~a). 
( f E  JR(IR3)) is the characteristic function of the doubly cutoff measure. 
If 2 is small the ultraviolet limit 

C(1 ,2g; f )  = lim C(~c, 4g;f)  

is well-defined and we have: 

Theorem 5. If 0 < 2 _< 2o (A(g)), C(1, 2g; f )  is the characteristic function 
of a unique measure dq(1, 29) on Y~OR3). Furthermore 

F dq(l, 4g) = tim Z -  1(~, 29 ) ~ F dq(~c, 29) 

for any F in the sub C*-aIgebra of C(SP~(IR3)) generated by 
{eie(z) l f e S~R(IR3)}. Also 

s .0 ,  4g; A ... .  ,L) = <~(A). . .  ~(f.)>~..~o~. 

Proof. C(1, 49; ' )  is the limit of a sequence of characteristic functions 
so that it is normalized, C(1,4g;0)= 1, and positive, 

Z ~ C ( l , 2 g ; f i - f , ) > O  
lNi,j<=M 

V fisSCR(IR3), ~i~¢,  

C(1, 2g ; f )  is also continuous in f :  

[C(1, 4g;f2 ) - C(1, 2g;f01 

= lim Z -  l(~c, 2g)l<e i~(y2) - ei~(Y~)>dq(~,Zg)l 
~¢--+ 1. 

=l imZ-~(~ ,4g)  ds ds "° ~'~,~o~ 

i ¢ ~ eiq~(f,)\ [ --- lira Z -  l(x' 4g) ~ - ~ l  ds(~( f2 -v l )  /aq(~,.~o)] 

sup K9(4, g, I f J;, 6) ~[l!mZ-~(k,4g)  I f~-f~l ,  o _ ~  

~ 0  as f2 -~f l  in ~R(IR3). 

By the Minlos theorem there is a unique measure dq(t, 49) on J~(IR 3) 
such that 

C(1, 2g; f )  = <eiOCf)>aq(i,zo). 
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Now by linearity and the definition of C(1, 29; f )  

S Hdq(1, 29) = lim Z -  1 ~ Hdq(x, 2g) 
K-ol  

for any H in the *-algebra generated by {e~e(s)}. However 

l(. Fdq(t,  2g) - Z -  1 ~ Fdq(~, )~g)l 

2 tiE - H]I o~ + ]~ Hdq(1, 2g) - Z -~ ~ HdqOc, 2g)[ 

and for any e > 0  we can find an H with ][F-HI[~<~.  Then we can 
choose n close enough to 1 that the second term is bounded by e/3. 
This completes the proof of the second statement of the theorem. 

The final statement of the theorem follows from the fact that both 
C(1,2g;pf )  and z~i~f ) , ,  \~ /dq(i,~) are analytic in #. See FrOhlich [1] 
for arguments along these lines. 

Remark2. From Remark 1 we see that forfeoY~(lR 2) ~( f6 ( . - t o ) )  is 
defined almost everywhere on 5v~(lR 3) with respect to the measure 
dq(1, 2g). These functions generate a sharp time to subspace of Lz(SP~(IR3), 
dq(l, 2g)). Alternatively, applying the argument of Theorem 5 to the 
functional 

f ~ C ( 1 ,  2g; j ' 6 ( . -  to)) 

on 5Ya(tR 2) shows that 

S,(t, 2g; f x6( . -  to),..., f ,6(. - to) ) 

is given by a measure dq'(to, 2g) on 5e~(IRZ). Then LZ(~9°i~(IR2 ), dq'(to, 2g)) 
is isomorphic to the sharp time t o subspace in the natural way. 

Proof of Theorem 2. Theorem 2 is proven in the same manner as the 
estimate ](e-V~'zo))dqo [ ~ e °~A~°)) was proven in [3]. We will just give 
the modifications that must be made. 

First we write 

( G'I G'2) aq(~,za) = N N [ I  N(A) N(a) [1G~ [11,a~,~ [J G~ [] 2,~2,~ 
A 

x (GI Ge)dq(,,,zo) 

where now IIGIIII,~,==N -N and ]tG2H2,oz,==[IN(A) -N(A). We will 
A 

show that for this new G~, G 2 

[( Gx G2)aq(~:,~o)l < 1 • e K2A(°) . 

When the inductive expansion is applied to (G~G2 e-v(~'z°)) the 
G~ and G2 vertices are, to as large an extent as possible, ignored. They 
are not included in any vertex count (such as that used to terminate 
the Pr -- Cr expansion or to determine the cube size in the low momentum 
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expansion). With one exception they remain completely passive (initiate 
no action). The exception is the low momentum contraction operation. 
We perform this on the G1 and G 2 vertices after all P 1 -  C1 vertices 
have had all their low momentum legs contracted. In the r th inductive 
step we use Mr_~ as the boundary momentum for G2 legs and 
M r _ 2 ( M _ I ~ M o = O )  for the G t legs. This means that when a GI(Gz) 
leg initiates a contraction it can only contract to G~(G1 or G2) legs. 

We must now" make the two estimates that yield Theorem 2. The 
first, Lemma 4.1 (replacing Theorem4.1 of [3]) estimates the number 
of terms in the expansion. The second, Lemma 5.1 (replacing [3] 
Theorem 5.t) bounds the size of each term. 

Lemma4.1. The combinatoric bounds 9iven in [3] Theorem4.1 
apply equally well to our case provided we include in addition a factor of 

i) KloN(A)de(A,  A') 4 2 6~ for each external G2 le9 localized in A' 
that contracts to a vertex localized in A 

ii) KloN2S~ for each (external) G 1 leg. 
Here de(A,A ' )=max (1, Euclidean distance between A and A'). 

Gt vertices are not considered to have a localization so that a line joinin9 
a Gt and a Gz vertex does not have any distance factor de(A, A') associated 
with it. Also since only external Gi leos enter we will use the expression 
Gi Ie9 to apply only to external legs. 

Proof. There are two operations in the inductive expansion in 
which the presence of Gi legs leads to an increased number Of terms. 
The first occurs when a Pr, C~ or W vertex initiates a contraction. The 
second is the application of the low momentum contraction scheme to the 
G~ vertices. 

(a) Suppose that at some stage of the expansion we have a term T. 
Suppose a leg in A introduced in the r th inductive step initiates a contrac- 
tion. By. the nature of the expansion it can contract only to the exponent 
or to a free leg in its own level or in a lower level. (We organize the vertices 
into levels by the ordering G~ vertices, G2 vertices, / ' 1 -  Ct vertices, 
W1 vertices, P2 - C: vertices . . . .  ) Hence 

creA~ 1 <_r'<r A" e ~ ,  creA(r ' ,A")  

+ Y Y 2 
A ' z ~  n cr~G2(A',n) 

+ Z Z 

The Te(a) are terms arising from contractions to the exponent. The 
Tr,,~,(~r) are terms arising from contractions to vertices of the r 'th inductive 
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step that are localized in the cube A" of the r ''h step's space-time cover 
~r,. (Actually the situation is somewhat more complicated for Wr, 
vertices but that does not concern us here.) The TI,.(a)(T2,A,,(a)) arise 
from contractions to n th generation G1 legs (G 2 legs localized in A'). 
By n th generation we mean the following. We call the original Gi legs 
that appear in (G1 G2)dq(~.~o)O th generation legs. Just before the first low 
momentum expansion there is a squaring operation which replaces 
the 0 tu generation graph by itself plus a duplicate image, which we call 
the 1 ~t generation graph. Gl(n)(Crz(A', n)) is the set of free n th generation 
G1 legs (G2 legs in A'). 

The Te(a) and T,,A,,(a ) appear independently of G~ and Gz and in 
[3] Glimm and Jaffe found Ce(a) and c~,j,,(a) satisfying 

Eeel(, )+ Y, 
t~ r '  ZV' (7 

ff we set c2.a,..(a ) = 4Dd~(A, A') 4 2 "+ l lCrz(A', n)l 

and 

where 

we get 

cl..(a) = 4 2 "+ 11Gl(n)l 

D = sup ~ de(A, A') -4 < oo 
A A ' ~  

r '~Zl",ff  

A" sN n=O ae6;a(A',n) 

+~,=0 ~G~(.) ~- c[),(a)}suplc(a)T(a)l 

<={l+(4D)-l(~de(A,A')-4)(~=o2-(n+~) ) 

oO 

< 3_3 sup Ic(a) T(a)l 
= 4  
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(The extra 1/4 will be used for the ~(f )  legs in the proof of Corollary 1.2.) 
Now 

Ic2.~,..(~r)l < 49 de(A, A')'* 2 ~+ 12m~O,.- 1)N(A, ) 

since [G2(A', n)[ < N(A ' )  2 m"*(°'"- 1) 

< 4D de(A, A')'* 22"+ 1N(A') 

/8D de(A, A') 4 Mr,_ 1N(A')  n > 2 

<~ (c~ [3], Eq. 4.9) 
- [27D de(A , A )4 N ( A  ) n < 2 .  

Any leg in G2(A', n) was free at the time of its introduction in the n th 
inductive step. This implies that it must have been the image of a high 
momentum leg from the ( n -  1) st inductive step. This means that its 
low momentum cutoff 2. is at least M . _  2 (or M~_ 3 for G 1 legs). Hence 

implies 

Similarly 

_ ~ r l / ¢ 1 + ~ ) >  ~/r~/2 ( n > 2 )  Mn-  2 -- ,~'~'n- 1 "--- ""n - 1 

Ic2,~, .(a)t ~ 27Dde(A, A') 4 N ( A ' )  22~ 

tCl,,(O')l =< 29 N )~ 4~ . 

To keep track of these factors we assign them to the leg to which the 
contraction was made. 

(b) Our first task in the low momentum contraction operation 
is to split each uncontracted leg into high and low momentum parts. 

/(leg = K(0 )K(1 )K(2 )  

= + + + 

= ~c~°)~c(cl)K~ 2) (low momentum part) 

+ 7 other terms (high momentum part). 

Hence we require a combinatoric factor of 8 and we assign it to the leg 
we split. If a leg goes through j such splittings it acquires a total factor 
of 8 j. Since the leg was still uncontracted when it underwent its last 
splitting in the jth inductive step it must have been a high momentum 
leg of the low momentum contraction operation of the ( j -  ][)st inductive 
step. Then its low momentum cutoff must be at least Mj_ 3 so that 

29 j < 3 
- -  = 4 e  4-e 8J<--23J< M~a_ < M j _ a < 2  j > 4 .  



The 2q~ Field Theory in a Finite Volume 1t3 

After splitting the legs into high and low momentum parts, we 
contract up all the low momentum legs. Since low momentum G2 (G1) 
legs can only contract to G2 or G1 (G1) legs the analysis of (a) part shows 
that assigning 27Dde(A, A') 4 N(A') 22~ (29 N24") to contractee G z (G1) legs 
is sufficient. 

Combining the results of (a) and (b) completes the proof of the lemma. 
Q.E.D. 

Lemma 5.1. lT(a)l is bounded above by a product of factors given by 
those of [3] and 

llGIIII,~I, ~ per G 1 graph 

1[G2112,~2, ~ per G2 graph 

de(A, A') -a  per line joining a A' G: vertex and 
a A G2, P, C or W vertex 

KI1K ? I 2 -~/4 per G i leg. 

Proof. We will focus our attention on the Gi vertices and legs. 
In fact we will ignore almost everything else. This is done solely to 
bring the notation within the realm of the imaginable, 

T(a) is a vacuum graph so that it can be evaluated directly. After 
integrating out the delta functions arising from contractions we arrive at 

T(a) = ~ 1I d3 ke 1-[ G1 ((k)p) xp((k)p) 
lines G1 

d graphs 
P 

G2 graphs P,C,W 
q vertices 

Here the ~:(k) are momentum cutoffs that were introduced into the G~ 
graphs during the low momentum contraction operation. They were 
not in the original G~ graphs. (k)p and (k)~ are the sets of momenta 
appropriate to the Gi graphs involved. In particular a contraction 
within a Gi graph (these may have been introduced in the inductive 
expansion) is manifest by two of the momenta in (k)p (or (k)q) being 
negatives of each other. 

In order to get a handle on the distance factors we translate each G2 
vertex to the origin: 

T = I 1-[ dke e ± ,~,.k, I-[ G~ ((k)p) xp((k)p)I-I 3-'G2((k)q) xq((k)q) 
d 

- I  . . . .  
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re = r ~ -  rv2 is the contraction vector for : i.e. the vector between the 
centres of the cubes on which v 1 and v2 are located. We define r v = 0 
for G 1 vertices. 

Writing I-I 2 for a product over all lines involving G2 legs but not 
G1 legs and ]-I z'l for a product over all lines that in addition satisfy 
d,(A, A') > 1 we have 

~e Z d~tT <= ~2,1 d~,T 

02'al r~l 4 T 

<= ~ ~ dk:e +-ir:'ke E 2'1v t I,,{"(0)2~ .-k" "~'~'(1) 2 .-1- '¢~'(2)2] 2! 

: 

2 
172 ~- E c32/~k(~ )2" If we now expand the differential operators and apply 

i=0  
them via the product rule we get a sum of at most II2'1(3244) terms. 
[(V2) 2 is a sum of 32 fourth order monomial differential operators 
and each ~/ak~ ~) can find a k~ ~) to act on at most in two JG2's  (or twice 
in the same Y-G2) and at most in two x's (or twice in the same ~).] 
Furthermore because r/was chosen to be a C~ function there is a constant 

such that for any differential operator arising as above 

[D ~c~((k)q)l ~ ~lql ~q((k)q) 

where lql is the number of legs in (k)q and gq is the characteristic function 
of the support of xq. (This follows from [3] Eq. 5.2.9 because In2[ < 4.) 
Thus far we have 

H2 d~:T <= sup ~ ]V[ dk e I-[ IG~G[ H (3244~1qI ~q 
{Dq}  v a p q 

x IDq~-'G2I II ... 

where Dq is a monomial differential operator that is at most fourth 
order in each k: of 17 2'1. 
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We now use the method of decomposing big graphs to estimate 
the above mess. To start we use subgraphs that consist of 

1) a single Gi graph, 
2) a single W vertex, 
3) a P vertex and the C vertices it generated. 
With this decomposition there are only two types of subgraphs that 

contain ultraviolet divergences: 

pe(~p) and PD(~-P-- or ~---P ~---Pe). 

(The second type of PD subgraph appears in later decompositions.) 
If the leading vertex in a P~ or Po subgraph has an initial leg that con- 
tracts to a P or C vertex the divergent subgraph may be treated as in 
[3]. In particular we hook any such /~ subgraph onto the nearest P 
or W subgraph to which it contracts. However if all the initial legs 
contract to Gi subgraphs we must get the compensating convergence 
from the G i subgraph. 

a) pe: If one of the G legs involved is of the f o r m - -  we treat it as a C 
vertex thus converting our Pe subgraph into a PD subgraph 

wo first tra s o   a tor.  

each of the P~ legs from the Gi leg to which it contracts. In addition we 
take a factor of 2 -mi"O1'~2)/4 for each P~ leg. In diagrams 

lOi--P~l < ]Gi ~+°'/4 -" 0(1) }-min&[4 P~I. 

This ,~-mi, O,/4 provides the ),-~ (if P~ is P0 or the ~i [AI ~1 (if P~ is Pr, r > t) 
for [3] Theorem 5.1. The latter case follows from 

= A~I/(1 + v) 2 > Mt(,~ ) = ~,~ ¢(~)+ i 

>=IA1-1/(2+2~) ([3] Eq. 3.2.1). 

We append the P~ vertex to one of the G~ subgraphs to which it contracts. 
b) P/~: We transfer p-"  from the G~ vertices to the initial legs of the 

leading vertex of the PD subgraph and use - e - ~ . P - -  < 0 ( 1 ) 2  -~. 
--~/ 3,1 

This gives all the convergence we need. 
We now have 

Y[e 2 d:eT < O  i[~:(K;1M~'+o~/4)cg"IGi'~Pt [[n.s. 

x sup 1~ (3244~--) Iq} II~'ff(gi- aM~+a'/') cgq-ffqlOqJG21 ll,.s, l~ "'" 
{D~} q P,C,W 
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where cgp and cgq give the contractions introduced into the G i by the 
expansion. Finally, since ~,/4 <, ~ ,,~,/4 -v --:- -~ 12~,v on the support of ~v 

legs 

< 1--[ ll~ffCgvM~l/z+~tal"Yp[ Iln.s, 
P 

• l-I s u p  It~ec~,tM6z/2 +~[DqJGz[-gq l},.s. 
q Dq 

< l ~  JIG1N1,~1,~ Y[ tla211z,o=,~ 
P q 

where Kll=KIz3~-44~,6~/2+~<6i. Note that since we want the 
factors of 2 -~'/4 even on legs contracted by (gp,~ we must operate with 
M ~' before applying cgv,q. Q.E,D. 

Theorem 2 follows directly from Lemmas 4.t and 5.1 simply by 
choosing K 1 > KIoK 11 and e < 6i/32. Q.E.D. 

Proof of Corollary 2.2. We expand e e(y) in a power series and improve 
the estimates in Theorem 2 sufficiently to give the convergence of 

~ ~. (G1G2~(f)")aq~,:,~o) . 

We first write 

(G1G2 ~(f )" )a ,  = n"lf['~" ( G1 G: (49(f) ~"\ 

associating with each ~ ( f )  leg a factor of (nlfl~)-1. Now go through 
the inductive expansion with the following modifications• 

1) Treat the ~b(f) vertices on a level between the G2 vertices and the 
P l -  C~ vertices. In other words in the low momentum contraction 
operation use  J~lr_l(Mr_2, Mr_3) as the boundary momentum for 
~b(f) (G2, GO legs. This means K10 will be larger and 2s'(26~) will be 
replacedby 216~(212~) in Lemma4.1 but this is of no consequence. 

2) Suppose two ~ ( f )  vertices contract together. As in Lemma4.1 
this requires a combinatoric factor of 27n22". Instead of assigning 
this all to the contractee we assign 2V/Znl/'-2 ~ to each ~ ( f )  vertex 
involved. 

3) Suppose a ~b(f) and a G~ vertex contract. Since the ~ ( f )  vertices are 
in a higher level than the G~ vertices the q~(f) vertex must have initiated 
the contraction. Hence the ~ ( f )  vertex does not have any combinatoric 
factor associated with it. 

4) Finally suppose a ~ ( f )  and a P, C or Wvertex contract. We then 
assign a factor of (4K3 I f  I;)-t (as well as the usual combinatoric factor) 
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to the ~ ( f )  vertex and a compensating factor of (4Kalfl  ;) to the P, C 
or W vertex. As far as the P, C, and W vertex is concerned 4Kalfl'~ 
is just another factor of O(1) and its only effect is to introduce a dependence 
on tf l ;  into K~. 

5) Consider the squaring operation 

IR(q)l _-<½[(- ~ + (R(q) R(q)]. 

This takes a term T with M ~ ( f )  vertices into a sum of two terms T~ 
and Tz. 7"1 has no ~ ( f )  vertices but is multiplied by ( -  1. T2 has 2M ~ ( f )  
vertices and is multiplied by ~. Since we are using the ~ ( f )  vertices to 
carry our convergence factors, T~ appears to have inadequate con- 
vergence while Tz has more than we need• We use ~ to even things up. 
If M = 0 we use ( = its value in [3] = ~0 (they call it 6). If M 4= 0 we use 

= {max [n -~, (4K3lfl;)-  1]}-M ~0 = ~lM~O • 

We keep track of the product of ~ ' s  accumulated by each term separately 
and do not assign it to any vertex. We will show by induction on the 
number of squarings that the accumulated product is ~-M+,. This 
is certainly true if the term has gone through no squarings since then 
M = n. Suppose we have term T with M = M T and accumulated product 

• ~"--MT+n~MT, (~-MT+, Then the accumulated product for T 1 is ~1 1 =~]  
=~-~t~ +, while that for T 2 is 

= 2M +. = +.. 

With all the above modifications 

[c(a) T(a)l < contributions from G i, P, C, and W vertices 

~(f) 
vertices 

~Klon~)L 3~ 
(n | 1  

[ Kxon;d (4Kalfl;) 
K l l K  ~ 12-6/41fl6 

__<( )¢1 YI 
v~£)es 4Kalf l ; ) -  

__<( ) 

Therefore 
I< G1G2~(f)">aq(~,zo)l <- ( ) n"lf}'~" ~"1 

<= ( ) [n"/2[f['~ " + 4 - "K  3"n"] 
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and since n" -_ K~ n ! 

]<Gt G2e¢('c)> dq(x, 2g)l -<_ ( ) ~ [(n t)- ~ (K~lf[;)" + 4-"3.  
rt=0 

The sum over n converges to some function of I f  I; which we again 
absorb in K 5. Q.E.D. 

Appendix 1 

An alternative, more natural translation operator y-1 would multiply 
w v by I-I eikt'r~ thereby translating Av to A ~ - r  v, i.e. the origin. 

f ~ L(v) 

However to use W1 in tl" Ib2 we must also replace [.[ by [. [1. l.i1 takes the 
absolute value of the w~'s. In other words, it takes the absolute value of 
the kernel before rather than after the internal contractions are made. 
If we use [[- 1 []i,a,~ to represent the norms using ].l I and 3 -1 we have 

IIGlli,~,= < IIG[I 1 ~--- i,~,ct 

(i) (i) IIGlll,~,~ < I[GII2,~,~ • 

The l[" 111 norms are the norms that are generally used in practice. 

Appendix 2 

We have used many estimates on one and two vertex graphs in 
the proofs of theorems two, three and four. They are mostly simple 
extensions of the estimates of [-3] Section 6. One, however, is slightly 
more difficult than usual and we give its proof here. 

2~ 

Theorem 6. 7 @ Y  H.S. ~ - ~ u 6 y  I f  Y<~ 1/40 where u is the smallest 

upper cutoff of any of the three internal lines. 

Proof. 

1 7 ~  F(kl + k2 + k3 + k4)F(-  k2 - k3 - k4. + ks) "l __< O(1 dk2 dk3 dk4 2 - 2 '  

where #i = p(ki). 
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If we use k 2, k 3 and P = k2 + ka + k~ as integration variables then 

d k 2  d k 3  # 2  2 + 2 " ;#3  2 + 2.¢ ],1 - 2 + 2 y(p _ k s  _ k3 ) 

<O(1)~dk2#22+E~#-l+4r(P-k2) if 7<  1/4. 

We split the k s integration into three regions: 

I: tk2t N½1PI tP -- kl ~ ½ IPI 
[PI/2 

_-__O(1)#-l+'v(P) ~ #~2+2~dk2 
I 0 

< 0(1) # -  1 +4~(p) pl + 2~(p) 

= 0( t )  #6y(p). 

II:½[Pl<=lk2[N2[Pt IP-k2]<-_IP[+lk2I<-_3IPI 

S <0(1)#-2+2~(P)  ~ ~-l+4Y(P-kz)dk2 
II IP-  k2l -< 3 IP[ 

< 0(1) ~-s+ s,(p) ~s +4~(p) 

= 0 ( t )  # 6 , ( p ) .  

III: 21Pl < Ikel I P -  kl ~ 1k21/2 

<=0(1)~#-3+6'dk2 
III 

< O ( t ) u  6v if 6 7 < t .  

Performing the P integration gives (for some ~1 > O) 

IC) I< 0(1) u 6 ~'F(k 1 + ks) 1- ~' (#1Ps)- 1+ 

+ 0(1) (#1#5)- 1 +v ~ dPF(kl + 1:') F(k 5 - P) #(p)6~ 

where we have used [3] Proposition 6.1.5a) to bound the first integral. 

#(p)2 = 1 + p(O)2 + p(1)2 + p(Z)2 

=< (1 + p(O)~) (1 + p(1):) (1 + P (2)2) 

= F -  z (p) 

.'./2(P) 6~ ~ F-6r(P) .  



120 J. Feldman 

Using a simple extension of [3] Corollary 6. t.7 with ~1 = a2 = - 3 y  and 
½ > e 2 > t + 3 y  

S dP F(kl + t') F -  6 ~(p) F(k5 - P) =< O(1) F 1 -~2(k~ + ks) lq  F -  3 ~(k,) 
i 

0(1)  F 1 -e2(k 1 + k5)/19~(kl)/A9 r(ks) 

since F -  2(k) = (1 + k (°)z) (1 + k m2) (1 + k (2~z) 

< ~(k) z ~(k) 2 ~(k) 2 __< ~6(k). 

. .  I(S)] =< 0(1)u6~F(kl + ks) 1 -~  (#ll~s) -1 +~ 

+ 0(1) F(k  t + ks) 1 - ~  (#1 #5)- 1 + 10~, 

_-< 0(1) u6rF(kl  + ks) 1 -"~ (/h #5)- 1 + loy 

112 
_-< 0(1) u 12r ~ d k l d k  s F(k l  + ks) z -  z~ 

"*" ~- ~) H.S. ( / /1/~5) 2 - 2 0 7  

< 0 ( 1 ) u  12~ if 7 <  1/40. Q.E.D. 

Corollary 6.1. I ~ - - - 7  < O(1)U 3L 
113,1 

I would like to thank Professor Arthur M. Jaffe for suggesting this problem and 
Professors Jaffe and Konrad Osterwalder for the many discussions I have had with them. 
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