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Abstract. In ordinary quantum mechanics for finite systems, the time evolution induced 
p2 

by Hamiltonians of the form H = - ~ -  + V(Q) is studied from the point of view of *-auto- 

morphisms of the CCR C*-algebra 5 (see Ref. [ 1, 2]). It is proved that those Hamiltonians 
do not induce *-automorphisms of this algebra in the cases: a) V~ A and b) V~ E°(IR, dx) 
c~Ll(~,, dx), except when the potential is trivial. 

I. Introduction 

Consider the Hilbert space 9V-~L20R n, dx") of square integrable 
functions on 1W. For notational convenience we restrict ourselves to the 
case n = t. The general case is a trivial extension. 

Define the Schr/Sdinger position and momentum operators respec- 
tively by: for ~b e ~ ,  x E IR. 

(Q4') (x) = x 

(Pq~) (x) = - -  - -  ~b(x) ; (h = 1). 
i 6x 

They satisfy the commutation relations [Q,p]c=i. Denote 5p,q 
=exp i (pQ+qP) ;  p,q~lR. Form the *-algebra A, generated by the 
unitary operators fir, q on J f  by taking the finite linear combinations of 
them, the *-operation is defined by (6p, q)* = 6_e, _q and the product rule 
is given by 

i _ qp,)}. 
CSp,q•p,q, = 6p+p,q+q, exp [ -  ~ (pq' 

The operator norm closure A- of A is the CCR C*-algebra, realized as a 
concrete C*-algebra in ~ ( ~ )  (all bounded operators on ~ ) .  It is 
equivalent with the one considered in Refs. [1] and [2]. We take this 
algebra as the basic C*-algebra for an algebraic formulation of quantum 
mechanics for finite systems. 
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In this work we are concerned with the time-evolution as a *-auto- 
morphism of the algebra of observables. This point of view was mostly 
accepted as well in the algebraic formulation of field theory [3] as in the 
algebraic formulation of equilibrium statistical mechanics [4]. 

It has been proved to hold for spin systems for a large class of poten- 
tials [5]. We study if this property holds for ordinary quantum mechanics. 
Of course the choice of C*-algebra of observables is very important. We 
take the smallest C*-algebra A containing the Weyl operators (see [1]). 
This is not only mathematically interesting, but also the suitable C*- 
algebra to introduce plane wave states in quantum mechanics (see 
Refs. [6] and [7]). 

We restrict ourselves to automorphisms induced by quantum 
p2 

mechanical Hamiltonians of the form H = ~ + V(Q) where P and Q 

are the canonical variables and prove that they never induce *-auto- 
morphisms of the C*-algebra A- except when the potential is trivial, 
see Theorems II.5 and II.6 below. 

II. Hamiltonians and Time Automorphisms 

The quantum mechanical Hamiltonian H;. is supposed to be given by 

p2 

(the mass is put equal to one). V(Q) is the potential satisfying: 

V =  V* 

(V(Q)¢)(x)= V(x)4~(x); ebbS, x ~  

suplV(x)]< oo, hence Vs~(~f ' ) .  

As the momentum operator P is self-adjoint, also Ha is self-adjoint and 
exp(iHxt), t e lR, is a unitary operator on ~ .  Furthermore denote 

c~{(A) = exp(itH~)A exp - (itH~),. A ~ N(af)  

(c~,a), is a one-parameter *-automorphism group of ~(a4¢). The main 
result of this work is the answer to the question: is (c~) t restricted to the 
C*-algebra J a *-automorphism group of A? 

First we prove a few Lemma's; remark that (e°)t is a *-automorphism 
group of 3, because 
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This *-automorphism group is not strongly continuous with respect to 
the parameter t, as is well known, however we have the following con- 
tinuity property. 

LennnaII.1. For all A ~ ( J / f ) ,  the map t ~ ° ( A )  is ultrastrongly 
continuous. 

it p2 
Proof. Let U ° = exp ~ then for q~ ~ 

[[ a°(A) dp - a°o(A) qb [I 

-< [I U° A U° t cp - U° A U°to~bH + II U ° a u° ,o ~ - U° A U°to~l] 

< Ilail [Iu°,q5 - V°toqSIt + II v °~v  - u°~ , l l  

where ~v=AU°_toC~. By the strong continuity of t ~ U  °, the strong 
continuity of the map t ~kt°(A) follows. Because [l~°(a)ll : ]IAII we have 
also the ultrastrong continuity. Q.E.D. 

Lemma II.2. For all A • ~ ( ~ ) ,  

~2(A)=~°(A)+ Z (iX)" . I . I  dSl.., ds. 
n>= 1 O<s~ < ... < s . < t  

[a° (V) . . . .  [a° (V), c~°(A)] . . . ] ;  t=>0 

where the series and the integrals are in the uItrastron9 sense. An analogous 
series expansion exists for t < O. 

Proof. The existence of the integrals in the right hand side of the 
equality is garantueed by Lemma IIA. The rest of the proof is a matter 
of verification. Q.E.D. 

Lemma II.3. With the notations of above, if (azt ),~, maps X into itself, 
i.e. ~" A ~ A for all real 2, then for all A • Z and t • ltL and all t • IR, there 
exists an element B ~ A such that 

t 
B = i .(ds[a°(V), ct°(A)] 

0 

where again the integral is taken in the ultrastrong sense. 

Proof. From Lemma II.2 for all ~b • ~ :  
t 

{ ~  (oc,(A,-o~°(A),-i  !ds[o~°(V,, ~x°(A)]} q9 

~---i ~ (iX) n - 1  l ' ' "  ,f d S l  "'" dSn  

n_>_2 O__<Sl= < ,.. =<sn<t 

[a°~(V), ... [a°,(V), a°(A)] ...] 
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o r  

and 

t 

l (a#(A)--a°(A))+--i ! ds[c~°(V),a°(A)](# 

<211Afl IlrI[ (exp(2lfAll II VII 2 ) -  l)Ilq~ll 

1 2  t sup - -  (a~(A)- a°(A))¢ - i S ds[a°(V) , a°(A)] q9 
, ~ e  IIq~lL o 

< 2LIA]] ]1 VII (exp(2 JtA]I [I VII 2) - 1) (*) 

a~(A) e A'for all A ~ A-, and 2 =~ 0, t e IR, then also 1 (cctZ(A) _ cqo (A)) As 

and together with (,) we get 
• 1 

~lmoo ~- (at~(A) - a°(A)) = S 

exists as an element of A-, moreover  

t 

B--  i .(ds[a°(V), c¢°(A)]. Q.E.D. 
O 

In the following L e m m a  a characterization of the elements of the C*- 
algebra A- is given: 

Lemma II.4. Each element A of J can be written in the form 

A = ~ #(p, q)bp, q 
P,q  

where/~(p, q) = coo(6_v _qA); 0% is the central state [1] on A, defined by 

COo(6pq) = 0 !f q2 + p2 ~_ 0 

= 1  !f q e + p a = 0 .  

The convergence is in the 12-sence. 

Proof. Let no, ~0 ,  f20 be respectively the cyclic representation, 
representation space and cyclic vector induced by the central state coo- 
Consider the map  

q~" A e A-~Zco(A) f2 o e X/f o . 

IAs the state co o is faithful [1], the map  q9 is a bijection and as the set 
{TrO(bp,q)O o [p, q e R} is an or thonormal  basis of fft~o we have 

~o(A)Oo = ~ (~o(~,~)Oo, ~o(A)Oo) ~o(~,~)~2o 
P,q  

= ~ coo(&~,-~A) rCo(6v,~)Oo 
P,q  

hence the L e m m a  follows. Q.E.D. 
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Denote ~ 2  = H ® ~ .  The following map rc of A-into ~(~t~ 2) extends 
to a *-representation of A" ([ 1], Proposition 3.4): 

~ ( ~ p , q ) = ~  q @ 5  . ~ .  (1) 
vY'v~ v~'v5 

For any pair of elements v2, q5 e~/f such that ]I~Pl] = 11(/511 = 1, consider the 
vector state co0,to defined by 

co+,~(x) = (4) @ ~', n(x)  ¢ @~), x e Z .  (2) 

As the map 

is continuous, the state co~,,p is a Weyl state of the canonical commutation 
relations. By yon Neumann's uniqueness theorem [8], the representation 
rco,t~ = ~ induced by the state coo,t0 is a direct sum of copies of the SchrS- 
dinger representation. Hence the map 

X e A'+(u(Y)q5 ®~p, u(X) ~b ® ~) 

for all Ye A" is ultrastrongly continuous ([9], p. 54), and n can be con- 
tinuously extended to the ultrastrong closure ~ (W)  of ] .  This extension 
is used in the proof of the following main Theorems. 

Theorem II.5. I f  the potential V belongs to the algebra A, then for all 
real 2 ~= 0 and real t, the *-automorphism c~{ of ~(]: )  is not a *-auto- 
morphism of the C *-subalgebra A, except Jbr V a multiple of the unity 
operator. 

Proof. Suppose that c~t ~ is a *-automorphism of Athen by Lemma II.3 
there exists an element B of the algebra A" such that 

t 
B = i . [  ds[c~°(V), 6pq], (3) 

O 

where the integral is taken in the ultrastrong sense. 
The essential part of the proof consists in showing that B = 0 in- 

dependent of the choice of t, p and q. 
In that case, it follows that 

for all, t, p, and q; this means that V commutes with all elements of A- 
and hence with ~ ( ~ ) .  It follows that V is a multiple of the unity operator, 
and the theorem is proved. 
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Now we proceed in proving that B--0. 
Apply the representation ~z of ~(J~) constructed above to the 

equality (3): 

~(B)=Tz(i i ds[o*°(l/),~Sp,~] ) • 

1 
Perform the substitution lp = q5 = , -~- )~ .  in formula (2); X. is the 

characteristic function of the interval [ -  n, n]. Formula (2) becomes 

%°,z.(&po,-qo B) 

Because of the ultra strong continuity of rc and the integral 

c°x,,,x,~(F)- po, -qo B) 

,( , ) = ~ ~(apo,~o) z .®z . ,  i .f ds[~(~°=(V), ~(ap,~))] z . e z .  
o 

As V e A-, by Lemma II.4 the potential is of the form 

v = ~ ~(k) a~,o 
k 

and by an explicit calculation we get: 

(Z)X,~, X,~(~- po , -qo B)  

t 

= - 2 .[ ds E #(k) sin 2 (ps - q)k 
o k 

i 
• exp ~- [po(ks + q) - qo(k + p)] 

1 
2n (Zn' (~kq~22-P°y ks+q-q°Zn] VI / 

1 
2 .  .o, 

Using the fact that 

lira 2~n-(Z.,6p, q)~,3=0 for p4:0 
n-¢- O9 

=1 for p = 0  
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we get 

limcoz,,z,(~_po_ooB)=0 foral l  Po, qo. (4) 

Again, as B s A-, by Lemma II.4, B is of the form 

B = E fl(P, q)fp, q 
P,q 

and from (4) it follows that fl(p, q) = 0 for all p, q e R, hence B = 0. Q.E.D. 
Next we prove an other theorem with an even negative result. As in 

Theorem II.5 if V belongs to the algebra A, then V(x) is an almost 
periodic function of the position variable x. One may guess that a 
potential, which goes to zero at infinity fast enough, may save the 
situation. That this is not true is proved in the following. 

Theorem II.6. Let V be any multiplication operator on 9f, such that 
V~L1(N, dx)nL~OR, dx), then for all real 24=0 and real t, the *-auto- 
morphism ~ of ~ ( ~ )  is not a *-automorphism of the C*-subalgebra A-, 
except .for V = O. 

Proof. The proof of this theorem goes exactly along the same lines 
as that of Theorem II.5, therefore we restrict ourselves to indicating the 
points where the proof differs. 

The potential V does not belong to the C*-algebra A', but as 
VeLIOR, dx)nL~OR, dx) it has a Fourier transform ~ such that 

V =  .[ ~(k)fk, o dk 
R 

and an argument analogous as that in the proof of Lemma ILl yields 
the existence of the integral in the ultrastrong sense. It follows that 

n(a°(V)) = I dk ~(k) zc(0c°(tk,o)). 
R 

The rest of the proof is obtained by substituting ~ . . .  into ~ dk .... Q.E.D. 
k R 

Remark. As it was not our aim to prove Theorem II.6 with the 
minimal conditions on the potential, we remark that they can easily be 
weakened yielding the same result. 
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