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Abstract. We consider classical systems of particles in v dimensions. For a very large 
class of pair potentials (superstable lower regular potentials) it is shown that the correlation 
functions have bounds of the form 

O(xl ..... x,) _-< ~". 

Using these and further inequalities one can extend various results obtained by Dobrushin 
and Minlos [3] for the case of potentials which are non-integrably divergent at the origin. 
In particular it is shown that the pressure is a continuous function of the density. Infinite 
system equilibrium states are also defined and studied by analogy with the work of Do- 
brushin [2 a] and of Lanford and Ruelle [11] for lattice gases. 

O. Introduction 

A number  of  papers have been devoted to the study of  the thermo- 
dynamic  limit (infinite volume limit) ha the statistical mechanics  of  
classical systems of  particles in v dimensions. Fairly satisfactory results 
have been obta ined for the the rmodynamic  functions: existence of  the 
limit, convexity (stability) properties, and the equivalence of  the various 
ensembles 1. For  other problems (continuity of  the pressure as a function 
of  specific volume, study of correlat ion functions) the results are less 
satisfactory due to a technical difficulty: it is hard to exclude large 
fluctuations of  the number  of particles ha a small region of space. It is 
true that  if many  particles are put in a small region A of  space their 
repulsion will lead to a large positive potential  energy (and therefore 
to a small probabi l i ty  in the grand  canonical  ensemble), but  it is difficult 
to  estimate the interaction energy of the particles ha A with the neigh- 
bour ing ones. In the present paper  we solve the technical difficulty just 
ment ioned  and study some consequences of  the solution. 

1 See the pioneering work of Van Hove [15], Yang and Lee [16] and the articles of 
Ruelle [13], Fisher [5], Griffiths [7]. For a general exposition and further references see 
Ruelle [14], 
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W e  shall  assume tha t  the in te rac t ion  between par t ic les  is given by a 
pair  po ten t ia l  q~ 2, i.e. the energy of  m part icles  loca ted  at  x l ,  . . . ,  x,~ is 

U(xl, . . . ,  Xm) = F, ~(Xj-- X3 
i< j  

where • is a Lebesgue measurable function which satisfies ~ (x )=  ~ ( - x )  
and which may take real values and the value + oo. In order to have a 
system with t h e r m o d y n a m i c  behaviour ,  we assume that  • is stable, 
i.e. there  exists B > 0 such that,  for all m, x l ,  ..., Xm, 

U(xl, ..., x~) ~ -roB.  

If 4} is of the form • = ~' + 4~" where ~' is a stable pair potential and ~" 
is a positive continuous function with ~"(0)> 0, we say that • is super- 
stable 3 The reader may convince himself that stable potentials which 
are not superstable are in a sense exceptional: in fact the only case of 
interest is 4~ = 0. If A is a fixed bounded region of IR v, and • a superstable 
potent ia l  there  exist A > 0 and B > 0 such that  for all m and all 

Xl ,  . . . ,  X m E A ,  

U (xl ,  ..., x~) >-__ A m  2 - Bin .  

We say that  ~b is lower regular if there  is a posi t ive decreas ing function q~ 
on  [0, + oo) such tha t  

°~ t ~- i  dtq~(t)< +oo 
0 

a n d  for all x ~ 1W 

W e  summar i ze  now in two theorems  the ma in  results  of Sections 1 - 4  
of  the  present  p a p e r  

0.1. Theorem 4. Let  q~ be a superstable and lower regular pair potential, 
let A be a bounded Lebesgue measurable region in IR v, and let 

zn 
Z = -n~ " ~ d x  I ... d x . e  -~v( . . . . . . . . .  ) 

n=O 

be the grand partition function at activity z. 

z Actually, a weaker assumption is made in Sections 1 and 2. 

A slightly less restrictive definition is given in Section 1. 
4 See Proposition 2.6 and Corollary 2.9. Part (a) of the theorem is an easy result for 

positive or hard core pair potentials (see [14], Exercise 4.D). Part (b) had been proved by 
Dobrushin and Minlos [3] for pair potentials which are non-integrably divergent at the 
origin. 
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(a) Define the correlation functions by 

z" 
Oa(xl . . . .  , x , . ) = Z  - t  ( n - m ) !  ~ dxm+x'"dx"e-~V(xl ....... )" 

n = ~ l  A n - r n  

There exists a positive constant 4, independent of A, m, x 1, ..., Xm, such that 

cA (x 1 , . . . ,  x~) < ~m . 

(b) Given 2 > O, there exist g > 0 and d > 0 such that if A is any bounded 
Lebesgue measurable subset of IW with diameter L > 2, then the grand 
canonical probability of finding more than m particles in A is less than 

exp[-   
The probability question in is 

,=m p=o n!p! (a ~A),dxl""dx" (A\A)P~ dx"+l""dx"+pe-PV( . . . . . . . . . . .  ~" 

0.2. Theorem 5. Let cb be a superstable and lower regular pair potential. 
(a) Let A be a parallelepiped with sides a 1, . . . ,a ~ and volume 

IA[=a 1 . . .a  ~. I f  a l , . . . , a ~ ,  then IAl-~logZ tends to a finite limit 
tip (p is the thermodynamic limit of the 9rand canonical pressure). 

(b) Assume that 
~ d x l l - e - ~ ° ( x ) ] <  +oo 

then, the pressure p defined in (a) is a continuous function of the density 

@ = flz ~ z  (inside of its interval of definition). 

In Section 5 we study the infinite volume limit of correlation func- 
tions. One does not expect that this limit will be unique (because of the 
possible occurrence of phase transitions), but the following result is 
obtained. 

0.3. Theorem 6. Let 4) be a superstable and lower regular pair 
potential; assume that 

dxl l  - e-O*t~)[ < + oo . 

5 See Theorem 3.3 and Theorem 5.3. Part (b) of the present theorem was known in the 
extreme cases of pair potentials bounded from above (Ruelle ]-13]) or very repulsive at the 
origin (positive or hard core: Penrose and Ginibre [-6]; non integrably divergent: Dobrushin  
and Minlos [3]). An at tempt at bridging the gap between the two cases started the work 
presented in this article. 

6 See Theorem 5.5 and Corollary 5.3. 

9 Commun.  math. Phys., Vol. 18 
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Let (A) be a sequence of bounded Lebesgue measurable regions of IW, 
tending to infinity in the sense that for every bounded A there exists nn 
such that A C Aj if j > n~. Then one can choose a subsequence (A'k) of (A j) 
such that 

( X l ,  . . . ,  x , )  - . . . ,  x o )  

uniformly on the bounded subsets of (lRV) ". The infinite volume correlation 
functions obtained as limit satisfy the Kirkwood-Salsbur9 equations 

m 

e(xl,  ..., x,,) = ze '- dxm+ l ... dx,,,+, 
n ~ O  • 

I ( )] e -~¢(: ' '+J-xl)-  1 O(x2,..., x,,+,). 
Lj= 1 J 

The other results of Section 5 are of a less elementary nature and are 
only outlined here. A concept of infinite volume equilibrium state is 
introduced. Such a state may be described by correlation functions 
satisfying the Kirkwood-Salsburg equations. It may also be described 
by a probability measure # (on a suitable measurable space 2f) satisfying 
"equilibrium equations" of a type already known for lattice systems 
(Dobrushin [2a], Landlord and Ruelle [11]). The set I: of(infinite volume) 
equilibrium states is non empty, convex and compact 7 and a Choquet 
simplex 8. The last statement means that every equilibrium state may, 
in a unique manner, be decomposed into extremal equilibrium states. 
If this decomposition is non trivial for a pure thermodynamic phase we 
have an example of symmetry breakdown 9. Let Z0 be the set of equilibrium 
states which are invariant under the effect of translations of IR ~. This set 
is non empty, convex, and compact. It is again a Choquet simplex and 
this fact has the physical interpretation that every invariant equilibrium 
state has a unique decomposition into pure thermodynamic phases. 

For sufficiently small activity, N consists of just one point. In that 
case the thermodynamic limit of the correlation functions is unique lo. 
In general from every sequence (A,) of bounded regions of IW tending to 
infinity one can extract a subsequence such that the corresponding 
correlation functions tend to some point of Z 11. 

With respect to the topology of uniform convergence on compacts of the correlation 
functions. 

8 See for instance Choquet and Meyer [2]. 
9 For a discussion of these concepts, see [14] Chapters 6 and 7, Lanford and Ruelle [ t  1]. 
to This was known, see for instance [14] Section 4.2. References are given in [14] 

to the original papers of Rue|le and Penrose, The author has recently become aware of 
earlier work (for positive potentials) by Bogoljubov and Khatset [1]. 

tl This may not give all points of X. One can however get all points of Z by introducing 
suitable "boundary effects", namely by prescribing suitable distributions of particles outside 
of the A,. 
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1. Conditions on the Interaction 

For  all integers m__>0 and all x i ,  . . . ,x , ,~IW,  let U(xi ,  . . . , x~ )EIR  
w { + oo}; U is thus a function on ~ (IW) m. We say that U is an interaction 

m 

if it satisfies the following conditions.  
(Is) Measurability. For each m, (xi,  ..., x~)--* U (x 1 . . . . .  x~) is Lebesgue 

measurable. 
(I2) Permutation invariance. 

U (xl . . . . . .  x , j  = U (x l  . . . .  , x~) 

for  every permutation (1, ..., m ) ~  (i 1, . . . ,  i,,). 
(I3) Translation invariance. 

U(Xl  + a . . . . .  x , ,  + a) = U ( x l , . . . ,  xr,) 

for  all a e 1R v. 
(I4) I f  Yl, ..., Y, e IW and U(x l ,  ..., x~) = + o% then 

U(x l  . . . . .  xm, Yl,  ..., Y,) = + oo . 

(I5) Normalization. I f  m = 0 or m = 1, then U(x l  . . . . .  x,,) = O. 
We say that the interact ion U is stable if it satisfies the condit ion 
(S) There exists B > 0 such that for  all m, xx, ..., Xm, 

U(Xl,  ..., x~) > - r o B .  

Let  0 < 2 e IR. Fo r  every r e 2U we define a cube 

These cubes form a part i t ion of 1W. If X e (IR~)% we let n(X, r) be the 
number  of points of the sequence X = (x~ . . . .  , x~) which belong to .~(r). 

A condi t ion  s t ronger  than stability is the following 
(SS) SuperstabiIity. There exist A > 0, B >- 0 such that if ~ is a finite 

subset o f  Z ~ and 

Xl . . . .  , x m e ~ , ~ ( r ) ,  X = ( x l  . . . .  ,x~) 

then 
U ( X )  >= ~ JAn(X,  r) 2 -  Bn(X ,  r ) ] .  

r e ~  

Notice that  a positive interact ion is stable, that the sum of two stable 
interactions is stable, and that  the sum of a stable and a superstable 
interactions is superstable. 
9* 
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We write 
X =(x~ ... .  , xoJ, Y= 0 ' . - . . ,  yo), 

X Y = (xl, ..., xm, Yl . . . .  , Y,). 

Let W(X, Y) satisfy 

U(X Y) = U(X) + u(g) + W(X, Y), 

W(X,Y )=  + ~  if U(XY)=  +oo. 

In view of (!2), (14), these conditions determine entirely the function W: 
]R v m _.+ 

If r s Z ~, we let Irl = sup Iril. We say that the interaction U is lower 
i 

regular if it satisfies the following condition 
(LR) There exists a decreasin9 positive function T on the positive 

integers such that 
W(lr[) < + oo. 

r~gv 

Furthermore if Yl, 5 a are finite subsets of Z ~ and 

then 

x ,  .,., Xm e U r ~ ( r ) ,  X = (xl , ..., Xm) 

y , ,  ..., y ,  e Us~y~(S), Y = (Y~, ..., y,) 

W ( X ,  Y)>= - ~  ~s~ ~ T ( I s - r l ) I l n ( x ,  r)2+ -~n(Y, s)2). 

We mention without proof the following easily verified result. 

1.1. Proposition. The conditions (SS) and (LR) are invariant under 
linear transformations of IR ~ (in particular they are translation invariant 
and independent of the choice of 2). 

We indicate now criteria under which (S), (SS), (LR) hold for inter- 
actions associated with pair potentials. A pair potential is a Lebesgue 
measurable function ~b:lRV---,IR~o{+oo} such that ~ ( - x ) = ¢ ( x ) ;  an 
interaction U¢ is defined by 

U~,(x~, ..., xO = ~ ¢ , (x~-  x,) . 
i<j  

Clearly U~ > 0 if ~b > 0. We say that ~ is stable (resp. superstable, lower 
regular) if Ue satisfies (S) (resp. (SS), (LR)). Propositions 1.2, 1.3, 1.4 
below give criteria for stability, superstability and lower regularity. For 
proofs, see [14], Section 3.2. 
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1.2. Proposition. (a) I f  ~' is the Fourier transform of a positive 
measure with finite total mass, then q~' is stable. 

(b) I f  q~" is continuous >=0 and 4"(0)>0,  then ~" is superstable. 

In particular if ~ __> ~', then ~ is stable 12 If ~ is stable, then • + 4~" 
is superstable. 

1.3. Proposition. Let (p: [0, + oo)~IR be positive, decreasing, and let 

~ t ~-1 dtqo(t)< +oo. 
o 

I f  q~(x)>= -~0([xl) for all x, then • is lower regular. 

1.4. Proposition (Dobrushin, Fisher, Ruelle). Let 0 < d I < d2 < + oo 
and let 

~01: EO, d]--~]P.kJ {-}- 00},  ¢p2 : I-d2, -k oO)--*]R 

be positive, decreasing and such that 

S t~ - ld tqh( t )  = +oo, t~-ldtcPa(t)< +oo. 
o d2 

I f  the pair potential (b is bounded below and satisfies 

• (x) ____ ~ol(Ixl) for Ixl < d l ,  

[~'(x)[ < (P2(lx[) for Ix[ > d 2 

then • is superstable and lower regular. 

2. Probability Estimates 

In this section we shall obtain bounds on the correlation functions 
and other quantities of interest (probability estimates). We assume that 
the distribution of X is given by the grand canonical ensemble and that 
the interaction U is superstable and lower regular. 

Let A be a bounded Lebesgue measurable subset of IR ~ with measure 
IA[ > 0, let U be a stable interaction and let fl > 0, z > 0. The grand 
canonical probability measure is defined on ~ A n by its restriction 

n=>0 

Z-1  zn e -By( ......... )dx  1. dx n (2.1) 
n! "" 

to every An; here 
g n 

Z =  Z -~. ~ dx ,  ... dxne -ev(x* ....... ). (2.2) 
n > O  A n 

12 There exist stable potentials which are not of this type (S. Sherman, private com- 
munication). 
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The convergence of Z is ensured by the stability of U. The probability 
estimates (Propositions 2.6 and 2.7) will be preceded by technical results, 
Propositions 2.1 and 2.5. 

Given e > 0, we can choose an integer Po > 0 and for each j > Po an 
integer I i > 0 such that 

ls+l - ( 1  +2~)  < ~ .  (2.3) 

We use the notat ion a3 
Irl = sup fril, (2.4) 

[j]={r~Z":Ir]<=lj}, [k~/~ = [ k ] \ [ j ] ,  

V~ = (2/~ + 1) * . 

(2.5) 

(2.6) 

2.1. Proposition. Let A >  O, B > O, and let ~ be a decreasing positive 
function on the positive integers such that 

~g(Ir[) < + oo. (2.7) 
r~Z v 

I f  c~ is sufficiently small one can choose an increasing sequence (~pj) such 
that ~j >= t, ~pj~ oo, and fix P > Po so that the following is true. 

Let n(.) be a function from Z ~ to the integers >0. Suppose that there 
exists q such that q >_ P and q is the largest integer for which 

n(r) 2 >= tpq Vq . (2.8) 
re[q] 

Then 

- y '  JAn(r) 2 - B n ( r ) ] +  ~ ~ ~ ( I s - r l )  n(r) 2 + ~ n ( s )  2 
re[q+ 11 r~[q+ I] s~k[q+ 1] 

A (2.9) 
< _ _  ~ n(r) 2 • 
= 2 r~tq+ iI 

We choose a such that  

[ ~  ~([rl)] x [( 1 + 3c02 ~+ 2 _ 1] <= --.A4 (2.10) 

There exists an increasing function ~ on the positive integers such that 

~ v > l ,  l im~p(/)  = + o o ,  (2 .11)  

~p(l+ 1) < l + l  (2.12) 
~p(1) = l 

13 The inverted slant (\) denotes set difference. 
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and 

F, ~p(lrl) 7'(]rl) < + oe. (2.13) 
rEZ v 

[Choose ~p* satisfying (2.11) and (2.13), then tet ~p be the largest function 
N~p* satisfying (2.12).] We define ~pj = ~p(/j), thus 

1_< Pj+I N lJ+l _<1+3ct.  (2.14) 
- -  lpj lj - -  

The choice of P is made so that Lemma 2.4 below holds. Before proving 
the proposition we introduce the definition 

~k = sup T([s -- r D = ~ t ( I o + k +  1 - -  Iq+l q- 1) (2.15) 
re[q+ 1],s(e[q + k + 1] 

and we state a few lemmas. 

2.2. Lemma. Let the conditions of Proposition 2.1 be satisfied by n(.) 
and q, and let k > O, then 

(a) ~ n(s )  2 ~ (~)q+k Vq+k -- 1Dq Vq), 
s e [q + k\q] 

(b) /f T k is defined by (2.15) 

k=l  se[q+k+2\q+k+l] k=l  

(a) follows from the fact that q is the largest integer for which (2.8) 
holds; (b) is obtained, using (a), as follows 

~ ~ n(s) ~ 
k = l  se[q+k+2\q+k+l] 

k = l  

k = l  

k = l  

(~rJk - -  IPk+ 1) 2 n(s )2  
s~[q+k+ 2\q+2] 

( e ~ -  %+ ~) (%+~+ ~ ~+~+~ - ~ ~)  

( ~ k - -  ~ k + l ) ~ q + k + 2 ~ + k + 2 "  

2.3. Lemma. 

(a) ~j+l  Vj+l <(1 +3c0 ~+1, 
e j  Vj 

(b) ~j+2 V~+2 - ~Pj V/ < (1 + 3c¢) 2v+: - 1. 
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(C) Le t  k >= 1, then 

~+~+ ~ V~+k+ ~ 

tp(tq+k+ 1 - lq+ 1 + 1) (2/q+k+ 1 -- 2lq+ 1 + 3) v 
_--< [C~-l(1 + e) (t + 3e)] ;+i • 

P r o o f  of (a). 

~jVj = l~-. ~ ] 2 I y +  1 = \--~-j ] 

(b) follows from (a). Proof of (c). 

w(lq+k+ 1 -- la+ 1 + 1) (2lq+k+ 1 -- 21q+ 1 + 3) v 

< lq+k+ 2 (2lq+k+ 2 + ly  
= l q + k + 1 - - 1 q + l + l  ( 2 1 q + k + i - - 2 I q + i + 3 Y  

t q+~ lZ iq+ i  =(_ Iq+k+Z/Iq+k+l <(.  1+3C{ 

----< 1__(1 + C0-1 = lOCi(1 + C0 (1+ 3e)] ~+l" 

2.4. Lemma. I f  P > Po is sufficiently large, we have 

(a) ~ T(]sl) < ~- ,  
s: lsl > tq + l - lq 

(b) ~ (Tk-- Tk+ 1)~pq+k+2 Vq+k+2 < 4 '  
k=l  

(T  
We h a v e  

[ z 1 (2I+~y~(t)= 1+ Y~ ((2j+l)v-(2J-lY) ~(t) 
j = l  

=<2 ~ ( ( 2 j + l y - ( 2 j - - 1 1 " ) / ~ ( j )  
j:l/2 <=j<=l 

_< 4 y' ((2j + ly - ( 2 j -  1)') ~p(j) 
j:l/2<j<l 

j = l  
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Therefore 

[7/(/) - ~u(t + 1)3 tp(/) (2/+ 1) ~ 
/ = 0  

/ = 0  j = i  

j = l  

= 4  2 tP(Irl) 7~(trl)< + o e .  (2.16) 
r~Z v 

Since q > P, when P ~  oe we have q ~  oe and lq+ 1 - lq~ oe, proving (a). 
Using (2.16) we have also 

~ (~gk-- 7Sk+ 1) ~P(la+k+ 1 -- lq+ 1 + 1) (2/q+k+ 1 -- 2lq+ 1 + 3) v 
k = l  

< ~ [TJ(/)- gJ(l + 1)] tp(/) (2/+ 1)v-~0. 
l=lq4 2-1q+ l + l 

This, together with part (c) of Lemma 2.3 proves (b). The sequence tp i 
increases and tends to infinity, therefore (c) holds as soon as 

{16,2 ) 
,p,__> \ - ~  + 1 (1 + 3 ~)~. 

We come now to the proof of Proposition 2.1. We notice first the 
inequality 

A 
[ ~  IP(lrt)] (~vq+ 2 V~+ 2 - tpq Vq) < --~- t¢, V q (2.17) 

which follows from Lemma 2.3 (b) and (2.10). Let us write 

~ ~/'(Is - rl) In(r) z + n(s) 2] 
r¢[q+ 1] s(E[q+ II 

= Y, n(r) 2 ~ ~e(Is-rl)+ Z n(s) 2 Y~ ~(Is-rl) 
r e [ q +  l\q] s¢ [q+  II se [q+  2 \q+  1] rz[q+ 1] 

+ Z n ( r )  2 Z t / ' ( l s - r l )+  Z ~ n(s) 2 ~ ( t s - r l ) .  
re[q] s¢[q+l]  r e [ q + l l  s¢[q+21 

Using (2.15), this is 

< [ ~  ~(tr[)] ~ n(s) 2 
se[q + 2\q] 

Z 2 + , X ,(~)2. 
rz[ql k = l  s z [ q + k + 2 X q + k + l ]  
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Applying now first Lemma 2.2 (a), (b), then (2.17) and Lemma 2.4 (a), (b) 
we obtain 

Y, ~ ~(Is- rl) En(r) z + n(s)~3 
r e [ q + l ]  sc}[q+l] 

+V Z ~'(Isl)] Z n(r) 2+ v.+l 
Ls:lsl>lq+x-lq J re[q+ 1] 

A ~ q-v'qV+ A < ~-- Z [n ( r )2+l ]  - 
re[q+ 1 ] 

Therefore 

(~r/k - -  ~'tk+ i) lPq+k+25+k+ 2 
k = l  

r~[q + 1 ] 

+ ~ ~ T([s-- r[) n(r)2 + -2-- n(s)2 
re[q+ 1] s¢[q+ 1] 

<= -- 2 An(r )2 - -Bn(r )  - + ~ t p q V q .  
rE[q+l ]  

(2.18) 

We use now the inequality 
2B A 

n(r) < ~ -  + 8-B- n(r)z 

and then (2.8) and Lemma 2.4 (c) obtaining 

- Z An(r)  z - Bn(r) - + g ~p~ Vq 
re[q+ 1] 

__< - - f f A ~ V . +  - - +  V~+~__<0. (2.19) 

Proposition 2.1 is proved by (2.18) and (2.19) 

2.5. Proposition. Let  the interaction U be superstable and lower 
regular. 

(a) Given X = ( x l ,  ..., x n, .,.), suppose that there exists q such that 
q > P and q is the largest integer for  which 

n(X,  r) 2 > ~q Vq. (2.20) 
re[q] 
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Let X' = (x'l,..., x',,) consist of the points of X contained in [q + 1], and 
X"=(x~, ..., x~,,, ...) be the complementary subsequence of X. Then, 

C = 4 A (1 + 3 ~)- ~- 1 we have putting 

- U ( X ' )  - W ( X ' ,  X " )  

<_ - I  A ~ n(X,r)2-C~&+l Vq+~. (2.21) 
- 4 rE[q+ 11 

(b) Let X = (x,,  ..., x , , . . . )  satisfy 

Y, n(X, 02 < ~pj Vj (2.22) 
reU] 

when j > k. Then 

g'(lrl) n(X, r) 2 < (1 + 3~) "+ 1 ~ [7t(/) _ ~P(1 + 1)] ~p(/) (21 + 1) ~ . (2.23) 
r¢[kl l>t~ 

We prove (a). F rom superstability, lower regularity, and Proposit ion 
2.1 we have 

- V ( X ' )  - W ( X ' ,  X")  

< - ~ JAn(X, r) 2 - Bn(X, r)] 
rE[q+ 11 

+ ~ ~ ~(Is - rl) ~- n(X, r) + -~ n(X, s) z 
rE[q+ 1] s¢[q+ 1] 

<= LA - 2 Z n(X, r) 2 (2.24) 
rE[q+1] 

On the other hand (2.20) and L e m m a  2.3 (a) yield 

1 
4 2 n(X,r)a~ A~pqVq>Ctpq+lVq+,. (2.25) 

rE[q + 11 

(2.2t) follows from (2.24) and (2.25). 
We prove (b). Using L e m m a  2.3 (a) we have 

2 7'(]rl) n(X, r) 2 ~ 2 7~(lJ) 2 n(X, r) = 
r¢[kl j>=k re[j+ 1U] 

= Z [~(/J) -- 7J(/j+l)] Z n(X, r) 2 
j>-k rE[j+ l\k] 

Z [ ~ ( l j )  --  ~II(lj+ 1)'] 1P j + l  Vj+l 
j>=k 

<(1  +3c0  "+1 Z [ ~ ( O -  ~ [ l ( l j + l ) ] t p j V j  
j>=k 

=< (1 +3~) ~+~ Z U'( t ) -  e ( l+  1)3 w(O (2l+ 1) v. 
l >= Ik 
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2.6. Proposition. We define the correlation functions for  the bounded 
Lebesgue measurable region A C IW by 

z n 
mdxm+ l . dx ,  e -av( ... . . . . . .  ) (2 .26)  eA(xl,..., x~) = z -~ Z (n-  m)! J -  " 

n > m  

/f x 1 . . . . .  x m ~ A, = 0  otherwise. I f  the interactian U is superstable and 
lower regular, there exists  ~ such that 

QA(Xj . . . . .  , x ~  < ~'~ (2.27) 
for  all A,  m, x l ,  ..., xm. 

This will be proved by induct ion on m. We fix x~, ..., xm, choose the 
origin of  coordinates  of  2U such that  x~ ~ ~q(0) and write 

Qa(x~, ..., x,,) = e' + ( ' .  

Here ~' is the cont r ibut ion  of those X = (xl ,  ..., x,) such that, for a l l j  > P, 

n(X,  r) 2 < ~ j  Vj (2.28) 
r~Ul 

and ~" is the cont r ibut ion  of  the other  configurations. 
For  the configurations satisfying (2.28) we have, using lower regularity, 

Proposi t ion 2.5 (b), and (2.16), 

- 2 W((xO,  (x2, ..., x,)) < ~ tP(Ir]) [1 + n(X,  r) z] 
r E Z v 

_-< ~ ~(lrl) + 'e(o) }2 n(x,  r) ~ + Y~ '/'(Irl) n(x,  r) ~ 
r r~[P]  r e [ P ]  

< Z 'e(Irl) + ~(0)wp vp + (1 + 3 ~)~+a y '  I-7'(/) - W(l + 1)-1 ~o(/) (2 /+  1) ~ 
r l > l r ,  

= 2D < + oo. (2.29) 

Therefore  
~' < e~ D z ~(x2, . . ., xm) < ea D z ~ m-1 • (2.30) 

We write fl" as a sum over q, where q is the largest integer such that 

n ( X ,  ~)~ >= ~ v~ . 
r~[q] 

Let  N(q) be the number  of points x~ . . . . .  x,, contained in [q + 1]. Using 
Proposi t ion  2.5 (a) and assuming ~ > z, we find 

q>=P / = 0  " 

< z~ " - I  ~] exp[ - - ( /3C~pq+l -2~z)Vq+l ]  = E z ~  " - 1  (2.31) 
q>-_P 
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where 
E =  ~ e x p [ - ( f l C ~ q + l  - 2~z)Vq+l] 

q > P  

converges because t/,q + 1 ~ oo. 
From (2.30) and (2.31) we obtain 

eAx~, ..., x~.3 =< (e Bo + / 9 z ~  ~-~ • 

Proposition 2.6 holds therefore with ~ = (e#°+ E)z, which is >z.  

2.7. Proposition. Let the interaction U be superstable and lower 
regular. There exist 7 > 0 and 6 real such that the following inequalities 
hold uniformly in A 

(a) OA(X) < exp , ,  [--yn(X, r) 2 + 6n(X, r)], (2.32) 
r 

(b) let A be a bounded Lebesgue measurable subset of IW and 
xl  . . . . .  xm ~ A, we define 

Z n 

m dxm+ 1 dxne-lJv(m ..... x,) ~(x~, . . . ,x , )  =z-~ ,>-_~Z (n-m)! ~j_~_ "' (2.33) 

if x~, ..., x,~ ~ A, = 0 otherwise; then 

m X eAa(1 . . . . .  Xm)<exp~[ - - vn (X , r )2+6n(X , r ) ]  (2.34) 
r 

Clearly (2.26) and (2.33) imply 0]~ < OA. Therefore (b) follows from (a). 
To prove (a) notice first that, by Proposition 2.6, 

eA(x) < ~ , < x . , .  

Therefore if n(X, r)< @p/2 V~/2 for all r ~2U, (2.32) is satisfied provided 
Y, 8 are chosen such that 

log~ + 7~p~/2 V~/2 < 8. (2.35) 

7 = 1 flA and complete the proof of (2.32) by induction on the We fix 

number of r e 2U such that n(X, r) + 0. Suppose that there is r o e 2U such 
that n(X, to )>  wx,'"~/z vl/z, e . Changing the origin of coordinates in ;gv we 
may take r o = 0; we have then 

Y, n(x ,  r)~ > ~ V ~ .  
r e [P] 

Therefore, if we denote by X£ the subsequence (of N(q) elements) of X 
contained in [ q +  1] and by Xq' the complementary subsequence, 
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Proposition 2.5 (a) yields 

oa(X)< ~ z  N(q) xp ~ - - ~ f l A n ( X , r )  2 {exp[- f lCwq+lVq+l]}  
q>P t r~[q+ 1] 

Notice that, by (2.35), z<~<e6;  since N ( q ) > 0  we may write z u~q) 

< ze-% mq)~. Introducing also the induction hypothesis and 7 = -~flA 

in (2.36) we find 

ea(X) 
< ze-~ {exp ~ [ -  Tn(X, r)2 + 6n(X, r)] I q~ exp [-(flCt&+ l - 2~ z) Vq+l] 

= Eze -~ exp ~ [ - yn (X ,  r) 2 + 6n(X, r)] 
r 

but we have Ez < ~ < e ~, concluding the proof. 

2.8. Corollary. With the notation and assumptions of Proposition 2.7, 
the 9rand canonical probability that 

n(X, r) 2 > N 2 cardN (2.37) 
r ~ f  

is less than 
exp [ - ( y N  2 - 2~e ~) c a r d N ] .  (2.38) 

Taking A = ur~e~(r) in (2.34), we find indeed that the probability to 
be estimated is less than 

4 (card~.  2~) l exp [ - 7 N  2 c a r d ~ ]  (e~) ~ . 
1 "! 

2.9. Corollary. Let the interaction U be superstable and lower regular. 
There exist 9 > 0 and d >= 0 such that, if A is any bounded Lebesgue 
measurable subset of IW with diameter L >= 2, then the 9rand canonical 
probability of finding more than m particles in A is less than 

exp - 9  ~v-  + dm . (2.39) 

We first increase A to a set of the form A (N) and notice that 

1 m 2 

,~e = cardN = cardN " 
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Applying Corollary 2.8 we find that the probability to be estimated is 
less than 

exp - 7 card-----~ + 2~ ea card N __< exp - g ~ + g 'L  ~ . 

But a probability being also less than 1 we may replace this estimate by 
(2.39). 

3. Thermodynamic Limit for the Pressure 

In this section we prove the existence of the thermodynamic limit 
for the grand canonical pressure in the case of a superstable and lower 
regular interaction U. 

3.1. Lemma. / f  N is a f inite subset o f  Z ~, we write A e  = %~e.~(r) 
and let Z e be the corresponding grand partition function. Let  N be chosen 
such that 

~ e x p [ - ( y N  2 - 2~ea)/] < (3.1) 
1 

z=l = 4  

Suppose that ~ ,  ~9 a are finite subsets o f  Z ~, that ~ l ,  ,9ol f iZ are their 
f irst  projections and that r 1 < s 1 whenever r 1 ~ ~1 ,  s t e S pl. The following 
inequality then holds 

log Za  ~,~ < logZ~ + logZ~ + log2 

+  N2rz 2  (Is-ri)+r Z 
kr~N s :s le~ 1 se,.~ r:rl~fl~ 1 

(3.2) 

Let N(I)= { reN : s 1 - r  1 < l  for some s* s ~ l } ,  ~ ( / ) =  { s e n :  s 1 - r  t < l  
for some r 1 e NI}. The grand canonical probability that 

n ( X ,  r)  2 ~ N 2 cardN(/) 
r~( l )  

is by Corollary 2.8, less than exp [ - ( T N  2 - 2 ~ e  °) card~(/)]  and similarly 
with ~(/) replaced by 50(/). Therefore, except for a set of probability 
less than 

~ , e x p  [ -  (7 N2 -- )-~ e°) card ~(l ')]  
l'=1 

1 
+ exp [ - (TN z -- 2~e a) card Y(I")] < T 

l"=1 



t 44  D. Ruel le :  

we have for all l', l" 

and hence 

1 
- W(X,  Y) <__ T 

2 n(X, r) 2 < N  2 cardN(l'), 
r~e( l ' )  

< N  c a r d , ( / )  n(Y, s) 2 2 ,, 
se Se (r') 

Y~ 'e(Is - rl) In(X,  r) ~ + n(r,  s) 2] 
r e ~  seSP 

1 1 
< - -  ~ n(X,r)  2 ~ t P ( l s - r l ) + ~  ~ n(Y,s) 2 ~ ~(]s--rl) 
= 2 tee s:s, es~* seSe r:r~-ee 1 

< 1 N 2  [ ~  ~, tP(Is- r])+ ~ ~ ~V(Is- rl)]. 
L r ~ e  s :s lE5 °1 se~' r:r~e~ 1 

This shows that 

Z e Z ~ e x p  1 f lN2[E E ~U(ls-rD+ E E kU([s-rl~ > 1 

proving the lemma. 
3.2. Remark. Repeated application of Lemma 3.1 yields 

log Ze,,j... ~ e~ 
k 1 k 

<= ~ l o g Z & + ( k - 1 ) l o g 2 + - f f l N  2 ~ ~ ~ 7~(Is-rl) 
j = l  j = l  r e e j  s : s lCe)  

< l o g Z e ~ + l o g 2 + ~ - f i N  2 ~ 2 ~(Is-r l )  • 
j =  1 r e e i  s ~ e s  

We may of course also apply Lemma 3.1 with the first coordinate direction 
replaced by another one; repeated application of this yields 

log Ze~ ~...~ e~ 

< 2 t o g / e ,  + l o g 2 +  ~v~X ~ 2 te( ls-r l )  . (3.3) 
j =  1 r~e~ s ee3  

3.3. Theorem. Given a 1 > 0, ..., a v > 0 and a = (a ~ . . . . .  a ~) we write 

A " = { x e l W : O < x i < d  for i = l , . . . , v }  

and let Z ~ be the grand partition function computed for the region A a. 
I f  the interaction U is superstable and lower regular, 

IA~I -~ log Z" 

converges to a finite limit tip when a*, ..., a~--+ oo. 
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Since Z is an increasing function of A, it suffices to prove the theorem 
for a of the form 12 where the components  I ~, ..., 1 ~ of I are integers > O. 
We write 

A ~ = A ( / ) ,  Z ~ = Z ( 0 .  

Let  
V )--1 

~z = l im inf (1~ 1 i logZ( / ) .  (3.4) 
l m \ 1  

We shall arrive at a contradict ion by assuming that  the sequence (l~) 
tends to infinity and that  

(n lim , . .  t~ logZ(t~) = 7z' > rc. (3.5)  

Write e = re '-rc.  We may, according to (3.4) choose 1 o such that 

l~ logZ(lo) < ~ + -~-- e, (3.6) 

(0)[ -1 1 vflX2 2 ~,, gJ(ts rI) < f .  l~ log2 + ~-  -- (3.7) 
reA(lo) sCA(lo) 

Because Z is an increasing function of A, we may modify (l,) such that 
l~ is now a multiple of l~ for all i, ~ and 

v ) - 1  ~ , 
lim inf ]7  t~ logZ(l~) _ rc = rc + e 

in contradict ion with the following inequali ty derived from (3.3), (3.6) 
and (3.7) 

< l~ l o g / ( 1 0 ) + l o g 2 +  ~ v [ I X  y, 2 7 ' ( [ s - r l )  
reA(lo) sf~A(lo) 

< r c + ~ .  

4. Continuity of the Pressure as a Function of Density 

4.1. Proposition. Let the interaction U= U~ be associated with a 
pair potential q) which is superstable and lower regular; assume that 

dx L1 - e-~'(x)[ < + oo. 
I0 Commtm. math. Phys,, Vol. 18 



146 D. Ruelle: 

Then there exists F > 0 independent of A, depending continuously on fl, 
z > 0 and such that 

@ 2 )  _ @ ) 2  > _ _ 1  (4.1) 
( n )  1 + F 

where we have introduced the grand canonical average 

Z n 

(n~) = Z - 1  2 n~( .  .[dxl ""dx ,  e-~v( ....... :")" (4.2) 
n>=O 

Let  us define 

Z n 

J g = Z  -1 ~ ~v. ~ d x l . , , d x ,  e-~V(~ ....... ) 
n>-O 

x ~ dy~ dy 2 e -t~w((~ ....... ),(y~))-pw((~, ....... )'(Y~))(1 - e-~*(Y~-Y')). (4.3) 

4.2. Lemma.  Under the conditions of Proposition 4.1 there exists 
F > 0 independent of A, depending continuously on fl, z > 0 and such that 

Let  us define 

z2 dg < F (n) . (4.4) 

K(X, (y~ .. . .  , y,))= f i  K(X, ~) ,  (4.5) 
. i = 1  

K(X, y)= e -~w(x'y) - 1 (4.6) 

and  note the M a y e r - M o n t r o l l  equat ions  14 

0o 

oa(X)=z~e-~V(X'[l+, ,~l~.~dY~. . .dy,  K(X,O'l,...,Yn))Qa(Yl,..-,Yn) 1. 

(4.7) 
Using (4.5), (4.6) and Propos i t ion  2.6 we have 

J/d -- f d y  1 ~ dy2(1 - e - /~(y2- ' t ) )  
A A 

× _ 1  S dxl  ... dx ,  K((yi ,  Y2), x,)) ..., x.) 
n=o n ! " ' "  

< [A] IS dy le -~*(y) - 1 [] exp [~(1 + e 2~B) S dy[e -~*(y) - 11]. (4.8) 

We prove  now tha t  IAI is bounded  by a cons tant  mult iple of (n ) .  Since 
( n )  is an increasing funct ion of z, it suffices to consider small values of z. 
In part icular ,  since lira ~ = 0 according to the est imates of  Section 2, 

z ~ 0  

14 See for instance [9]. 
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we may  assume that  

. = i  1 . . ,  Y,)  ~, ~(. ~ dya ... dy, K((x), (Yl,. . . ,  Y,)) QA(Y,,. 

< {exp~ .I dYl e - t~(y) -  lt} - 1 < --.1 (4.9) 
= = 2 

Using (4.9) and (4.7) with m = 1 we obta in  

This result, together  with (4.8) shows that  

z 2 J//_-< F ( n )  

for some real F > 0 (the factor z 2 is inserted for later convenience). 
We come now to the proof  of  Proposi t ion 4.1, using a method  due 

in its principle to Ginibre  [6]. Let  the functions Q and R be defined on 
A" by  

, ,~o  Q ( x l ,  . . . ,  x , )  = n 

R(xa, ..., x,) = z ~ dye  -¢w((xl ....... ),o)), 
A 

We have, using the Schwarz inequali ty and L e m m a  4.2, 

(F + 1) 2 ( n )  2 = (FQ + R)  2 <_<_ ((FQ + R) a) 

= F2(n 2) + 2F(n(n - 1)) + [ (n(n  - 1)) + z2J¢] 

< (F + 1) 2 (n  2) - (V + 1) (n) 

proving (4.1). 

4.3. Theorem. Let the interaction U = U~ be associated with a pair 
potential 4~ which is superstable and lower regular; assume that 

.[ dx I1 - e-a~(X)l < + ~ .  

The thermodynamic limit p of the grand canonical pressure Pa 

= f l -  1 ]A[- 1 l o g Z  is a continuous function of the density Q = flz ~ -  (inside 

of its interval of  definition). 

Writing 0A =/~Z 0~jPZA , we have 

1 dQa ( ~ z ) - 1  d d (n2)--(n) 2 
~ -  l o g Z  ~ z  Z-dTz logZ  = ( n )  

1 do > 1 d p <  1 ( I + F ) "  
fl dp = l + ~ ° r  do = 
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5. Equilibrium Equations for a Classical Continuous System 

We say that a family (a~) where A runs over the bounded Lebesgue 
measurable subsets of IW and m over the positive integers is a system of 
density distributions if it satisfies the following conditions. 

(DO) a~' is a positive Lebesgue integrable function on A ~ and 
0 2 ( X i l ,  . . . , .Xim ) = O ' A n ( X 1 ,  . . . ,  Xm)for every permutation (1, ..., m)--* (il, ..., i,,). 

(D 1) Normalization 

1 
,,=0 ~ ~ ~ dxi""  dx,, o'2(xl, ... , xm) = 1. (5.1) 

(D2) Compatibility: if A C A', then 

~ 2 ( x l ,  . . . ,  x~)= -n-Y. ~ dx,~+~ ... dx~,+,a2~+"(x~, ..., xm+,). (5.2) 
n=O (A'\A) ~ 

In particular (2.33) defines a system of density distributions. 
We shall associate with each system of density distributions (~") an 

(abstract) probability measure/t on a measurable space (~r, 5p). We let X 
be the space of functions X from IW to the positive integers such that, 
for any compact K C IR ~, 

Z x(x)<  + ~ .  
x a K  

We consider the topology ~'- on f defined by the subbasis ((~AK)~S; 
here K runs over the compact subsets oflR ~, A over the open sets such that 
A ( K, m runs over the positive integers and 

o~ , , -  x ~ x "  Y~x(~)= ~ X ( x ) = m  
x e A  x e K  

We let 5 p be the o--ring of Borel sets with respect to the topology 3--. 
It can be shown that Y is the a-ring generated by the sets 

~ ; =  { X e X :  x ~  • X(x)=mt) (5.4) 

where B runs over the bounded Borel subsets of IW 16 
Given A C tW we let 

~:~ = { x e ~ : x ~ A ~ X (x) = 0} (5.5) 

is I.e., the open sets of ~r are the unions of finite intersections of the sets (9]~. This 
topology and the Borel structure derived from it have been used by Lanford [10]. 

16 This result is easy to derive, but we do not want to go here into the necessary set- 
theoretical details; a proof will be published elsewhere. 
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and define =~ : X ~ X~ by 

(rcnX)(x)={0X(x) if x ~ A ,  (5.6) 
if xq~A. 

If A is a Borel subset of IW, then Xj E 5: and =A is a measurable mapping 

(X, 5:) ~ (X~, 5:A) where 5:~ = {S ~ Y : S C Xa}. [We have Xa = (~ :¢K~z ) 
/=1 

where B(/) = {x ~ A lx l  < l}, therefore X~ e 5:. Furthermore the G-ring 
5:a is generated by the sets XA c~ ~ with B C A and =21 (Xa c~ gU~) = ~KB m, 
so that =~ is measurable.] We have for all X ~ X 

X = rc~ X + rc~v\a X (5.7) 

and this relation identifies X with Xd x X~\z. It is readily seen that 17 

(~, ~) = (~r~, s:~) × (~\~, ~\~). (5.8) 

Given any A C IR ~, we define a mapping C0A: ~ A m ~ X  by 
in=0 

con(xl, ..., x~)= ~ exi where e~(y) is 1 when x = y  and 0 otherwise; cod 
i = i  

is continuous and, ifA is bounded, its image is Y'~. Let now A be a bounded 
Borel subset of N" and S E =~ 15:~ ; we define 

/~(S) = o-a (co2 ~ rcn S) (5.9) 

where a~ is the measure on ~ A" which has the restriction 
1 ,~=o 

m~. C/A"(X~,..., X~) dx~ ... dx,, to Am. It follows from (D 2) that the r.h.s. 

of (5.9) is independent of A, furthermore (5.9) determines the measure # 
on (~, 5:) completely because the ring generated by the ~K~ consists of 
sets of the form S ~ r~  ~5:~ and the extension of # from this ring to 5: 
is unique (see Halmos [8], Section t3, Theorem A). We have thus 
associated a measure # to every system of density distributions (~"). 
Conversely, # determines (o-~") completely. 

If X s X, r e ;g~, we write n(X, r) = ~ X(x). We say that a measure # 
x~.~(~) 

on (X, 5:) is tempered if it satisfies the following condition 
(T) # is carried by the union over N of the sets 

~v The product of two measurable spaces is defined in Halmos [8], Chapter VII. 
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This definition is invariant under linear transformations of IW; S N is 
a Borel subset of 5f. 

5.1. Lemma. We write A ~ o o  if every bounded subset A of IR" is 
eventually contained in the bounded Borel set A. I f  X ~ Y( we let [X]A e ~, A ~ 

be such that ~A([X]A) = ~a(X). " 
Let the interaction U = U, be associated with a pair potential eb which 

is superstable, lower regular, and a Borel function 18. 
I f  X ~ (IW) ~, a BoreI function W (X, .) is defined on SN by 

W(X, Y ) =  lim W(X, [Y]A) • (5.11) 
A - - * ~  

The proof is immediate. In view of this result we may now introduce 
the following condition for a probability measure # on (2~, 5e). 

(E) Equilibrium Equations. # is tempered and, if ~o ~ L 1 (Lr, #) and A 
is a bounded Borel subset of IW, 

 (dX) 

= ~ z'n S d x l . . . d x ,  n 
m=0 ~ A m 

S #(dY) e-pv( .. . . . . . . .  )-ew(( . . . . . . . . .  ),z,) 
~q 

p,.v\d 

..., + v)  (5.12) 

These equations express that if we map (~  A") 
writing 

~ = c % ( ~  A") x ~f~\~ 

x 5fav\~ onto Y" by 

then # is the image of e-~W[lq x #2] where #1 has the restriction 
Z m 

m-~. e-PV(xl ......... )dxl  ... dxm to A m and #2 is the restriction of # to Wzv\a. 

5.2. Proposition. Let the interaction U= U~, be associated with a 
pair potential ~b which is superstable, lower regular, and a BoreI function; 
assume that 

dx ]1 - e -p~(~)] < + oo. (5.13) 

Let (o'2~) be a system of density distributions, and # be the associated 
probability measure. Assume that there exist y> 0 and "~ real such that 

a2~ (X) < exp ~, [ - 7 n ( X ,  r) e + Sn(X, r)]. (5.14) 
r 

i8 It is necessa D" here to assume that q5 is Borel, but Lebesgue measurability is all that 
will be needed later for states satisfying the equilibrium equations. 



Classical Statistical Mechanics 151 

Then t ~ is tempered. Furthermore 
(a) Let X ~ A  m, A bounded, then exp[ - /~W(X, [ - ]A) ]  is bounded 

uniformly in X and A by a #-integrable function. In particular, 
exp [ -  j8 W(X, .)] is #-integrabte. 

(b) We define correlation functions by 

e(X1,.. . ,Xm) = ~f. ~ dxm+ 1 ...dxm+nf12+n(xt,...,Xm+n) ( 5 . 1 5 )  
n = O  A n 

for X x , ..., x,, ~ A, and we write 

K((xl , . . . ,  x,), (y, , . . . ,  Yn)) = ( I  K((Xl,.. . ,  x,,), yj) (5.16) 
. / = 1  

I f  the correlation functions satisfy the Mayer equations 19 

Q(XY)=z°e E S dvl ...dv, K(X, V)O(YV) (5.18) 
p = O  " 

where X = (xl, ..., x~), Y =  (Yl,---, Y,), V = (Vx, ..., Vp), then la satisfies the 
equilibrium equations 

(c) Conversely, if p satisfies the equilibrium equations, then the corre- 
lation functions satisfy the Mayer equations. 

F r o m  (5.14) we obtain (cf. the p roo f  of Corol lary 2.8) 

# ({X ~W :,:f,l__<lX n(X,")~<=N2( 2l+ 1)~}) 

>__ 1 - exp [ - ( T N  2 - 2~e j) (2 l+  1)~], 

H(SN) >_-- 1 -- ~ exp [--  (~N 2 - 2~e ~) (21+ 1) ~] 
/ = 0  

>__1- ~ {exp[-(~N2-2~eg)]} t+~ 
/ = 0  

1 when N ~ o o .  

Therefore # is tempered.  
To  prove (a) we notice that  

exp [ -  j8 W(X, EY]A)] < exp j8 ~, ~ n(X, r) n(Y, s) ~(]s - rl). 
r E ~  s ~  v 

19 See  M a y e r  [12 ] .  



152 D. Ruelle:  

Here N = {r e Z  ~ : ~(r)~A # 0}. Since there are finitely many possible 
choices of n(X, r), it suffices to prove that 

exp[flr~ n(X, r) s~ n(., s)(P(ls-r[)l 

is #-integrable or, using H61der's inequality, that 

exp[mfl ~ n(., s) ~(Isl) 1 

is #-integrable. Using the notation of Section 2, we decompose ~f into 
one piece such that for all j > P 

Z n(X, r)Z <--_ Fj Vj 
r~[ t ]  

and for each q > P a piece such that q is the largest integer for which 

Z n(x, r) 2 >= ~q v~. 
r~[q] 

We have 

Z n(Y, s) V(lsl) < 7J(O) Z n(Y, s) + Z [7/(/) - V(1 + 1)] Z n(Y, s) 
seZ v s z [q]  l > lq s: Is[ < l 

and therefore (see (2.29) and (5.14)) 

#(dY) exp fmfl ~f(Y,  s) ~(]s]) 1 

<=(expmflD)[l+ ~q e-7~qv~ ,=o ~ 1 (Vq2~)z ( e ~ + m P ~ ' ( ° ) ) ~ ] -  

=(expmflD)[l+ ~ exp(-~/pqVq+ 2~e~+"P~'(°)Vq)] < +Go. 

The #-integrability of exp[-flW(X, .)] follows then from Lemma 5.1 
and Lebesgue's dominated convergence theorem. 

We come to the proof of (b). Notice first that if x~, ..., Xm e IR ~, there 
is a union of less than m cubes ~(r) containing xt, ...,xm; therefore 
(5.14) yields 

e(xl,  .--, x~) < (m2~)"(e~) m+" 
n ~ 0  

= (e~) m expm2~e$ = ~'~ (5.19) 

where ~ =  exp(6+ 2~e~). We shall also use the estimate 

S dy tK ((:q . . . . .  x~), Y)I m [ , ,  q 
_<_ ~ dyz_~ 1 exp - f l  2 q~(Y- xj Ie -p~( ' -~ ' ) -  1I 

j = l  

< me 2m~R ~ dyle -~e(y)- 1I. (5.20) 
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We introduce the notation 

±a ~ t 
dV= 5 (+  1)P dxl  dxp (5.21) 

p=O 7 AP - -  " '"  

so that (5.18) becomes 

ff(XY) = z"e-PV~X)-t~w{x'r)~ dVK(X,  V) o(YV). (5.22) 

Let A be a bounded Lebesgue measurable set and take x 1 . . . . .  x , ,s  A; 
given e > 0 we can choose a bounded Lebesgue measurable A )A  such 
that 

dy IK(X, Y)I < e. 

We have then ~v\a 

o(X Y) - z" e -~ v~x)-~w(x,r) i d V K(X, V) o(Y V) 
A 

<z,.e{,.+z,..)¢.~d V ~ 1 = q=, 7 .  {~..~ASvi dr; 
t IK(X, V) K(X,  (vi, ..., v;))l o(gV(v'~, ..., vq)) 

< z"e(m+2m")eBP {exp [ -~me2meB I dYl e-¢¢(') - 11]} (e d - 1) 

= MO"(e d - 1) (5.23) 

where M, 0 depend on m. Dropping the superscript m of a 2 we have also 

A 

zm e - I l u < X ) - f l w ( x ' g )  ~ dV K(X, V) e(gv) 
A A 

= z"e-eV(x)-~w(x'~:)~ dVK(X,  V) ~ dV' ~A(YVV') 
A 

= z,.e-PV~x)-~w(x,~)~ dV.e-tJw(x,v")rrA(yv.) 
A 

= ~ dV zme-~V(x)-~w(x'~'v)aA(YV ) (5.24) 

(5.23) and (5.24) yield 

o(XY) - i dV z"e-~V<X)-pw<x'rv)aA(YV) < MO"( e d -  1). 

Choosing now A' such that A C A' C A, we find 

- a' a\a' < M O" e°la'l( e ~ -  d V o ( X Y V  ) -  ~ dV z"e-'V(x)-~w(x'~v)aA(YV ) = 1) 

o r  

Iaa,(XY) - . 
A.\A" 

- ~ dVz"e-~V(x)-pw~x'Yv)aa(YV) <MO"e°l*l(e d 1) (5.25) 
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Let q9 be a bounded Borel function on cd such that q)(J0=0 unless 
X(x) = m and ~ X(x) = n, then (5.25) yields 

x e A  x e A ' \ A  

N~\A 

< MO"e°ta'l(e ~- .1)  IAI" tA'\Af" llqo[i ~ 
m! n! 

If we let A--* oo and g-~ 0 and use Lebesgue's dominated convergence 
theorem we obtain the equilibrium equations (5.12). 

To prove (c) we choose again q~ in (5.12) such that q~(X)=0 unless 
X(x) = m and ~ X(x) = n, with A C A'. We write then the r.h.s, of 

x ~ A  x ~ A ' \ A  

(5.12) as the limit when A-~ oo of the expression obtained by replacing 
W((xl,. . . ,xm),V) by W((x I . . . . .  x,,), [Y]A ). If X E A  m, Y~(A'kA)", we 
find 

o2,+"(x Y) 
A\A" 

= zme -~v(x)-pw(x'r) lim ~ dV e-BW(X'V)(rA(YV) 
A -~ oo 

A \ A '  A \ A '  

=zme -~v(x)-~w(x'r) lim ~ dV'K(X,  V') ~ dV"cra(YV'V"). (5.26) 
A --+ oo 

In deriving (5.26) from (5.12) we have used the fact that the convergence 
as A-~ oo is uniform in X and Y; this is seen in the r.h.s, of (5.26) using 

A \ A '  A 

0<= ~ dV" aA(YV'V")< = ~ dV" CIA(YV'V")=~A(YV' ). 

In view of (5.14) and (5.19) we may perform the limit IA'I+0 in (5.26), 
obtaining 

A 

Q(X Y) = zme -~v<x) ~w<x'r) lira ~ dV K(X, V) Q(YV) 
A-+co 

= zme-PV(x) pw(x'r)~ dVK(X ,  V) o(YV).  

5.3. Corollary. Let cb satisfy the conditions of Proposition 5.2. I f  # 
is a probability measure on (X, 5 p) the following conditions are equivalent 

(a) # is tempered and satisfies the equilibrium equations, 
~)) # is associated with a system of density distributions such that the 

inequalities (5.14) hold (for some ~ > O, ~ real) and the correlation func- 
tions satisfy the Kirkwood-SaIsbur9 equations: 

O((x)Y) =ze-eW'(x,'*) ~ plT I dvl"''dvpK((x),(vl,''',vp)lO(y(vt,''''vp))" 
v =° (5.27) 
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(b) Same as (b) but with 7, 6 in (5.14) replaced by the constants 7, 
3 of Proposition 2.7. 

('~) # is associated with correlation functions such that the inequalities 

o(X) N exp ~ [ - ~ n ( X ,  r) z + 3n(X, r)] 
r 

hold (for some ~ > O, 6real) and the Eqs. (5.27) are satisfied. 
(c) same as (~) but with 7, 6 replaced by the constants ?, 3 of Proposi- 

tion 2.7. 
I f  these conditions are satisfied, the correlation functions also satisfy 

Q(xl, ..., x,~_<_ 3" (5.28) 

with the constant ~ of Proposition 2.6. 

Clearly (c) ~ (~) => (b) and (c) => (b) =~ (b) so there remains to prove 
(b)=~(a), (a)~(c) and (5.28). 

We notice first that by iteration of the Kirkwood-Salsburg equations 
(5.27) we obtain the Mayer equations (5.18). Let indeed X = (xl . . . .  , x,,) 
and use induction on m; writing X ' =  (x2, ..., x,,) we find 

Q(X Y) 

: z '~-1 e-~V(X')e -pw(x''(x~)Y) ~ dVK(X ' ,  V) Q((x 0 YV) 
= zr~e-~V(X')e-~W(X',(x~)r)e-BW((x,),Y) 

× ~ dV e-~W((~)'V)K(X', V) ~ dV' K((xO, V') ~(YVV') 

= zme-aV(X)e-aW(x'r)~ dV" K(X, V") o(YV") 

where we have used 

e - ~ ° - ~  K(X ' ,  ~) + K((xO, ~) = K ( X ,  ~) . 

Therefore (b)=~(a) by Proposition 5.2 (b). 
Let now # satisfy the equilibrium equations. We make the important 

remark that the estimates of Section 2 for systems enclosed in a bounded 
region A also hold for an infinite system described by a tempered 
probability measure # satisfying the equilibrium equations. In fact the 
estimates in Section 2 were obtained by decomposing the grand canonical 
probability measure in pieces defined by equations like (2.8), and then 
applying the equilibrium equations. Since V is tempered, the same 
decompositions and estimates apply to it. In particular, corresponding 
to Propositions 2.6 and 2.7 we obtain the inequalities (5.28) and 

0(X) ~ exp ~ [-"fn(X, r) 2 + 3n(X, r)]. 
r 

Therefore (a)~(c) by Proposition 5.2 (c). 
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5.4. Remark. We have assumed above that ~P was a Borel function; 
it follows from Corollary 5.3 that the meaning of the equilibrium equa- 
tions is the same for two Borel functions ~b differing on a set of Lebesgue 
measure zero. We may thus revert to the point of view that ~b is a (class of) 
Lebesgue measurable function and that an arbitrary choice of a Borel 
function in the class has been made in writing the equilibrium equations• 

5.5. Theorem. Let the interaction U = Ue be associated with a pair 
potential q~ which is superstable and lower regular; assume that 

~dxt l  - e-~(~) I < +oo .  

From every sequence (A~) tending to oo one can extract a subsequence (A~) 
such that (for each m and bounded Lebesgue measurable A C IW) the 
following limit exists uniformly in Xl, ..., Xm 

• m !lm OA~(xl, ..., x~) = a2(xl, ..., x~) . (5.29) 
t - e  cfd 

Furthermore the probability measure l a associated with the system of 
density distributions (a'~) satisfies the equilibrium equations• 

If we put on IW (A m) the topology of weak dual of L 1 (A m) (with respect 
to the Lebesgue measure), the set {go: Ilgolloo< 1} is compact by the 
theorem of Alaoglu-Bourbaki. In particular, using Proposition 2.7 we 
find that a subsequence (A'l) of (A1) may be chosen such that (5.29) holds 
in the sense of convergence in the weak topology of L ~° (A m) for all m 
and all A of the form {x ~ 1W" txl < n}, n integer > 0. But using (D 2) and 
again Proposition 2.7 we see that the convergence holds for arbitrary A. 
Notice that we have also for the correlation functions 

IimQA~(Xl, ..., Xm) = Q(Xt, ..., X,,) (5.30) 

in the weak topology of L °° ((IW)m). We shall now use the fact that the 
correlation functions satisfy the Mayer equations 20 

oA(X Y) = za(X)zme -~v(x)-~w(x'r) ~ d V K ( X ,  V) ~A(YV) (5.31) 

where X=(x~ ,  ..., Xm), XA(X)= ~I XA(Xi), and )~a iS the characteristic 
i = 1  

function of A. In particular we have the Mayer-Montroll equations 

QA(X)=zA(X)zme-PV(X)~dYK(X, Y)~A(Y).  (5.32) 

The mapping (xl,  . . . ,x , , , )~K((xl ,  ...,Xm), ") is continuous from (IW) m 
to L ~ ((IW)") with the norm topology. Therefore the convergence of the 
functions ffa in the weak topology of L ~ ((1R~) ") in the r.h.s, of (5.32) as 
A ~  oo implies the convergence of the 1.h.s. uniformly on compacts. 

20 See Mayer [12]. 
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We have thus shown that (5.30) holds uniformly on compacts. As a con- 
sequence of this (5.29) holds uniformly and (5.14) is satisfied (use Pro- 
position 2.7). Finally, taking A ~  in (5.31) we obtain (5.18), and the 
measure # associated with (o'2a) satisfies the equilibrium equations by 
Proposition 5.2 (b). 

5.6. Theorem. Under the same assumptions as in Theorem 5.5, the 
following topologies coincide on the set 27 of tempered probability measures 
satisfying the equilibrium equations, 

(a) the topology of uniform convergence of the cr2~, 
(b) the topology of uniform convergence on compacts of the correlation 

functions, 
(c) the topology of convergence of the correlation functions in L °~ ((lRV) ") 

considered as weak dual of L 1 (0W)"). 
27 is compact for these topologies, and is a simplex in the sense of 

Choquet. 

By Corollary 5.3, every # ~ 22 is associated with a system of density 
distributions (~r2) and correlation functions Q such that 

Q(X) < exp }-'1 [ - ? n ( X ,  r) z + 5n(X, r)] (5.33) 
r 

where ?, c5 are independent of #. In view of the relations 

o'An(Xl'""Xm)= n=O ~ ~-'V A~" - ( - 1 ) ' d x " + a ' " d x m + ' ~ ( x ~ ' " " x " + " )  

the topologies (a) and (b) are thus equivalent. 
Clearly (b) is finer than (c), but since the correlation functions satisfy 

the equations 
Q(X)= z'~e-¢V(x) J d Y  K(X,  Y) ¢(Y) 

convergence in the sense of (c) implies convergence in the sense of (b). 
Associating with # the sequence of its correlation functions, we map 27 

homeomorphically onto a subset Z* of the (compact) product 

[I  {fro e L~((IR~)m) : llfmH~ < ~m} . 
m=0 

A limit point of 22* again satisfies (5.33) and (5.18), therefore Z* is closed 
and 27*, Z are compact. 

Consider the linear space ~ of real measures on (5f, Y) which are 
tempered and satisfy the equilibrium equations. 22 is the intersection of the 
cone • of positive measures in £¢ with the hyperplane {# : #(1) = 1}. 
Notice that if# e 5~, then [#1 e ~o (this follows from the positivity ore -~w 
and the comments after (5.12)). With respect to the usual order on measures 
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1 1 
any two elements  #1, #2 of ~ have a 1.u,b. ~-  (#1 + #2) + ~-  I#1 -/-/21 

1 
and g.l.b. 1 (#t + #2) - ~-  [#1 - #al, these are again in ~ and are therefore 

the 1.u.b. and g.l.b, with respect to the order  defined in ~ by the cone f .  
Since ~ is a lattice for the order  defined by :,of, Z is a simplex 21. 

5.7. Theorem.  Under the same assumptions as in Theorem 5.5, and 
for sufficiently small z the set Z of tempered probability measures satis- 
fying the equilibrium equations consists of a single point. 

If  a probabi l i ty  measure  satisfies the equi l ibr ium equations,  Corol -  
lary 5.3 shows that  the cor responding  corre la t ion functions satisfy (5.27) 
and  (5.28). I t  is then known that  if the following condi t ions are satisfied 

< IS dx  l e - ' ~ < x )  _ 113 - 1 ,  (5 .34)  

z < e -2¢B- 1 [~ dx le -¢*(x) - i 1]- 1 (5.35) 

the corre la t ion functions are uniquely determined (see [14], Section 5.2). 
According to the est imates in Section 2, ~ is an increasing cont inuous  
function of z > 0 and lim ~ = 0; therefore (5.34) and (5.35) hold for small z. 

z--*O 

5.8. Theorem. The translations of IR ~ define a group of homeo- 
morphisms of Z. The set Z o of invariant points of Z is non empty, convex 
and compact; it is a Choquet simplex. 

The set Z o is non empty  by the theorem of M a r k o v - K a k u t a n i  22, 
and is obviously  convex and closed. Let ~ o  be the space of real measures  
on (Y', 6 e) which are tempered,  invariant,  and satisfy the equil ibrium 
equat ions;  270 is the intersection of the cone S o of positive measures  
in 5e o with the hyperp lane  { # : # ( 1 ) =  1}. Let #+ and #_ be the 1.u.b. 
and g.l.b, of #1, #2 s Lfo; then #+ and #_ are invar iant  and therefore 
belong to ~ o  (cf. the p roof  of T h e o r e m  5.6). This shows that  ~ o  is a 
lattice for the order  defined by ~X/o, hence that  S o is a simplex. 
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