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Abstract. A canonical formalism based on the geometrical approach to the calculus 
of variations is given. The notion of multi-phase space is introduced which enables to 
define whole the canonical structure (physical quantities, Poisson bracket, canonical fields) 
without use of functional derivatives. All definitions are of pure geometrical (finite dimen- 
sional) character. 

The observable algebra (9 (physical quantities algebra) obtained here is much smaller 
then the algebra of atl (sufficiently smooth) functionals on the space of states, derived from 
the standard infinite-dimensional formulation. As it is known, the latter is much too large 
for purposes of quantization. As the examples prove, our algebra (9 could be an adequate 
start-point for quantization. 

For simplifying the language the notion of observable-valued distribution is introduced. 
Many concrete physical examples are given. E.g. it is shown that some problems connected 
with gauge in electrodynamics are automatically solved in this approach. The introduced 
language allows to obtain the Noether theorem in a most natural way. 

1. Introduction 

The present state of quantization of non-linear fields theories (cf. [1]) 
may lead to the conclusion that there may be more deep differences 
between linear and non-linear theories that one may infer from the usual 
canonical formalism, based on the following analogy with classical 
mechanics: 

Mechanics Field theory 

Time Time 

Finite dimensional space Infinite dimensional space 
of all possible positions at given time of states of a field at given time 

This formalism, initially using notions not too precise from the 
mathematical viewpoint (e.g. multiplication of functional derivatives) 
has now acquired a fine mathematical formulation (theory of infinite 
dimensional symplectic spaces - cf. [11] and [12]). It leads to very rich 
observable algebra (algebra of physical quantities), Poisson bracket, 
canonical fields etc. Linear theories are not distinguished in this formalism. 
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Yet another formulation of canonical formalism is possible. It arises 
from the geometrical approach to the calculus of variations (as presented 
in the excellent paper by Dedecker [6]). Here another analogy with 
mechanics is used: 

Mechanics Field theory 

Time as 1-dimensional parameter 

Finite dimensional space of positions 
and momenta at given time 

4-dimensional space-time as the space of 
parameters 

Finite dimensional space of field strengths and 
its derivatives in given point of space-time 

That this approach could be physically relevant it was already noticed 
several years ago ([15]) but there were serious difficulties in further 
development of the theory which leads to highly-dimensional spaces. 
It seems more difficult to work in 77 dimensions (as Dedecker's theory 
for vector-field theory requires) than in infinite-dimensional space. 

Recently very adequate for field theories simplifications of the 
Dedecker's formulation have been done (these results will be published 
elsewhere). Using them a beautiful geometrical structure of field theories 
has been discovered. 

In the present paper we leave aside the connection between 
Lagrangean and Hamiltonian formalism (i.e. the Dedecker's theory) and 
we present the theory in its "canonical" form. 

Our construction leads at last to a triplet (if ,  O, ~ )  where: 
1 ° Yt ° is (already infinite dimensional) space of states (whose elements 

are global solutions of field equations). 
2 ° (~ is a Lie algebra of observables (physical quantities), i.e. an 

algebra of very special functionals on ,;(f. It is composed of such func- 
tionals which are integrals of some differential forms. This restriction of 
"admissible functionals" is not arbitrary - it results from the language 
we use (the accepted here definition of observable is very natural one). 
Curious as might seem a very natural functional characteristic of our 
observable algebra has been found ([10]): it is the algebra of local 
functionals on ~ (of some degree of smoothness). 

3 ° ~e is a special vector field subalgebra on 34g. Its elements are, 
in some way, generated by observables. 

The advantages of such approach seem to be as follows: 
1. Our observable algebra is very small in comparison with the 

usual algebra of all smooth functionals on our. In quantization, as it is 
known, only few observables can be quantized directly. So the question 
arises: "which Lie subalgebra of observables can be directly represented 
in Hilbert space?" (cf. [4]). Our formulation answers this question in a 
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surprisingly simple way. E.g. for the Klein-Gordon theory the only 
observables are: generators of Poincar6 group, field-strength and its 
time-derivative (smeared with an arbitrary test-function). There are no 
other observables. 

2. The only algebraic structure of our observable algebra is a Lie 
structure given by Poisson bracket. There is no commutative algebra 
structure (there is no sense multiplying observables). So there is no 
question of"good order of operators" during quantization. 

3. There are no difficulties with the gauge in electrodynamics. Only 
electric and magnetic fields (smeared with test functions) are observables 
(cf. [3]). Potentials are not observables (see Chapter 8). 

4. The most interesting result of this theory is at the same time its 
greatest drawback now: in non-linear theories there are no local ob- 
servables. The only observables are the global ones (i.e. energy, 
momentum, electric charge e t c . -  see Appendix). 

Thus there seem to be two ways out: 
1. Either the solution suggested by [10] (introduction of higher- 

order currents) wilt enable construction of satisfactory algebra of local 
observables for non-linear theories (which may prove to be of considerable 
importance for comprehension of non-linear quantization) 

2. or such satisfactory construction is not to be obtained at all. This 
may be connected with impossibility of quantization in non-linear cases. 

As yet the solution of this problem has not been known to the author. 
The question of equal-time Poisson bracket has already been satis- 

factorily solved by Gaw~dzki in an ingenious paper [8]. 

The author is much indebted to Dr. W. Tutczyjew (who first used the 
notion "multiphase-space") and Prof. Dr. I. Birula-BiMynicki for very 
fruitful discussions. 

Many problems touched here were studied in the collaboration with Dr. K. Gaw~dzki, 
for which I thank him very much. 

Special thanks are due to Prof. Dr. K. Maurin for his encouragements and active 
interest in this work. 

2. Homogeneous Formalism in the Classical Mechanics 

Homogeneous formalism, based on geometrical concepts of Cartan, 
was used already in twenties. We shall present it in a most useful version, 
showing these elements which look similar in the field theory (cf. [15, 16]). 

Let W be a full (i.e. containing time-coordinate) configuration space 
of mechanical system. Take any coordinate chart (t, xi), i =  1 . . . . .  k, 
where t denotes time and x i are any coordinates numbering all possible 
positions of our system (e.g. for the theory of single point-like particle 
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k = 3 and W is simply space-time). Denote by 

T * ( W ) =  U T*(W)  
w ~ W  

the co-tangent bundle over W (composed of all co-tangent spaces 
T*(W),  at all points w 6 W). Every element of T*(W) can be written in the 
form 

E dt - Z Pi dXi 

thus we can take in T*(W)  the coordinate chart (t, x i, E, Pi). There are 
canonical differential forms in the space T*(W): 

~o(t, x i, E, Pi) = E dt - E Pi dxi 

dco(t, x i, E, Pi) = dE A dt - Z dpi A dx  i 

Take in T*(W)  the submanifold ~ given by the equality E = H(t, x i, p~), 
where H is a smooth function of its arguments. If H is Hamiltonian of 
our system then ~ will be called the full phase space of it. ~ is (2k + 1)- 
dimensional and can be parametrized by (t, x ~, pi). 

Take the cut-off of the 2-form do~ to the space ~ :  

7: = do~ ]~  = d H (t, x i, Pi) A dt - Y dpi A dx  i 

/ O H  i ~ H ~) 
= Z ( ~ d x  / x d t +  dp i / x d t - d p i A d x  i . 

Of course dy = d2c0 ]~  = 0. The form Y is degenerated. It can be shown 
that singular curves of ? (i.e. such curves whose tangent vector is every- 
where singular vector for y) are exactly solutions of the dynamical 
problem with the Hamiltonian H:  

Let £2 be such a curve (for shortening the language such curves will be 
called states). Take any parametrization of f2: 

~ (t(z), Xi(z), pi(z)). 

Let the parametrization be non-singular, i.e. 
dt c~ { dxi  a dp~ ~ } 

X =  d ~  ~---[ + y" dz ~x ~ + dr Jp~ :~0" 

Then one can easily compute: 

dt [ OH i c~H dx i ( ~H 
x 

+ Z dr \ -~Pi + dXi -~ --  Z 8X  i dz 4- ~Pi dz dt 

+ Z ~xxr d~ + dx~+ Z .c~pi dr dz 
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In order to satisfy this equality all coefficients in brackets must vanish. 
d t .  

But in this case the vanishing of the derivative ~ implies the vanishing 

dt 
of X, So ~ 4: 0. Thus in order to simplify the equation of motion we 

dt 
can take z = t. Now ~ = 1 and the Eq. (1) reads: 

OH dpi QH dxi = 0 (2) 
0x- ~ + -,--~- = 0 ,  Op~ dt ' 

OH dx  i OH dpi 

Ox i dt  + Opi dt  = 0 "  (3) 

If e.g. H = ~ (Z Pi Pi) + V(x) then 

- d t  - m Pi it means that velocity is equal pi . 

The Eqs. (2) are the canonical equations of Hamilton. The third one is the 
consequence of them. It is the energy-equation: adding to both sides of(3) 

OH 
the term ~ t  we obtain 

dE d H  OH 

at : =  W = - h  - -  

In relativistic mechanics, when we use the Minkowski 's metric tensor 
1 

with the sygnature ( + ,  , , - )  we want to have v ~ = -m- ff and ff = - p~. 

It is therefore much better to use the following notation: 

3 3 3 

co= Z Pu dxu = E dt + 2 Pi dxi = E d t -  Z P i dxi 
#=0 i = 1  i = 1  

where Po = p 0 =  E, x ° =  x o = t. In this notation canonical equations of 
motion are 

d x  ~ a H  dp i OH 

dt  c3p~ ' dt  c~x z 

Taking e.g. as ~ the submanifold satisfying equation pUpu = m 2, Po > 0 
(i.e. Po = H = i/Fro2 + z p~ ~)  we obtain 

d x  i _ OH = Pi _ pi ---dpi -7- O. 

dt  ~p~ E E dt 
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Such an approach is called "homogeneous" because there is no difference 
between time and another coordinates. There is no "motion" in this 
picture, but only singular curves. The whole "dynamics" is given by the 
phase space ¢~ and 2-form ?. 

Now we pass to physical quantities (observables). They are such 
functions (i.e. differential 0-forms) on the space ~ ,  which are constant on 
states (singular curves of ?). In this approach "position of a particle" is not 
an observable, but "position at time to" is. Take e.g. the theory of single 
relativistic particle, as presented above. States are here straight lines: 

t-~ (t, X~o + P@ (t - to), p~) . 

The observable "position at to" now reads: 
pi 

Xlo(t, x J, p j) = x' - ~ -  ( t -  to).  

The function p~ is also an observable because in this case the momentum 
is a constant of motion. 

It can be shown that the function f on ~ is an observable if and only if 

d f = X -A ~/ 

where X is a vector field. But we have immediately: 

0 = d 2 f  = d(X -~ ,/) = - {X  _A d7 - d (X -j  7)} = - LCx?, 

i.e. the field X preserves ? (the one-parameter group of diffeomorphisms 
generated by X preserves 7). Such fields are called canonical ones. 

If we have two observables f and g: 

d f  = X - A T ,  dg= Y J y  

then the Poisson bracket 

{ f ,  g} = 5fxg 

is also an observable. This definition is completely equivalent to the 
usual one. E.g. in the last example 

= J T .  dpj = ~ -J 7, dpo Ot 

Thus 

x i ' = - ~ - ( t - t o ) )  {p~,X~o } ~(X,o)= ~-x7 ( -- =6} 

Q i _ pi 
{po, X~o} = ~ ( X , o ) -  E 
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Let us do at last the following construction. 
Denote by D o the distribution (in the geometrical meaning of this 

word) of all singular for 7 subspaces tangent to N. As we have seen D O is 
here 1-dimensional and solutions of our mechanical problem are also 
integral curves for D °. Thus we can pass to the quotient N ' =  N / D  °. 
Elements of N' are curves in N. Because every such a curve pierce the 
subspace t = const at precise one point, there is one-to-one correspond- 
ence between points of N' and points of the subspace t = const. It means, 
that if we fix the time the system (x i, Pi) is a good coordinate chart in N'. 
Because D o is singular for ?, we can project y to the form 7' on N'. This 
last form is already non-degenerated (whole degeneration lies in D°). 
In coordinate chart (x i, p~), connected with the fixed time t, the form 7' 
can be written as 

y '=  -- Z dpi A dx  ~ . 

3. General Scheme of Multi-phase Formalism. Gauge 

Leaving aside the problem of concrete method of constructing the 
phase space for concrete field equation (cf. examples in Chapter 4 and 8) 
we shall formulate the "axiomatic" canonical theory, analogous to the 
homogeneous formulation of mechanics. We take the following 

Definition. By the n-phase space we mean the couple (N, Y) where N 
is m-dimensional (m > n) countable at infinity, smooth manifold (by 
smoothness we shall always mean that of C~-class); y is an (n + 1)- 
differential closed form (i.e. d7 = 0) in N. 

The form 7 defines the mapping 

TvtN)~ X v ~ X ? : =  X p ~ y v e  fik T*(N)  

( b y / ~  T*(N) we mean the n-th exterior power of the cotangent space 

T*(N), i.e. the space of n-covectors at p). 
\ 

Every vector field X in N defines therefore the n-form X*. For 
every p e N we distinguish the subspace of n-covectors obtained in 
this way: 

d,:= T,(N)-J ?, A TY(N). 

Now we seek the maximal tangent subspaces anihilating ~p. The family 
of all such subspaces at p e N will be denoted d£.  So 

(E~d~)~(c~ lE=O forevery c~esecp). 
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Now submanifolds whose tangent spaces belong to d ~  are of interest. 
For  the field theory or mechanics such submanifolds will be actually 
solutions of the mot ion equations. So the), are states of the field or 
mechanical system. The notion "state" is used here in the sense Einstein 
applied it - state means the whole history of the system. In quantum 
physics such a point of view corresponds to the Heisenberg picture. 

The following definition seems to be natural:  
Definition. By the state in the n-phase space (~', ?) we mean any 

maximal submanifold having property that every its tangent space 
belongs to d ' .  The set of all states of a given theory will be denoted 
~ ( ~ ,  7) or simply ~e. 

One can easily check that states are maximal submanifolds in 
having the following property:  

v - ~ = 0  

for every n-vector field v tangent to this submanifold. 
In order to omit  pathological cases we take the 
Definition. The n-phase space (~,  7) is called regular one if all dimen- 

sions of all spaces belonging to ;~'£ are equal for all p e N. This common 
dimension will be denoted dim d .  

F rom now on we shall always assume the regularity of (~,  ?). Thus 
dim~2 = d i m d  for every state ~ e ~ .  

The canonical structure of (N, ?) distinguishes the following distribu- 
tion: 

DO: = {Xp e Tp(~) : Xp -~ 7p = 0}. 

It will be called the primitive gauge of the theory. The primitive gauge 
fields (i.e. fields belonging to this distribution) are precisely such fields 
for which X * =  0. 

Observe that D ° C E for any E e d~.  Thus D ° is tangent to every state 
passing by p. 

Lemma 1. The primitive gauge distribution is invotutive, i.e. if X,  Y e D o 
then IX, Y] e D O (by [X, Y] we denote the Lie bracket of fields X and II). 

Proof. [ X,  Y] J ? = ( G f x Y ) - d T =  . S x ( Y J ? )  - Y ( G°x 7) 

= 0 -  Y ~ ( X - d d ? - d ( X J ? ) ) . ( - 1 )  "+I = 0  1 

Thus (locally) there exists an integral congruence of D O . If it exists globally 
then we can pass to the quotient space ~ ' =  ~ / D  °. 

z We use the following interior product: <u, X -j ~> = (u A X, @. In this convention. 
the Lie derivative is: ~q° x ~ = ( -  1) ~ {X ~ d~ - d(X -~ c~)} if ~ is an m-form (cf. definition of 
Lie derivative in [5] and [-13]). 
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In virtue ofT[D ° = 0 the form ? can be projected to the n-form 7' on N'. 
We can thus construct a new n-phase space (~',  ?') without any primitive 
gauge (cf. [15] and [16]). 

By full gauge of (~, 7) we mean the distribution D given by the 
formula 

D p =  0 Tp((2). 
p e.O 

0 ~ 3 ~  

Of course D o C D. 
From the definition one can easily conclude that D is also invotutive. 

But we cannot pass to the quotient because ? cannot, in general, be 
uniquely projected on the quotient space. In this case we can rather take 
any concrete gauge, i.e. any submanifold transversal to the gauge, 
covering the whole quotient space (in the calculus of variations e.g. 
classical theories of Caratheodory or Lepage can be obtained by taking 
the concrete gauge in the full Dedecker's space. This result will be 
published elsewhere). 

4. Examples of Multi-Phase Spaces 

1. P h a s e  Space  (1-phase Space)  in M e c h a n i c s  - as in Chapter  2. 
2. M e c h a n i c s  wi th  Addi t ional  Gauge. Take W g =  W × R, where W 

is taken as in Chapter 2. 
Using the coordinates (t, x ~, cp) we take 

7 = d E  A d t  - Z dpi A d x  i + dq A d~p 

in the submanifold ~ C T*(Wg)  given by the conditions: 

E = H( t ,  x i, Pi) 

q = Q = const.  

In local coordinates (t, x i, ~p, Pi) in ~ the space D ° is now spanned by 
0 c3 0H 0 0H c~ 

vectors ~-~p- and - ~  + 0p~ c~x ~ c~x i 0pi "States are now 2-dimen- 

sional. The reduced phase space ~ '  is equal to that of Example 1. 
0 1 2 3 3. Scalar  Fie ld  Theory .  W = M × R with coordinates ( x ,  x ,  x ,  x ,  (p), 

n = 4 (the coordinate ~p will describe the strength of the field). 
F rom now on we shall often use the Einstein's summation-convention. 

4 

In the s p a c e / k  T * ( W )  there are following canonical forms: 

co = r l d x  ° A .-. A d x  3 + ~l u d x  ° A "" A d~o A -.. A d x  3 

# 

dco=dr l  A d x  ° A ' "  A d x  3 + drl ~ A dx  ° A "" A d~p A . . .  A d x  3 

(by A we denote the /£ th  place). 
# 
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4 

As N C A T * ( W )  take the submanifold given by the formula 

r I = H(x",  qh r/u) 

and 

y = d¢ol~ = d H  A dx  ° ^ ... A dx  a + dr/" a dx  ° A . . . / x  dq~ A ... A dx  a 

" (4) 

(~__q~c, o O H )  = ~ dr/" A dx  ° A . . .  A dx  3 + drf' A dx  ° A . . .  A dcp A . . .  A dx  3 . 
IA 

In similar way as in mechanics one can show that every state 0 can be 
parametrized by space-time coordinates x": 

(x~)-, (x~, ~0(x~), r/~(x~)). 

The 4-vector tangent to ~ is equal v = X o A X 1 A X2 A X3, where 

0 8~o O Or/~ 8 
X~= Ox---;- + 8x  ~ 8 ¢  + 8x" Or~ ~ 

The equation of mot ion can be easily computed:  

8 H  OH . ~ 8 H  Oq) dx" + Otp OH 811 ~ dx  u 
v - ~ 7 =  ~-~-~ d q ~ + - ~  " drl - 8q~ Ox" --O-fi-x ~ dr/u Or~ ~ 8x  ~ 

- 8 x  - - ~  - 8x  ~ Ox" 8x" 8x  / d x ~ = O  

(to the last terme the Einstein's convention is not applied). Hence 

Oq~ 8H Or/u OH 
8x----;- + - -  = 0, = 0 ,  (5) 

&f '  O x u 8 q~ 

OH 8~o OH 8~1" ( Oq) &l" Oq~ &l" i 

8qo 8x  u + 811 ~ 8x  u + ~' -Ex ~ Ox ~' ?x" Ox~/=0" (6) 

It  can be shown that here also "energy equations" (6) are consequence of 
"canonical equations" (5). 

If we put e.g. H ( x  ~, q~, r/~') = 1 ~, 2 z - ~(r/,r/ + m  q~ ), where r/u=g..r/~, g , ,  
is Minkowski 's  metric tensor in space-time, then Eqs. (5) read: 

8~0 &l.  
8x" = r/u' 8x" = - rn2 q~" 

It is the theory of Klein-Gordon field: 

([]  + m 2) ~0 = 0 

where [ ]  = 0 .8  ". 



Finite-dimensional Canonical Formalism 109 

4. Etec trodynamics .  We take W =  T * ( M )  where M is space-time. 
Taking any coordinate chart (x ~) in M we have automatically the 
coordinate chart (x u, A0 in W: 

A = A .  d x  ~ ~ T * ( M ) .  

The covector A plays role of the electromagnetic potential. The space W 
plays role of the configuration space. As the phase space ~ we take the 

4 

submanifold in A T*(w) composed of all the 4-covectors of the form: 

h d x  ° A ... A d x  3 + h "~ d x  ° A ... A d A  u A ...  A d x  3 

where the following "constraints" are imposed: 

h = H (x ~, A u, h u ~) ; h u ~ = - h u *'. 

Take 7 = dcol~ = d H  /~ d x  ° A . . ,  A d x  3 + dh "~ A d x  ° A , , .  A d A ,  A . . .  A dx  3 
,o 

4 

where co is canonical form in A r * ( w ) .  

The space ~ is 14-dimensional with coordinates (x", A u, h u~) (only 6 
coefficients of antisimetric tensor h u~ are independent). 

The canonical equations can be easily obtained (we leave out the 
computation): OH 

OuA~.-  OvA u -  OhU~ , 

OH 
O~h ~ - 

OAu 

3H DH 
Denoting ~ = f ,~;  8Au =ju we see that our equations are nothing 

but equations of general non-linear electrodynamics (cf. [2, 3]). Specifying 
the theory to the case of Maxwell electrodynamics with vanishing currents 
we obtain: 1 OH 

H = ~ hUVhu~ ; f~,~ = O h ~  - h,v ; .j~ = 0 

f . ~  = OuAv - 3 , A  u 

O~ f"~" = O. 

5. Canonical Fields. Cauehy Surfaces 

If the complete vector field X leaves the form y invariant: 

~ x  7 = 0 (7) 
then the group of diffeomorphisms {GX}t~R generated by X carries 
singular subspaces of y (elements of d ' )  without losing this property. 
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It means that {G x} transform states onto states. So X induces a group of 
transformations {~¢x} in ~ .  If ~ has a differentiable structure (which 
can be often defined by similar methods as in F7] or [9]) this group of 
transformations defines in ~ the vector field X. 

Fields satisfying (7) will be called canonical fields. So we have shown 

Proposition 1. Every complete canonical field in ~ generates a group 
of transformations and possibly a vector field in ~¢'. 

Let X be any canonical gauge-field. The group {Nx} generated by X 
is trivial (gauge fields are tangent to every state) so the correspondent 
field X in ~ vanishes. 

The following fact is true 

Lemma 2. 1. I f  X 1, X2 are canonical then IX  1, X2] is canonical, too. 
2. I f  X is canonical and Y-canonical gauge field then IX, Y] is canonical 

gauge field. 

Proof. 1. 2Ptxl,x217=(~xl S?x2- ~x2 CSxl)y=O. 

2. IX, Y] = lira 1 {(GX). Y -  y}, where (GX), is the tangent mapping 
t~O F 

generated by (GX). Because X is canonical field, then (GX), Y is also 
tangent to every state i.e. is a gauge field. Thus IX, Y] is also a gauge 
field. It follows from 1. that it is canonical. 

This result means that the space of canonical fields is a Lie algebra 
and that canonical gauge fields form its ideal. So the quotient space 

~ ' =  canonical fields/canonical gauge fields 

is a Lie algebra. If we have in ~ a differentiable structure then elements 
of ~ '  generate vector fields in ~ .  Denote by ~ the set of all thus obtained 
vector fields in H .  

Theorem 1. The correspondence ~<r'~07 is an isomorphism of Lie 
algebras 

Proof. It is a homomorphism as a consequence of the fact that the 
correspondence of canonical transformations Gx--,N x is a homo- 
morphism of groups. Now let 2 e ~ '  be in the kernel of this homo- 
morphism. It means that for every representant X e Jf and every state f2 
we have 

It means that X is a gauge field. 
The elements of ~e will be called canonical fields in ~ff. 
Very often we are interested in the minimal set of information which 

enables to distinguish the concrete state O e Jr.  In mechanics it suffices 



Finite-dimensional Canonical Formalism 11 1 

to know one single point p e f2 (the initial position and momentum). In the 
field theories the field equations are, in general, of hyperbolic character 
so Cauchy data determine the whole state. In our axiomatic formulation 
we take the following 

Definition. The submanifold C C ~ is called the Cauchy surface for 
(.~a, ~) if C c~ £2 is (n - l)-dimensional for every f2 ~ 240 and determines 
uniquely the state - i.e. 

( ~  c~ C = ~22 c~ C)~(fa l  = fa2). 

Example. In the field theory ~ is often a bundle over space-time M. 
If 22 C M is a 3-dimensional space-like surface, then the reduction Nr 
of ~a to Z is (for hyperbolic cases) a Cauchy surface. 

Definition. The ( n -  1)-dimensional submanifold c C N is called the 
initial surface if there exists a unique state f2 ~ ~ containing c(c C f2). 

If C is Cauchy surface for (N, y) then obviously f2c~C is an initial 
surface for any ~ e 24 ~. 

We do not solve in this paper global problems, thus the needed global 
properties of our space must be assumed. The most natural way of doing 
it is to assume that there exists in ~ a suitably rich family cg of initial 
surfaces, which satisfies some axioms. Because these axioms will be used 
only in several proofs, we shall formulate them in Chapter 1 1. Now we 
take the following 

Definition. Elements of cg will be called "admissible initial surfaces" 
(a.i.s.). 

Examples. 1. For  good hyperbolic field theory the family 

cg = {g2c~,~r : f2 e ~g,~, 22 is space-like surface} 

satisfies axioms of Chapter 1 1. 
2. In mechanics the set of all points of~ '  (0-dimensional submanifolds) 

also satisfies those axioms. 

6. Local Observables. Poisson Bracket 

If X is a canonical field then 

( -  1) n ~ x ~  = d(X~ ~,) = O .  

It means that (locally) there exists a (n - 1) form ~ for which 

dc~ = X -J y . 

We take the following 
Definition. We say that the field X is generated by a local observable 

if there exists (globally-) the (n - 1)-form c~ which satisfies conditions: 
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a) the cut-off of e to every a.i.s, c e cg (i.e. el c) has compact support. 
b) do~= X-JT .  
Let ~ be as in the above definition. For  every a.i.s, c ¢cg put 

C 

The following is true 

Theorem 2. The value of  <c, ~) does not depend on the particular 
choice of  c C f2. 

Thus we can denote for c C ~2: 

= <c, 

Definition. The functional 

will be called a local observable (represented by the form e). The set 
of all local observables will be denoted (9o(N, 7) or simply (90. 

We shall also use the following notation: O~ = ~ (the class of all forms 
giving the same functional). 

Theorem 2 results, practically, from the field equations: 

d(c¢ I E2)= d~lg2 = ( X "  7)1Q = 0 .  

It means that every local observable is given by the conservated vector 
current elf2 (for detailed proof see Chapter 11). 

Remarks. If e represents a local observable then 
1. for any (n - 2) form 2 for which supp(21c) is compact for any a.i.s. 

the form e + d2 represents the same observable because <c, d 2 ) =  0. 
2. If c5 is any (n - 1)-form vanishing on every a.i.s. (i.e. ~ [c = 0 for c ~ qf) 

then e + 6 represents the same observable. 
For  illustrate the Remark 2 take 6 = (Y/x X)-J7 where Y is a gauge 

field and X - any vector field in ~ .  If u is any ( n -  1) vector tangent to 
some a.i.s, at the point p e ~ ,  then u/x Yv is an n-vector tangent to a state 
passing by p. Then 

<u, (Yp A x p -  = <u A = 0 .  

The following fundamental fact is true: 

Theorem 3. I f  X I and X 2 are generated by the same observable O~ ~ (9 0 
then they belong to the same class modulo gauge fields. It  means that an 
observable generates a unique element of ~ ' ,  i.e. a unique canonical field 
on ~ (for the proof  see Chapter 11). 
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If O1, O2 ~ (90 are local observables generating canonical fields X~ 
and if ~ are their representants, we put 

{cq, 0~2} = CSxl ~2 = ( -- 1)"- I {X 1 ~ da 2 _ d(X1 __1 ~2)} 

= ( -  1)"- 1 (X1 A X z ) - ~ 7 + ( - 1 ) " d ( X I ~ a 2 ) .  
(8) 

The form {~1, 0~2} has obviously compact support on every a.i.s. 
Moreover we have following 

Lemma 3. d{el, e2} = IX1, X2] A 7. 

Proof. d {cq, ~2} = d(~LPx, ~2) = 5¢xl (da2) = 5~x~ (X2 J y) = IX,, X2] -Jy 

The field [X1, X2] is also canonical. Thus {~1, e2} represents an 
observable {cq, ~z}" E (9 o. This observable does not depend on particular 
choice of el and e2 : if we take another representants so only the second 
terme of (8) wilt change. It follows from Remark 1 that {al, a2}' do not 
change. The observable {e~, ~z} is also independent on particular choice 
of fields generated by observables O~. It can be concluded from Theorem 3 
and Remark 2: if we add to X~ gauge fields ~ the only result will be 
adding to {~ ,  aa} terms vanishing on every a.i.s. 

Thus {~1, ~2}" depends only of O 1 and O z. We shall denote 

{cq, ~2}'= {O1, 02}. 

Definition. The observable {O1,O2} 
bracket of 01 and O 2. 

From Lemma 3 we have an immediate 

will be called the Poisson 

Corollary. I f  01 generates X 1 and 02 generates X 2 then {01, 02} 
generates IX1,322]. 

To collect the above facts we write: 

{O1,02} = (~xi c@'= ( -  1)"-1 {(Xl/x X2) ~ }'}'. (9) 

We could say that {O1,02} gives the change of an observable 02 when we 
move on trajectories (in J(f) generated by O1. 

The set (9 o has obviously linear structure. The Poisson bracket is 
bilinear mapping. Moreover the following is true: 

Proposition 2. The space ((90, { }) is a Lie algebra, i.e. : 
1. { o l ,  o2}  = - {o2 ,  o l }  

2. {O1, {02,03}} + {02, {03, O1 }} + {03, {O1,02}} = 0 (zero observable). 

Proof. 1. is obvious from the expression ( -  1) "-1 {(X 1 A X2)J7} ". 



114 J. Kijowski: 

2. {"1, {"2, "3}} '+  {"2, {"3, "1}} "+ {0{3, {"1, "2}}" 

= { < ,  {~2, . 3 } } ' -  {.2, {~,, ~,}}'- {{~,,.~}, .3}" 
= { & ,  & 2 . 3 } ' -  { & ~ & , . 3 } ' -  { ~ m . , , = ~ } "  

= { [ (~x ,  ~ex2 - ~°x= & )  - ~fx,,~=l] "3}' = 0 .  

The mapping (9 0 ~ O=--,~fo~ e ~e, where 5/o~ is canonical field in a f  
generated by the observable O~, is a homomorphism of Lie algebras. 
It follows immediately from Lemma 3: 

It is worth noticing that the kernel of this mapping is composed of 
constant observables: 

Theorem 4. I f  Yfo, ~ :~ is equal zero then there exists a number: a e R 
such that 

(ra, o~) - a  

for every f2 e Jr' (proof in Chapter 11). 

7. Current Algebra. Noether Theorem 

In theories of Lagrangean origine 7 is always an exterior derivative 
of the Lagrangean density co (cf. [6]): 7 = do). Vector field X which leaves 
Lagrangean invariant (5°xo)=0) is called the symmetry field. In this 
language the Noether theorem reads: 

Theorem (Noether). Every symmetry field generates on every state the 
conservated current. 

Proof. T a k e ,  = X J co. Then for any state f2 we have: 

d ,  = d(X-~ o)) = ( -  1) "+1 ~xco + X - 3 d o ) =  X - 3 7 .  

Thus d ,  lf2 = (X-3 y)f2 = 0. 
I f ,  had compact support on every a.i.s, then the formula dc~ = X- J  7 

could be read: X is generated by local observable. But generally it is not 
true. Such forms represent "global observables" like energy, momentum, 
electric charge etc. 

Definition. By "current" or "global observable" we mean the func- 
tional (c, X-J  o)), where X is a symmetry field. Such a functional is, in 
general, well defined only on a subspace of ~4 ~ and not on the whole space 
(cf. Chapter 8). The space of all currents will be denoted J .  

The same construction can be made for symmetry fields and global 
observables as in the precedent chapter for canonical fields and local 
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observables. Note, for instance, that symmetry fields are canonical. They 
folan a Lie algebra: 

~ x , , ~ l c o  = (~x, ~ - ~e~, ~ x ) c o  = O. 

For two currents represented by forms c~, fl and generated by symmetry 
fields X~, Xe we put 

{~, fl} = ~x~fl= 2)xo(Xp -2 co)= [x~, x~]-Jco + x~-2 (~xo(~) 

= [ x ~ ,  x e]  -~ co 

It means that J is a Lie algebra homomorphic with the algebra of 
symmetry fields. 

Our definition of a current bases on the fact that we have chosen 
a concrete primitive form co for 7. It is an additional structure in our 
phase space (~, },) and enables us to take a concrete representant X-2 co 
instead of a whole class of forms. 

When X is a symmetry field and O~ ~ (9o a local observable, then ~ x ~  
has compact support on every a.i.s., for any representant ~ of O~. It 
enables us to define full algebra of observables 

¢=J®Oo 
putting {fl, Q} = {£¢xC~} ' ~ (90, where fi ~ J is generated by X. J and (90 
are subalgebras of (9 and (9 o is even its ideal. 

8. Examples of Observables. Observable-valued Distributions 

1. In mechanics (n = 1) observables are 0-forms, i.e. functions. The 
condition d~]f2 = 0 means that they are constant on whole states. They 
are therefore constant of motion. 

8 
Let us study the condition for ~ -  being the symmetry field: 

Y o c o =  - _2 d x "  -~ ~ p ,  + _ ~  _2 ( d p ,  A d x  ~') 

= - d P ° - - ~ t  d t  + d p o = O .  

0 
it  means that -~- is a symmetry field if and only if the Hamiltonian does 

not depend on time. 
2. Take the Klein-Gordon theory: 

co = - ½ (r/~/" + m z (p2) dxO A . . .  A d x  3 + rlu d x  ° A .." A d(p A . . .  A d x  3 , 

# 

7 = - (r& drl u + m 2 (p d(p) A d x  ° A . . .  A d x  3 + drl u A d x  ° A . . .  A d(p A . . .  A d x  3 . 
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It is easy to compute (cf. Appendix) that the Lie algebra of Poincar6 
group is an algebra of symmetry fields of our theory. So the current 
algebra is 10-dimensional. For instance the energy E generated by the 

field ~ is represented by the 3-form: 

1 u 
__leo= -~(rlut t +rn2 q~2)dx 1AdxZ  A d x  3 

e = --~ff-x o 

3 

+ y ,  t f  d x  1 ^ . . .  A & o / , . . .  ,', d x  3 . 
i = 1  i 

Take as a Cauchy surface the reduction of ~ to the space-like surface Z 

given by equation x ° =  const. Using the canonical equations G =  ~x ~- 

we obtain for any state 0 ~ YF: 

f l  u 2 2 ~ }  
(f2, E )  = 5 ~ = I { 2  (flu tl + m ~p ) + tf rl, d x  I A d x  2 A dx  3 

I2c~C ~ i = 1  

' ) = ~ ~ - ; ~ )  + m 2~2 d~x. 

We see that it is wetl defined (finite) only for states sufficiently rapidly 
vanishing at infinity. 

case of wave-equation (m = 0) also ~ is a symmetry In the field. The 

correspondent current is: 

f l -  ~oo= Z(-1)~*tlU dx  ° /x . . . . . .  t, dx  3 , 
&p A 

,u 

" & P  3 <a,/~> = j , °  d~' Ad~ ~,, d ~  = !yZ~o d , , .  
2 

Now we pass to local observables. Let f : M-+ R be any solution of 
Klein-Gordon equation: ([3 + m 2) f = 0. Take the field 

~ 0 
x~= o.f. @--7 + f  Oq~ 

It is a canonical field: 

Xf-T~=(- -17  u .c3. f )  dx  O A . . .  A d x  3 +c~uf . d x  O A . . .  AdAqO A . "  A d x  3 
# 

_ m Z f . q ~ . d x O  A . . . / ~ d x 3 _ ( - 1 ) ~ ' f . d r l . / ~ d x O  A . . . . . .  A d x  3 
A 
# 
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and one can easily obtain d ( X  I -2  ~,)= 0. Take the 3-form 

~I = Z ( -  l) u (q~ . c?~ f - f . rl ~) d x  ° /x  . . . . . .  A d x  3 . 
A 
# 

The reader can check that de I = XI-J 7- 
If f has spatially-bounded support, then so does ~I" tn this case c~ i 

represents a local observable which we shall denote O I. Integrating over 
the surface t = const we obtain 

( -  - (f2, 0 i )= ! qo. Ox o f d 3 x =  S(f~u~0)do'U 

(the last expression being valid for any space-like surface 2;). Taking in 
particular f satisfying the following Cauchy conditions: 

Of 
f l Z = 0  -~}-~6- Z = t p  

we define the observable: 

<o, 0(27, ~o, ~)> = j" ~o. ~ d3x. (i0) 
S 

Taking f ] Z = - )~, c~-~#f o- Z = 0 we define 

0q~ 
( o ,  o ( ~ ,  tl0, )0) = ! - ~ -  • z d3x. (11) 

The above observables can be called "the value of q~ at the time x °, 
smeared with test function ~"  and "the value oft/o at the time x °, smeared 
with Z". If the functions ~, Z are very close to Dirac delta: 6(x  - x o )  then 
the value of (10) and (t 1) is very close to (p(x °, Xo) and r/o(X °, x0). Thus 
similarly as in quantum field theory only "smeared" fields are observables. 
To simplify the notation we can introduce the observable-valued 
distributions: ~b' @(2;) --. (9, 

0 o  ~(27)-~ (9. 

(~(Z) = C~(27) with the usual topology) setting: 

S (o(x) ~(x) d3x:= cp(~) = o(x, ~o, ~), 

[. Oo(X) z(x) d3x:= 00(Z) = 0(27, t10, Z). 

The Poisson bracket of our observables can be easily computed: 

{0 i ,  Oo} = ((XI /, Xo)-2 7)" = 22 ( -  1)" (9" Ouf - f -  OUg) d x  °/~ . . . . . .  A d x  ~ , 
A 
g 

(f2, {o~, 0o}) = .( g~uf  daU. 
$ 
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In particular: 

{O(Z, ~o, ~,), O(Z, q~, ~2)} = 0 = {O(Z, Uo, Zl), O(Z, Uo, Z2)}, 

{O(Z, ~o, ~), O(Z, '70, Z)} = ~ ~" Z d 3x.  

If we strip these formulae of test functions ~p, Z we obtain at last: 

{ 0 ( x  °, x), 0 ( x  ° , y)} = 0 = {~o(X ° , x), ~0(x  ° , y ) } ,  

{ 0 ( x  °, x), #o(X ° , y)}  = 6(x  - y ) .  

3. The electrodynamics with potentials is not a hyperbolic theory. 
But if we replace Cauchy-surfaces by space-like surfaces we can define 
observables in the same manner as in Chapter 6 and 7. Take e.g. Maxwell 
electrodynamics with vanishing electric current: 

y = ½f,,, d f  ~ / x  dx ° ix... A dx 3 4- d f  "~ A dx  ° A- . .  A d A  u A . . .  A dx 3 . 
"v 

Let 9u be any solution of canonical equations: ~?u(3u9~-0~9,)=0. 
Denote hu,= 0u9 , - 0 , g u .  Take the vector field 

x . =  + h 
Ofu---T. 

One can easily check that Xg is canonical field. The corresponding 
observable can be represented by 

~o= Z ( - 1 ) ~ ( A # h U ~ - g u f U O d x °  A . . . . . .  /xdx 3. 
A 
v 

For X given by equality t = c o n s t  take g~[X=-6~.~p;  ho~]Z=O. We 
obtain the observable: 

<D, O(S, E k, ~)> = ~ f ko .  ~p d3x = ~ E k "~p dSx,  
2 ,Y. 

i.e. the k th component of electric field (U) smeared with the function ~. 
Taking g~IZ = 0, go jS-arbitrary we obtain the integral 

A~h ~'° d3x. (12) 

One might suppose that it is value of potential, smeared with h u°. But 
functions h u° are not arbitrary. They satisfy Maxwell equations which 
read: 

O#hU°= ~ h ' ° = O .  
i = 1  
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It means that  the vector  field (h i°) on 2; is a rota t ion:  

h i° = 2e i~k c~j Zk- 

If the functions Xk have compact  supports  then integrating by parts  we 
t ransform the integral (12) on to  the following expression: 

2 y e~Jk(Ojzk)A, d 3 x  = - 2 y #k  Zk(0~Ai) d 3 x  
2 

2 I: 

where B k is k th componen t  of magnetic vector. Taking Zk = 3 P ' z  we 
obtain the observables:  

(f2, O(Z, B ~', Z)) = ~ BV" z d3x . 
Z 

The Poisson bracket  can be easily obtained:  

{c~,, 0@ = Z (h"~ • 0 ,  - h"~g~) ( -  1) ~ dx  °/x . . . . . .  /x dx  3 . 
A 

where 

Using this formula and taking h ~° [ I2 = 2aP. e ~jk 8a Z = 2eiJ" c~ Z, gi[ 2; = 0, 
h i ° l X = 0 ,  OilX= --c~ki'tp we have 

(f2, {0(2;, B v, Z), O(Z, E k, ~p)}) = - ~ evkJ(OjZ), tp d3x.  (13) 
J~ 

Using observable valued distributions Ek(x), l~P(x) we can write (13) as: 

{/~(x °, x), ~ ( x  °, y)} = -~ 'kJc~(x  - y). 

In the same manner  we obtain 

{/~(x °, x),/~i(x°, y)} = 0 = {/~i(x °, x),/~J(x °, y)}. 

It is complete  set of equal-t ime Poisson brackets for field strengths 
(cf. [2]). 

9. Dual Cauchy's Problem. Difficulties in non-linear Theories 

Let C be a Cauchy surface in ~ .  The Cauchy's  problem consists in 
finding the state f2 when we know C c~ Q. 

Now let be given an ( n -  1)-differential form c~ on C. Fo r  any state 
f2 ~ ~ we can define the quant i ty  

~ n C  
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We obtain in this manner a functional on the space .~. The problem 
arises: "for which forms e this functional coincides with an observable?". 
T h e  problem of finding such an observable when we know e can be 
called the dual Cauchy's problem. 

In non linear theories the dual Cauchy's problem is very often, 
unfortunately, unsolvable because local observables do not exist. As it 
will be shown in the Appendix (for the theory of self-interacting scalar 
field ([Z + m2)cp = 2q~") only symmetry fields are canonical ones. So the 
observable algebra consists only of global observables. Similar situation 
we meet in another non-linear theories. It may lead to the following 
conclusions: 

1. Either the solution suggested by [10] (the introduction of higher- 
order currents) will be satisfactory - in this case very useful suggestions 
about  quantization of non-linear theories can be obtained 

2. or there is no satisfactory solution. It can be closely connected 
with difficulties of non-linear quantization. 

In any case it seems that the further investigations of canonical 
structure of classical theories can give a deep insight into problems of 
quantization. 

10. Concluding Remarks 

If we leave aside the geometrical beauty, an explicit relativistic 
invariance (there is no necessity of distinguishing the space-like surface 
for the definition of Poisson brackets) and other such advantages, our 
theory can be treated as a method of obtaining, for a given classical 
theory, the startpoint for quantizing it, namely the triplet (~ ,  (9, ~) .  
Similar triplet is obtained in usual, infinffe-dimensional formulations 
(of. the beautiful theory of Segal [14]). The difference between those 
formulations and the present one is that our algebras (9 and ~ are much 
less. Here observables are not arbitrary functionals on J f  but very 
special ones, which are integrals of very special differential forms. 

Such reduction of the space of observables enables us to formulate 
the theory without functional derivatives (which lead to well known 
difficulties). Furthermore such reduction is very convenient in quantiza- 
tion when, as it is known, only some subalgebra of usually obtained 
observable algebra is represented directly in Hilbert space. The question 
"which subalgebra is such a base of quanfization" does not exist in our 
formulation: In Klein-Gordon theory (9 contains the Poincar6-group 
generators and smeared fields only. In electrodynamics - Poincar~- 
group generators and smeared electric and magnetic fields only (no 
potentials !). It seems that our algebra is itself an adequate observable 
algebra for quantization. 
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Algebra (9 has moreover a very nice property that it has no commu- 
tative structure (in standard formulations observables, as functionals, 
can be multiplied. In our theory such multiplication has, in general, no 
sense). So there are no difficulties with a "good order of operators" 
during quantization. 

It is worth noticing that observables are represented by classes of 
differential forms and are not forms themselves. Thus the whole informa- 
tion included in the observable is its value on states: (f2, 0 ) .  This point 
of view is implied by the mathematical structure of the theory: the Poisson 
bracket for forms {~, fl} has not the demanded properties (cf. Proposi- 
tion 2). So there is no difference between "canonical" and "symmetric" 
energy-momentum tensor (as long as it does not enter into dynamics, 
as in General Relativity). Only energy, momentum, electric charge etc. 
are observables and not their densities. 

11. C~-axiomaties. Proofs 

We take the following system of axioms which must be satisfied by 
our family cg of a.i.s.: 

1. For  every p e N and Q passing by- p there exists c ~ cg such that 
p e c C O .  

2. If (n - 1)-dimensional submanifold c C ~ has the property that for 
any p e c there exists a cpeCg such that c n c  v is a neighbourhood of p 
(in c) then c E ~. 

3. If q , c2eCg  and K~Cc~ are compact sets, then there exists cEC£ 
such that K a C [ q - ( c n q ) ] ,  K2C(cc~c2) and that [ q - ( c n q ) ]  is 
relatively compact in q .  

4. If ca, cz lie in the same state f2 then there exists such a c ~ cg 
satisfying (3) which lie also in f2. 

5. Each two Co, cl ~ cg can be joined by a 1-parameter smooth curve % 
t e [t3, 1] in the sense of [10], i.e. there exists such a complete vector 
field X that GX(co) = ca, ct = GX(co) E cg. 

6. If Co, cl lie in the same state O, than the curve q can be taken in a 
manner that every ct lies also in f2. 

7. Take any c e cg and f2 e ;gf containing c. For  any vector field X 
tangent to f2 and having compact support there exists e > 0 such that 
GX(c) ~ cg for [tl < e. 

8. For  every c e oK, p e c, Y~, e Tp(~) and a neighbourhood A C .Ca of p 
there exist the vector field Y equal I1_ at p, whose compact support is 
contained in A and e > 0, such that G~(c) ~ ~g for ttl < ~. 

It is worth noticing that e.g. the set of all initial surfaces in the field 
theory does not satisfy the axiom (2). 
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Before proofs  of  Theo rems  2 and  4 let us note  the following fact: 

L e m m a  4. Let the (n-1)- form e have the property that c~lc has 
compac t support for any c e ~. Then for any c 1, c 2 ~ ~ there exists such 
ceCg that [c l - ( ccac l )  ] is relatively compact and: 

supp (c~] c) = supp (~x I c2) C (c ca c2), 

supp(o~[c 0 C [ct -- (ccacl ) ] .  

Proof. T a k e  Kl=supp(e lc l ) ,  Ke=supp(~1c2). Using the third 
ax iom we can take the a.i.s, d 1 e cg, such tha t  

supp(o~i c2) C (d 1 ca c2), 

supp (~1 cl) ( [cl  - (d 1 ca cl)]-relat ively c o m p a c t .  

Ifsupp(etc2) 4: supp(eld 1) we can take any compac t  (in q )  ne ighbourhood  
of [ q - ( d l n q ) ]  as K1 and  any c o m p a c t  ne ighbourhood  (in c2) of  
c2cad ! as K~. There  exist d 2 e ~  such tha t  

K1 C (d 2 n q);  Kz 1 ( [c 2 - (d 2 c~ c2)]-relatively c o m p a c t .  

N o w  we take any c o m p a c t  ne ighbou rhood  (in cl) of  d 2 n  c 1 as K1 z and any 
compac t  n e i g h b o u r h o o d  (in c2) of  [ c 2 -  (d2cac2)] as K2 z. There  exists 
d 3 s cg such tha t  

K2 z ( (d 3 n c2); K1 z ( [cl  - (d 3 n c0]- re la t ive ly  c o m p a c t .  

Using this me thod  we can const ruct  the sequence d ~, d 2 . . . .  of  a.i.s, and  
K ]  ,-" q ,  K ~ / ' c  2 as s -+oo :  

( supp ~IC2) 

. . . .  

supp~lc|  

Observe  tha t  there exists a n u m b e r  N such tha t  for odd  s > N 

supp (c~ [ d ~) = supp (c~ I c2). 

It  is so because if the con t ra ry  is true then we can build the submanifo ld  

b= O b  a 
k=l  

where b k = {[d k - (dan c1)] - (dkn Cz)} u (dknd k- ~)u(dknd a+ 1) for k > 1 
and  b I = [d t - (d I n c 0 ]  u(d 1 rid2). 
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It can be easily shown that b satisfies axiom 2. Thus b E ~ and e lb 
has non-compact  support  which contradicts our assertion. So taking 
any odd s > N we have c -- d ~. 

Observe that if q ,  c 2 lie in the same state Q than d k can be taken in f2 
(axiom 4). Thus c lies also in f2. 

Proof of Theorem 2: If q ,  c 2 C f2 then take c ~ (2 as in Lemma 4. 
Because @2, e )  = (c, e )  we have @1, e )  - @2, e )  = (c l ,  e ) -  (c, e) .  
Using the axiom 6 we can take the field X joining c 1 with c. The family 
ct= GX(c) (co = c) "sweeps" the n-dimensional (possibly degenerated) 
compact  volume V C f2 whose border is: 

~?V=c~ - c .  
Thus 

<c~, e> - <c, e> = <0 V, e> = < V, de> = 0 

because dell2 = 0 for any state f2. 

Proof of Theorem 4: The observable O generates the gauge field: 
de = X ~ 7, X C D. Take any c~, c2 ~ c~ and c s c~ as in Lemma 4. Using 
the same arguments as in precedent proof we find 

< q ,  ~> - <c2, e> = < q ,  e> - <c, e> = <~ v, e> = <v, de> 

for some n-dimensional (possibly degenerated) compact  volume V 
"swept" by the family (ct) of a.i.s. But every n-vector tangent to V can be 
written as u = u,_ ~ A K where u, _ 1 is tangent to some a.i.s, c t. Thus 

( u , d @ = ( u , _  1 A Y , X ~ 7 ' )  = - ( u , _  1 AX,  Y-J7)=O 

because u,_ ~ A X is tangent to some state f2. 

Proof of Theorem 3: It suffices to prove that the zero-observable 
generates only gauge-fields. Let de = X -j  7 and (c, e )  = 0 for any c E ~.  
Suppose that there exists a point p s ~ such that Xp ~ Dp. It  means that 
there exists a state g2 passing by p, such that Xp is not tangent to f2. 
Using the axiom 7 we see that the family of all ( n -  1)-vectors tangent to 
all a.i.s, passing by p and lying in the same state f2 form a total set in 
n - 1  

/~ Tp(f2). Thus if we suppose v - J (Xp-~7p)=0  for all ( n -  1)-vectors v 
tangent to all a.i.s, lying in f2 and passing by p, then the same is true for all 

n--1 

v ~ /~ Tp(f2). It would mean that Tp(f2)@ {z- Xp} is a singular space for 7 
(i.e. belongs to ~ ) .  F rom the regularity condition for (~', 7) we derive: 
Xp ~ Tp(f2) which contradicts our assumption. Hence there exist an a.i.s. 
c e cg passing by p and its tangent (n -1 ) -vec to r  v (at p) for which 
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v ~ (Xp -J 7p) 4 = 0. Take such Yp that 

(14)  
= ( - -  1) n - t  <V, (Yp A Xp) ---I ~p>. 

Take a vector field Y which satisfies axiom 8 and ct = Gr(c). Thus (ct //-6]): 

d =o(ct, e > =  ~ Y - J & z = < c , ( Y A X ) J ? > .  (15) 
¢ 

For sufficiently small support of the field Y it follows from (14) and the 
mean-value theorem that (15) is not equal zero. It means that O, is not 
constant which contradicts our assumption. 

Appendix: Calculation of Canonical Fields in Scalar Field Theory 

For simplicity of computation take the Scalar Field Theory in 
2-dimensional space-time (the identical result can be obtained for 
4 dimensions): 

([] + m 2) q, = ,l ~o" 

[] = 0u0u = (0o) 2 - (01) 2,/~ = 0, 1. In coordinates (x ~, (o, r/x) the canonical 
forms m and 7 are: 

09= __ _ f  (rlurlu + m2 qo2)_t_ ,1q),+l dx  o A dx  1 

+ ~l ° dq~ A dx  1 + 1t I dx  ° /x  d o 

? = d o  = - ~lu dtl u A dx  °/x dx  1 + Q((p) d o / x  dx  °/x dx  i 

+ drl °/x d o A dx  1 + dtl 1 A dx  ° A dq,, 

where Q@)= ,1q)"-m 2 q). Take any vector field 

X = A U  0 B ~_ Cu 0_. 
-~;x ~ + o~o + " Oil ~' 

We shall solve the equation for canonical fields: d ( X J ? ) =  O. We obtain: 

d (X~7)  = f l  dx°  A dx  i A d~o + f 2 dx°  /x dx  1/~ dtl ° + f 3  dx° A dx  i/', drl i 

+ f 4  dx°  /x d o / x  drl ° + f 5  dx°  /x d o / x  drl i + f6  dx l  /x d o / x  drl ° 

+ f7 d x i / x  d o A drl 1 + f s  dx°  A drl ° A dtl i + f9 dx i  A dtl °/x drl 1 

+ fiodq~ /',dtl° A d r l i = O  
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where: 

f l = Q  3 .A"+  - q "  8(p 8~CU+B ; v(p 

J2 = -r /o(SuAU)+ Q 3B 8C u + 8 o B  - r/u ~ - Co 

8B 3C" 
f3 = - r / l ( g ,  A") + Q-~7-~ + al B - r/u--d~-~ - C1 

~?A 1 (?A 1 3 C  1 
- 0 .  - OoA  + - -  

8tl ° 

8A* 8A  1 gC* 8B 
f s = - rh --~-O - Q - ~  + 8 ° A ° + - ~  + 8--~ 

OA ° ~A ° 8C ° OB 
f6 = r /o-~9  + Q ~ - O I A '  

8A  ° 8A  ° 
f7  = r/1- - ~ -  + Q Or/--5- - 8 1 A  ° - - 

OA I 8A  1 8B 

8A  ° 8A  ° 8B 
r/1-- 7o- -r/o T ,  i r  + - - -  @1 

a A  1 a A  0 

J;o - 8r/1 @o 

8@ &p 

(?C o 
@1 

Let us introduce the following notation: 

P( x ~', ~o, rff):= r/uA~ = r/o A° + t h A t = r/° A°  - rfl A t 

8P ~A ° OA 1 
_ _  = A °  + ~l ° -  _ rl z (i) @o 8r/o @o 

(ii) 8 P  _ _ A i r ~  t a A  1 aA  ° 
@1 3r/-T +qo @1 • 

Using equations f~o = 0 and f8 = 0 we have 

qo 8A°  _r/o 8A1 8A ~ 3B 
V ~  6-  ~-- ~?11 - -  - - r / l  ~ t ~  0 -~ ~?l---~ ~ . 
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Putting it in (i) we have: 

A o _  QP o OA° 8A  ~ 8P ~B _ 0 ( B - P ) .  
Oq o - r 1 ~ + r /  &l o - &l o &l o &l o 

In similar way we obtain from (ii): A 1 = + (B - P). Denoting F: = B -  P 

we have: 

8 
(iii) A , =  - - -  F .  &/u 

Now we try to express all variables by terms of F: 

8 
P = t/~ A~ = - qu ~-~V F ,  

(iv) B = F + P = F - "" ~ F .  
,t &t~ 

. 8C ° OC 1 
If we take ~ from equality f 6  = 0 and ~ from f4 = 0 and put them 

into equality f2 = 0 we obtain 

Co = _tlo(8~,A~,)+Q ~B [ ~A ° OA ° A1 8 B )  + OoB- + Q VU.o - o, 

( 0 A 1  1 ) 
-.1 tto~-- + Q ~  +0o A~ =0oF+~o &o 

+ ~[  OF + A o ) = ~ ? o F +  ~__F_F 

In similar way we can compute C~. Finally 

8F 
C"=c?uF + rf~' Oq> " 

If we substract equations fs  = 0 and J6 = 0 then using equality f~o = 0 
we obtain 

OA~' - O u A  u ~?CU 2 OB c~2F u C~ = - r l ~ , - -  +0  ~ - u F  
0 = rl~ 8qo 8rl v c?~o Oil ~ 0~o 

- - - -  2 OF 02F 2 0 B  = 2 ~ - ~  2 c~ OUF_ (rh, A . ) _  8F 

8B OF 
- 2  = - 4 - -  

8<0 &o 
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# -  F = 0 and further Hence ~q0 

0A" (?B c~C ~ 
- -  - -  - - 0 ,  

0q~ 0qo ~0 
Moreover 

C, = c?~,F. 

F rom equations f4 = 0, f5 = 0, J6 = 0, and f7 = 0 we thus obtain-~7~¢- = 0 

0A" 
because Q. (?t/~ are there unique terms containing the variable (p. It 

02 
means that - - F  = 0, so F is linear in variables r/~: 

(?r/" (?t] ~ 

V(x  ~, % 1I") = - r l u A ' ( x  ~) + D ( Z )  = D(x  ~) - P ( x  ~, rl" ) . 

If we compare it with the definition of F we see that D = B. Thus 

(v) F = - r/, A" + B 

where A and B depend only on xL Now equation f l  = 0 reads 

Q . O~,A u -  D F  + B - ~  = 0 .  

aQ 
But Q and ~ are polynomials of the variable (p of different degrees. 

Hence 

(vi) (~. A" = O, 

aQ 
(vii) [ ]  F - B 0go = 0. 

Putting (v) into equality f s = 0  or f 6 = 0  we obtain c?oA°-c?xA  1 =0,  
Combining it with (vi) we have 0o A° =0 ,  0 z A I =  0. Thus 

A ° = f ( x  l) A 1 = g (x ° ) .  

Putting (v) into equality f 4 = 0  or f T = 0  we get c~oA1-01A°=0.  
It means that f and g must be linear functions of their arguments and: 

A ° ( x l ) =  f ( x l ) = a x  1 + b ,  A l ( x ° ) = g ( x ° ) = a x °  + c ,  

F = - t lo(ax 1 + b) - ~]1 ( aXO -~ C) + B,  

Co=  0 o F =  - a t l l  4-C~oB , C1 = c ~ l f =  - a r l o + c ~ l B  , 

C°  = artl + O° B , C l  = arl° + c~t B . 
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P u t t i n g  B = 0 we o b t a i n  3 - d i m e n s i o n a l  a lgeb ra  of  P o i n c a r 6  g r o u p  (b a n d  c 
give t r a n s l a t i o n s  a n d  a - L o r e n t z  ro ta t ion) .  

N o w  let us  t u r n  to Eq. (vii). Because  of  equa l i t y  [ ]  A - - 0  it  reads :  

B + B(m 2 - 2 n r p " -  1 ) = 0 .  

F o r  the  l inear  case (2 = 0) we o b t a i n  ([2 + mZ)B = 0 a n d  for a = b = c = 0 

we have  B ~ a 

X =  8q~ + 0 r B -  8t/u - 

F o r  n o n - l i n e a r  case (2 :~0) B = 0 a n d  the o n l y  c a n o n i c a l  fields are  

P o i n c a r 6  fields. 
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