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Abstract. Asymptotic relations for matrix elements of quasilocal operators are 
given which generalize and extend the Lehmann-Symanzik-Zimmermann relations. 
These relations allow the simulation of a coincidence arrangement of particle de- 
tectors in the mathematical frame of the theory and thereby the expression of 
collision cross sections in terms of expectation values of observables. 

I. Introduct ion 

Within the  f ramework of Quantum Field Theory  particle collisions 
have always been t rea ted  by  means of formulas and algorithms which 
are based on the asymptot ic  relat ion I below. Denot ing the  vacuum 
state by  [o}, the state  of a single particle of type  i and momen tum k by  
tk, i> 1 with the  normalizat ion 

<k', j ]k, i> = ~j.~a (k' - -  k) (1) 
we h a v e  t h e  

Asyraptotic relation I: 
If  Q is an arb i t rary  quasfloeal s operator  with (o] Q Io} = o and if the 

point  x moves to  infinity in a time-like direction 3 then,  for x 0 --> + co 

Q(x) -+~ f dSk(<k, i I Q(x) Io> a~°Ut(k) + <o[ Q(x) [k, i> a°Ut (k)) (2) 
i 

and for x 0 -> - -co  

Q(x)-+Z f dak(< k, it Q(x)lo> a~'n(k) + (o t Q(x)tk, i> a~n(k)). (3) 
i 

* This paper results from the collaboration of the authors during the winter 
semester 63/64 at Urbana, Illinois and was partly supported by the NSF. 

** Present address: Research Institute for Mathematical Sciences, Kyoto 
University, Kyoto, Japan.  

x If  the particle has spin we shall, for simplicity, consider here the description 
of the spin orientation included in the index i. 

For  a definition of " q u a s i l o c a l "  see the beginning of section II .  
a We use small Latin letters to denote 4-vectors, boldface letters for 3-vectors. 

Thus x = (x, x0) denotes a point in space-time with the time component xo and 
space components x. The energy-momentum 4-vector of a particle of t~]ae i is 
written correspondingly as k = (k, k0) where, of course,/c o = (k s + m~) 1/~ and mt is 
the particle mass. For the Lorentz scalar product we write k x  ~ kx - -  k o x  o. 
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Here  Q (x) is defined as the  t rans la te  of Q b y  the 4-vector  x; 

Q(x) = U(x) Qu-I(x)  (4) 
where U (x) is the  t rans la t ion opera tor  through x. The operators  a~ ou~ (k), 
a°Ut(k) are the  usual  creation and  dest ruct ion opera tors  for an outgoing 
part icle of t ype  i and  m o m e n t u m  k. Their  commuta t ion  relat ions cor- 
respond to the  normal izat ion convent ion (1); if Q is an ord inary  quasi- 
local opera tor  one has 

[a °ut (k), a~°Ut (k')] = ~i~ ~ (k - -  k ' ) ,  (5) 

if Q is ~ quasilocal Fermi  opera tor  a one has  

{a °ut (k), a t  °ut (k')} = ~tj5 3 (k - -  k ')  (6) 

where (} denotes the  an t i eommuta to r .  One has  to  unders tand  the l imit  
relat ions (2), (3) in the following sense. T h e y  are val id  only for  ma t r ix  
elements  between fixed, normalizable s ta te  vectors  ~V, ~b of which a t  
least  one mus t  lie in a certain dense domain  (weak convergence). I t  is 
easily seen t h a t  the  ma t r ix  elements of the  r ight  hand  side vanish  like 
xo  3/u as x 0 --> oo. Therefore the  exact  content  of equat ion (2) is t h a t  the  
difference between the  left hand  side and  the  r ight  hand  side has ma t r ix  
elements  which vanish faster  t han  x J  I~'. 

We m a y  call (2), (3) the generalized LSZ-relat ions [1]. To see the  
connection with the  formulas  of [1] one uses the  fact  t ha t  the  x-depend- 
ence on the  r ight  hand  side is explici t ly known:  

(k, i t Q(x) lo) --- e - ~ F ~ ( k )  ; (o I Q(x) lk, i) = dk~G~(k) .  (7) 

I f  we mul t ip ly  (2) wi th  a J u n c t i o n / ( x )  which is a posit ive f requency 
solution of the Klein-Gordon equat ion to  mass  m, i.e. 

/(x) = (2z)-3/2 f / ( k )  ei(kx - V~+ ~ '  ~0) d3k (8) 

we get after integrating over 3-dimenslonal space 

f Q (x) / (x) d~x ~ (2 z)+ 8/2 S f d~ k (F~. (k) / (k) d (V ~ + m ~ - ~ ) t  
xo=t  i 

a]°U~(k) + Gj(k) ] ( - - k )  e - i ( V ~  + kl/k~-~)t a~Ut(k)). 

If Ft, G i,/, (q51 a~ °u~ (k) [~¢~), ( ~ t  a°ut (k) I ~ )  are reasonable  ~ Junctions of 
k we can use the  Riemann-Lebesgue  L e m m ~  for  the  in tegrat ion over  k 
and  find t ha t  the r ight  hand  side vanishes in the l imit  t -~ ~ unless m is 
equal  to one of the  particle masses. For  m = mi one t e r m  is t ime  independ- 
ent  and  therefore survives in the limit. We get for t --> ÷ ~ if m = m.~ 

f Q(x)/(x) d3x-> (2z)+8/2 ,~ f d 3 k F , ( k ) / ( k )  a~°Ut(k). (9) 

4 For a definition see section IX. 
This will be justified in section 3. 
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The summation runs only over those particle types which have the same 
mass, namely m. Equation (9) is essentially the asymptotic relation used 
in [1] s. 

The generalization contained in (2) or (9) as compared to the original 
LSZ-relations [1] lies in the fact tha t  they hold for any quasflocal 
operator, not only for the basic field operators. The only remnant of the 
choice of Q is the function F i in (9). This allows a t reatment  of collision 
processes for "composite" particles or, from a more fundamental point 
of view, it allows a complete divorce between the number and types of 
fields in terms of which the theory is formulated and the number and 
types of particles which are described by the theory. Equation (9) has 
been derived in [2] and, for various special choices of Q, in [3], [4], [5]. 
In EKSTEIN'S method [3] Q is chosen in such a way that  the convergence 
in (9) becomes strong; in [4] and [5] the emphasis lies on the construction 
of a "strictly local" operator Q. In any case, (9) may be used to express 
the S-matrix element of any process in terms of vacuum expectation 
values of products (or time ordered products or retarded products) of 
quasflocal operators as discussed in [1], [6], [7], [8]. 

One remark should be added about the proof of the generalized LSZ- 
relations from the basic postulates of Quantum Field Theory. The 
strongest result in this direction so far has been obtained by t tEPr [10] 
using the techniques developed by  RUEnLE [9]. I t  proves the validity of 
(9) for matrix elements between states T and ¢ where ~5 may be 
arbitrary but  T is restricted to a domain D(n +) (which will be described in 
section 3 of this paper). This proof will be reproduced in the course of 
our discussion in section 3. I t  justifies most (though not ali) of the custom- 
ary applications of the LSZ-relations. 

Our main objective in this paper, however, is to answer the question: 
What  replaces equation (2) if Q has vanishing matrix elements between 
the vacuum and the single particle states, i.e., if the functions F~ and G~ 
vanish ? This question is of considerable interest because if particle i 
is a Fermion or if it has an electric or baryonic charge then F~ -~ G~ = o 
for every operator which belongs to the algebra of observables. In such a 
case one can, of course, t reat  the collision problems still in the frame. 
work of the LSZ-relations with the help of operators which do not belong 
to the algebra of observables (Fermi operators or other non gauge in- 
variant quantities). Nevertheless we know that  it  must be possible to 
answer all questions of physical interest using only the algebra of ob- 
servables [11]. In  the present paper we shaft show how collision cross 

~ inref.[1]thequantityi f (Q(x) a/(x) aQ(x) ) 0 Xo 0 xo ](x) d3xiseonsideredinstead 
of f Q(x) •/(x) d3x. This is, however, only a matter of formal elegance, irrelevant to 
our present discussion. 
6* 
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sections can be obtained from the vacuum expectation values of products 
of observable quantities. The relevant asymptotic  relation replacing (2) 
works with the matr ix  elements <ki[ Q Iki). I t  is obtained by  evaluating 
the next  te rm appearing after the right hand side of (2) in an expansion of 
@hi Q (x) I T )  into powers of x o l .  As mentioned before the te rm written 
down in (2) is of order Xo8/2. The next term, with which we are concerned 
here, is of order xoa. 

II. Assumptions and notations 

The principal assumptions on which our argument is based are the 
principles of locality and invariance under the inhomogeneous Lorentz 
group together with some condition on the energy-momentum spectrum 
(spectral condition). These assumptions may  either be expressed in 
terms of basic field operators (~TIG~TMAN'S axioms [12] or in terms of 
algebras of local observables [13], [14]). I t  is immaterial  for the following 
results whether one uses the former or the latter framework. We shall 
adhere to the latter, in which one assmnes tha t  to each open region of 
finite extension in space-time there corresponds an algebra R(&) of 
bounded operators in Hilbert space 7. An operator from R (0) may  be 
regarded as the mathematical  representative of a physical operation 
performable within 0. The algebra ~ = u R (0) will be called the algebra 
of (all) local observables s. I f  &l and 0 2 are two regions such tha t  every 
point in 0 1 has a space-like distance from every point in 0 2 then every 
operator from R (&l) shall commute with every operator from R (02). 
These statements summarize the principle of locality. 

Lorentz invariance, the energy-momentum operators Ps, the mass 
operator M = ~/~Pz 2 are understood in the standard fashion (see e.g. [12]). 
Concerning the energy-momentum spectrum we assume tha t  there is a 
unique vacuum state lo) and tha t  alt states orthogonal to it have positive 
energy and a mass which is not smaller than  a certain value m 0 # 0. 

Unfortunately, in our present state of ignorance, we are forced to add 
a few other assumptions which are not as clearly understood in their 
relation to basic physical principles and which m a y  in fact be par t ly  
redundant.  

One complication arises from "superselection rules" or "gauge in- 
variances". These imply tha t  there exist local operations which do not 
belong to the algebra R (0). Examples of such operations are the transfer 

7 Within the present context there is no loss of generality if we assume ~hat 
/~(~) is a yon Neumann ring. 

s The union is taken over all finitely extended open regions ~. Note that 92 is 
not closed. Each element of ~ is an operation in some finite region ("local" operation). 
QuasilocM and global operations will later be defined as limits of sequences in 92 
convergent in suitable topologies. 
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of electric or baryonlc charges from an observer to the observed system. 
These operations cannot be included in R (0) because of a limitation in 
the superposition principle. If the original state of the system is described 
by the Hflber~ space vector T and the state after this operation by ~ '  
then the relative phase between ~ and T '  can have no physical signifi- 
cance since it depends on the choice of gauge. Therefore a linear com- 
bination ~ T + f l ~ '  is in all respects equivalent to the mixture described 
by the statistical matrix t~I ~ I~> <T  t + Iflt ~ IT'} <~l. We shall assume 
here the following simple and conventional model: There is a collection 
of Hilbert spaces ~ j  (the index ] corresponding to fixed values of the 
charge quantum numbers). The superposition principle holds unrestricted 
within each 5~¢ and the algebra of observables 9.1 transforms each 5~¢ 
into itself. For formal convenience we work with the Hflbert space 

= Z .~¢ (10) 

which is the direct sum of all the "coherent" spaces ~Vfj. Since the rela- 
tive phases of vectors in different spaces ~ j  have no physical significance, 
the locality principle does not require tha t  those local operations which 
change the charge quantum numbers commute at large space-like 
distances. We shall assume, tha t  if the operator Qz represents a local 
operation (in region &) which changes the charges from ?" to ] + A then 
it  is either a "Bose operator" or a "Fermi operator". The commutation 
relations between any pair of Bose operators (B) and Fermi operators 
(F) at space-like distances are: 

B B '  - -  B ' B  = 0 

B F ' - -  F ' B  = 0 (11) 

F F '  + F ' F  = 0 

where the primed and the unprimed operators refer respectively to 
regions (9' and (~ which are space-like to each other. Whether the operator 
Qz is of Bose- or Fermi type shall depend only on A. 

Finally we shall assume that  a complete particle interpretation is 
possible. This means that  the Hilbert space ~Yf is spanned by the vectors 
Ic> °at where c denotes an arbitrary paI~icle configuration. 

We denote the algebra of all operations in the region d) by/~ (0). This 
includes those operations which change the charges. Correspondingly 
~1 = ~ (O) is the algebra of all local operations. A dense set of vectors 
in the Hilbert space ~ is generated by application of 9] on the vacuum 
state Io} whereas the application of the algebra 92 on the vacuum only 
gives a dense set of vectors in the zero charge sector ~ 0 .  

Since the words "local", "quasiloeal", "almost local" have been used 
in past publications by us and other authors in a variety of different 
meanings it may  be good to specify exactly the definitions adopted in the 



82 H. A~KI and P~. H.AXG: 

present paper. We shall call "local" any operator which belongs to some 
~((~) (the symbol (V always denotes a region of finite extension). Let c#~, 
be the double cone in space-time whose base is a 3-dimensional sphere 
with radius r and center at the space-time point x. Given an arbitrary 
operator Q in the Hflbert space Y we define the positive number 

d~(Q) = infHQ-- B H, B C R(~o,~) (12) 

i.e., we look for the best approximation to Q among all operators B in a 
region of size r around the origin. We call Q "quasiloeal of order n" if 

lira r"d~(Q) = 0 .  (is) 
T ~ O O  

Thus the completion of the algebra ~[ in the norm topology leads to 
operators which are (at least) quasilocal or order zero. In the following 
we shall be principally concerned with quasilocal operators of infinite 
order. Therefore, i~ the order is not explicitly specified it will be under- 
stood that  "quasflocal" means "quasilocal of infinite order". 

III. The extended asymptotic relations 

The following two basic lemmas have been proved by RU~LL~ [9]. 
The first concerns the asymptotic behavior of solutions of a Klein- 
Gordon equation. 

Lemma 1. I /  

/(x)= f ; p x = p x _ p o x o ;  po=(p~+m~)l/~; m :~= O 
Po 

and 9 

f(P) E 

let ~ =  (p/poip C suppT} be the support o]] in velocity space and U any 
open set containing Z. Then 

a) For v ~ U l/(vt, t)l < AN(1 + Ivl) -N ttl-~; N arbitrary 
b) Nor v ~ U [/(vt, t)[ < A'itl-a/2. 
The constants AN, A'  can be chosen independent of t and v. 
The second concerns the behavior of vacuum expectation values of 

products of quasilocal operators at  large space-like distances and is a 
consequence of the principle of locality and the spectrum conditions as 
assumed in section 2. One first makes a linked cluster (Ursell) decomposi- 
tion of the ~unctions (o I Q (x l ) . . .  Q(x~) Io}: 

(o I Q(x~) . . . Q(x~) Io) 
(14) 

= X ( Q ( x i l ) ) . . .  Q(x(~l~))},r (Q(xl 2 ) . . .  Q(x(2)))T.. .  ( }T 

9 5~ is the class of infinitely differentiable functions which vanish faster than  
any  power a t  infinity. 
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where x(11) . . .  x~ 2 are a partition of the n points x 1 . . .  x~ into k "clusters" 
and the summation runs over all such partitions. The operator Q (x) is, 
of course, understood as in Eq. (4). The system of equations (14) for all 
values of n defines the "truncated expectation values" <Q (x~)... Q (xz)}T. 

Lemma 2. Let Qj be quasilocal and 

= max](xi) 0 -  (xj)0]; R = m a x l x , - -  x~.[. 
i,i i j  

Then, varying the xj with the only restriction that ~ remains smaller than a 
fixed limit 5 one hr~ 

I<Q~(x~) . . . Q,~(x,)>T I < A:i-R -z¢ (15) 

where N is arbitrary, A ~v independent o/ the configuration x~. 
Further we shall use 
Lemma 3. _For each particle type i one can construct a quasilocal 

operation qi which creates a one particle state o/ this type /rom the 
vaccum : 

The wave/unction 

qi]o> = f 9(p)[pi> dap. (16) 

~t(p) = @il qilo> (17) 

is infinitely o/ten diGerentiable and qi may be chosen so that q~i (P) does not 
vanish anywhere. 

Although this lemma is part of the folk lore it  may be helpful to 
indicate the proof of its various assertions. In the first place there must be 
some locat operator Q for which the matrix element <pi I Q/o> 4 0 for 
almost all p in any finite preassigned region of p-space. Otherwise we 
could not generate a dense set in 5/° by ~ 1o>. Starting with such an 
operator we can form a quasilocal operator q = f Q(x)/(x)  d4x, choosing 
a test function / which decreases faster than any power at large distances 
in 4-dimensional x-space and whose Fourier transform f(p) has support 
only in a small neighborhood of the mass hyperboloid of particle i. This 
operator will then satisfy (16) with 

~(p) = f(p, ~ / ~ +  m~)<pi] QIo>. (18) 

Furthermore, if Q' is any other quasfloeal operator we know from lemma 2 
that  

<0[ Q't(x)q i0> = f <p, i/Q'lo>* <pi[ QIo>/(p, lip2 + m~)e+~r':d3p 

must decrease faster than any power of [x I or in other words that  

<pi] Q'to>* <pi] Q/o>/(p, Y~ + m~) 
must be infinitely often differentiable with respect to p for any pair of 
quasflocal operators Q, Q' and any class-~-function F (p) = / (p, ~/p/+ m~). 
We conclude that  <pi] Q/o> can differ from an infinitely differentiable 
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function at most by  a phase factor e i A (p) and that  furthermore the 
difference AQ(p)--AQ.(p) for any quasilocal pair Q, Q' must again be 
infinitely differentiable. On the other hand we know that  any finite 
Lorentz transform of a quasilocal operator is again quasilocal. Choosing 
Q'= U(A)Q U-I(A) and letting A tend towards the identity we find 

OA¢ 
that~0pi is infinitely differentiable and hence the same holds for A Q, This 

demonstrates the smoothness of 9i(P) claimed in the lemma. To make 
~0i(p) nonvanishing everywhere we can use again Lorentz transforma- 
tions. If q0 i vanishes at p then we can always find a Lorentz trans- 
formation A such that  <pi I U(A)qiU-l(A)I0} does not vanish there. 
We take then, instead of qi the operator q~ = f U(A)qi U-I(A) dtt(A) 
which is again quasflocal as long as we choose a measure /,(A) which 
decreases sufficiently fast for large Lorentz transformations. For suitable 
choices of tt the function <pi[ q~ [0> will be non zero everywhere. 

According to these three lemmas one can now use the method of ref. [2] 
to construct the state vectors describing arbitrary incoming or outgoing 
particle configurations: 

[~i, f l j . . . } i ,  = lira [g~,~j. . .(t)  (19) 
g - - + - -  oo 

l~i, f l i . . .>° '~= ~m T ~ i , a ~ . . . ( t )  (20) 
t--> + ~ 

T ~ , ~ j ( t )  = q~ (t) q~ (t) . . . Io> (21)  

q~(t) = J g ~ ( x ,  t) qi(x, t) dax; 
(22) 

Here F~i(p) is the momentum space wave function of particle i in the 
state we want to construct; q~ and ~0 i are as defined in lemma 3. In  the 
following we shall frequently abbreviate the index combination a i , / S j . . .  
by  a single label 2 and write kP I" instead of ]2} in. 

The rate of convergence in (19), (20) can be investigated with the 
help of the three lemmas. One finds 

Theorem 1, a) I[ the single particle wave ]unctions ~o~t(p ), ~o~... 
belong to class ~1o then 

H~r~ ut -Ws(t ) ]  I < At-l/2 /or t > O . 

b) I / i n  addition the T~i, ~ j . . .  have disjoint support in velocity space 
(see lemma I) then 

]iT2 a t -  krrz(t)l ] < A~,t -N /or t > 0 

and any positive N. 
Corresponding statements are true for t < 0 with ~/Jin replacing ~ou,. 

x~ This is the class of infinitely differentiahle functions with compact support. 
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The proof of a) is given in [9]. While b) is not explicitly pointed out 
there it follows easily from the same argument. This observation has 
been made also in [10]. 

Par t  b) of this theorem will be of crucial importance for our further 
discussion. We define the domains D(+) and D(n +) in Hilbert space as the 
collection of those vectors which can be obtained by linear combinations 
of a finite number of W °nt where the particle configurations 2 satisfy 
respectively the assumptions of theorem 1 a) or 1 b). Roughly speaking 
D(+) contains outgoing particle states with class-~-wave functions, D(~ +) 
contains only those states of D(+) in which no pair of particles can have 
the same velocity. In  a corresponding way we define D(-) and D(n -)  (re- 
placing "out"  by "in"). 

Lemma 4. 
D(+) , D(-), D(n -), D(n -)  are dense in ~%f . 

Since we have assumed that  a complete particle interpretation is 
possible, i.e., that  the kP~ ut as well as the T~ n span ~ ,  the proof of lemma 4 
is reduced to the demonstration that  an arbitrary square integrable 
function [ (P l . - -  Ps) can be approximated in the mean by finite linear 
combinations of the form Xc~ . . .  [~ (Pl)/~ (P2) • • • [~ (P~) with the functions 
[~, [ ~ . . .  belonging to class ~ and having disjoint supports. This is 
easily demonstrated by making an increasingly fine cell division in 
p-space and choosing the ]~ as (smoothed out) characteristic functions 
of the various cells. 

We are now ready to state our main theorems: 

Theorem 2. I] Q is quasilocal a ~  T and q~ are in D (+), then 

(~l  Q(x) IT} = (o] Q]o} ( ~ I T }  + ~ f d~p(pil Q(x)10} (q~/~°U~(P) IT} 
i 
a °ut (p) + (0[ Q(x)]pi}(q~] ~ . IT} (23) 

+ Z f dSP dSp'(P']l Q(x) Ipi) (qD I a~°Ut(p ') a°Ut (p) IT)  + R 
ii 

with 
IRt < A~.xo z~ /or x o > 0 (24) 

and arbitrary positive N. The constant A i~ depends on Q, kP and qD but not 
on x. The analogous result holds ]or x o < 0 i[ T,  qD are in D(n -) and the 
superscript "out" is replaced by "in". 

Note that  the first term on the right hand side is independent of x, 
the next term (LSZ-term, see introduction) decreases like Xo s/2 asympto- 
tically, the third term decreases like Xo s and the remainder R decreases 
stronger than any power. 

Proo] o] theorem 2. Consider k~ = ~u~,  ~b = ~ u t  and replace them by 
k~ (t), ~ ,  (t), choosing t = x 0. According to theorem 1 b the mistake made 
in this replacement can be included in R. We are then left with the eva- 
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luation of an equal time vacuum expectation value 

<o]. . .  q~,~" (t) q~f (t) Q(x, t) q~(t) q~(t) . . . ]o> 

= f T I d S y k  daz~ g~(y~, t) g~(z~, t) <o l . . .  qt(y~, t ) . . .  Q(x, t ) . . .  

q ( z ~ ,  t )  . . . [o> (25) 
to which we can apply lemma I and 2. We have omitted detailed indices 
on the right hand side to make the structure of the expression more 
transparent. Making an Ursetl decomposition of the vacuum expectation 
value one gets sums of products of truncated expectation values of 
various subsets (clusters) of the q~ (t), q~ (t), Q (x). The lemmas 1, 2 tell us 
tha t  any such term ~:ill decrease faster than any power of 
t unless all the supports in velocity space of the wave functions g~, gt 
which appear in the same cluster have a non-empty intersection. Since 

tout belong to D(n +) the supports of any pair of wave ~out as well as -4 ,  
functions entering into ~o~t are disjoint and the same is true for any 
pair entering into tout Thus we need consider only the truncated 
functions which involve at most one ql (t) and at most one q* (t). This 
leaves the foIlowing four types of ~runeated functions invoIving Q: 

<Q(x)>; <Q(x) q~(t)>~; <q~(t) Q(x)>r; <q~(t) Q(x) q~(t))>T. (26) 

Each of these expressions is multiplied with the vacuum expectation 
value of the product of remaining operators q¢, q. These coefficients are 
respectively (neglecting quantities which vanish like t -N) 

(bout t/c~ut>;/(bout ,,ou~ ~pout\. 

diout a?out Touts. /diout a¢out aout Tout\ (27) 

with the abbre~4ation (l = i, ~) 

a~ ut = f [~?(p)]-~ a~(p) dap etc. 

This result coincides with the claim of theorem 2 for the special case 
q} = =4(b°ut,, ~ = ~ u t .  Since a general vector in D(n +) is a finite linear com- 
bination of vectors ~ u t  we have thereby proved the theorem. 

In most applications one would like to use formula (23) for q5 arbi. 
t rary  and only T restricted to D (+). This can be justified to some extent  
by  means of the following lemmas. 

Lemma 5. Let Q be quasiloeal and <o[ Q [o> = 0. Define 

Q(h, t) = f Q(vt, t) h(v) day 
where h is a bounded/unction. Then 

ta/21]Q(h,t)~Jll < A ]or ~ E  D~ +) and t > O. 

Lemma 6. Let C be quasilocal and C Io> = C¢ Io> = O, C (h, t) defined 
as in lemma 5. Then 

tatIC(h,t)TIl < A /or ~-rC D(n +) and t > O. 
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Proo/. We have to show that  t3<TI Qt(h, t )Q(h,  t ) [ T ~  and 
t6<Tt C¢(h, t) C(h, t) IT> are bounded for positive t. For  this purpose it  
is again sufficient to replace ~ by some lY~ (t). The method used in the 
proof of theorem 2 can thus be applied and yields in a straightforward 
way the desired result. This gives us 

Theorem 3. The generalized L S Z  relation (9) is valid/or matrix elements 
between states ~ ,  05 as long as IY C D(n +) while 05 may be arbitrary. 

Theorem 4. I / C  is as in lemma 6 and <P']I C[pi> is differentiable with 
respect to p and p' then/or ~ E D(+ ) and 05 arbitrary one has 

<051 taC( h, t)IT> --- Z '  f dapI~ij(p) <051 a~ °ut (P)a~'Ut (P)]T}h(v,) (28) lim 
t--+ + co 

with 
_Ftj(p ) = 8~3<p][ C(0) [p l ) ,  (29) 

v~ = (pS + m~)-l/2p. 

The s y m b o l / 2  means that  the summation includes only those pairs 
of particles with m t = mj. 

Proo/. We  note tha t  for large t the operator f Q(x) ](x) dax which 
: v o l t  

appears on the left hand side of (9) is of the form t~/~Q(h, t). Therefore it  
is sufficient to prove theorems 3 and 4 for the special case in which both 
05 and i y belong to D(n +). The extension to arbitrary 05 follows then from 
lemmas 5 and 6. 

If  05 and ~ are in D (+) we apply theorem 2. The step from there to 
equation (9) has already been described in the introduction. 

Concerning theorem 4 we find for the ]eft hand side of (28) from 
theorem 2 and application of translational invariance, the expression 

t 3 f d3v clap ' clap h(v) Z (P']] C(O) [Pi> expi  [(p - -  p') v - -  
~J (30) 

- ( W +  l/p + ,<051 aj'O  (p,)aOU (p)IT>- 
Since the integrand is a differentiab]e, fast decreasing function of p 

and p' one can evaluate the integrals with respect to p and p' by  the 
method of stationary phase. The phase is stationary with respect to 
variations of p and p' at 

p (p2 + m~)-l/~ _ p, (p, ~ + m~)-1/2 = v .  

I f  mi 4= mj the phase is not stationary there with respect to variations of 
v and hence the v-integration will then produce a stronger decrease with 
t than in the case m i = m s. Thus we may omit the terms in the summa- 
tion over i and ] for which m i 4= m~-. In other words we may replace/~ by 
/7' as described in the theorem. For  m~ = mj we have at  the stationary 
point 

p = p' = m ~ v / V i -  v ~ (31) 
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and the expression (30) reduces to 

f d a v e  ' --~--8~"P~° h(v) <~b} ~out(p) aOUt (p)17"> <P]I C(0)IPi> (32) 
J ~j m~ 

where p is related to v by (31). Changing the integration variable from v 

to p ~ the Jaeobian is just -~o we obtain the right hand side of (28). 

One cheeks further that  the difference between the left and the right 
hand side of (28) vanishes stronger than  t - t  in the limit if one applies the 
Riemann-Lebesque lemma to the remainder term in the stat ionary phase 
method. 

I~ is easy to generalize theorem 4 to 
Theorem 5. I / t h e  C~, 7" and ¢ are as in theorem, 4 and i /h~ (v) are 

class,Sf-/unctions with non overlapping support then 

nm<¢[ (hl, t )  . . . C , ( h , ,  t ) 1 7 " >  

=z~.,fd3pl...d3pnI'%,h(pl)ffiM,~(pn) out .. @hi e,~i~ (Pl) • ~°5!, (P~) I T>Hhk  (v~) (33) 

with 
eo~t (p) aOU,~) (34) i j  = a ~ ° U t ( P )  i " 

IV. Cross sections 

The physical meaning of Eq. (33) is rather simple. The operators were 
restricted by  the conditions 

i) C* = C 
CIo)  = o 

iii) C is quasilocal. 

The first two conditions tell us tha t  C is an observable which has the 
vacuum state as an eigenstate to eigenvalue zero. The third condition 
means tha t  C (x) is a measurement in the neighborhood of the space- 
t ime point x. Therefore a nonvanishing expectation value of C (x) in a 
state 7" indicates tha t  the state }/1 has a local deviation from the vacuum 
in the neighborhood of the point x. In  other words, C (x) can be con- 
sidered as representing some sort of a detector placed at the mean 
position x. The product C (Xl) . . .  C (x~) for equal times and large spatial 
separation of the points is the mathematical  representative of a coinci- 
dence arrangement of n such detectors. I f  we let the t ime t = x10 = xf0 
= xn0 become larger and larger, i.e. if we place the coincidence arrange- 
ment  further and further from the source which prepares the state (the 
target  in a typical collision experiment) then the probability that  one 
detector registers a single particle decreases like t -a  (by elementary 
geometry) whereas the probability that  any other local excitation (more 
complicated than a single particle) hits the detector decreases faster 
than  t -3. Thus in the limit t -> oo each detector becomes a particle 
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counter. The funct ions/ ' i j (P)  appearing in (33) and defined in Eq. (29) 
may  be called the sensitivity matrix of the detector. Clearly, the diagonal 
element/~ii(P) is a measure of the sensitivity for a particle of type i and 
momentum p. Since there is only a finite number of particle types (in- 
cluding spin orientations) to one value of the mass, it is easy to choose C 
so that  the matrix F is diagonal i.e. 

ri~ (p) = ~ j r~ (p). (35) 

These sensitivity functions are then the only relevant pieces of informa- 
tion we need to know about C in asymptotic measurements. In the follow- 
ing we shall assume for convenience that  such a choice of C has been 
made. 

I t  is worthwhile at this point to pursue the correspondence between 
physical apparatus and mathematical objects a little further. NIELS 
Bo u t ,  on a skiing trip with friends, once compared the progress of 
physics to the problem they faced that  night in their chalet: to get the 
dishes clean in an environment where everything was d~ty.  The mathe- 
matical physicist is apt to dislike this comparison. In  our context he 
would prefer to deal with idealized detectors, objects which are uniquely 
specified both within the mathematical frame and by their construction 
manual. However, as NI~LS BOHR's analogy points out, this is neither 
necessary nor would it be a fair description of what is really done. On the 
experimental side there is an infinite variety of ways in which a detector 
may  be built. The development of an apparatus suitable for a particular 
purpose (highly selective sensitivities) is a lengthy process involving trial 
and error to a large degree. Exactly the same situation prevails in the 
mathematical description as we have pictured it. The conditions (i), (li), 
(iii) are so weak that  there is no problem at all in finding any number of 
operators C which might serve. Most of them will correspond to poor 
detectors. Improvement again is a mat ter  of intelligent t r ia l  

To summarize: The physical interpretation of the mathematical 
scheme is provided in a minimal fashion, involving only geometric con- 
cepts. We identify in the mathematical frame the representatives of the 
geometric invariance group (inhomogeneous Lorentz group) and we 
identify the class of all physical operations which can be performed in a 
space-time region 0. No at tempt is made to identify indi~dual operators 
from R ((~) with specific pieces of hardware. 

After this digression, we may discuss the use of Eq. (33). By letting 
the functions h~ approach &functions we can, for any arbitrary state 
vector T ,  obtain the expectation value 

<Ti e°u~(P~) - - -  9°.at (P~)IT> (36) 

expressed in terms of time limits of expectation values of products of 
quasilocal operators. The quanti ty (36) is the probability density in 
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p-space for finding n outgoing particles with momenta Pl " • " P n  plus an 
arbitrary number of unspecified additional outgoing particles in the 
state ~ .  The probability density for finding exactly n outgoing particles 
with specified momenta in the state [~ can be obtained either by sub- 
tracting from (36) the probability for higher particle numbers or, more 
conveniently by the following method: Usually one is dealing with 
states ~ such that  the energy-momentum is known to lie in a neighbor- 
hood A which is so small that  the difference between any two momentum 
vectors in A lies below the lowest mass hyperboloid. In this case it 
stffficies to consider (36) for such momentum configurations that  2: p~ 
lies in A and then (36) gives directly the probability density for the 
n-particle configuration. 

While the relation (33) is useful in analyzing a given state in terms 
of its outgoing (or incoming) particle configurations, it does not provide 
a convenient method for constructing a state with a specified initial 
particle configuration. This corresponds to the obvious fact that  detectors 
are not very useful instruments in the preparation of a state. For this 
reason, we are not able to give here a compact expression for cross 
sections in terms of vacuum expectation values of "observables" (gauge 
invariant quantities). From the point of view of simplicity and elegance, 
the algorithm of the LSZ-reduction formulas (using non gauge invariant 
quantities) is much superior to (33). On the other hand it is clear that  by 
a combination of energy-momentum restrictions on the state and moni- 
toring experiments, using the analogue of (33) for t ~ - - c %  one can 
determine the initial particle configuration. Therefore one can arrive at 
expressions for cross sections using only the algebra of observables. But 
the procedure is inelegant and tedious. 

We would like to draw the following conclusions: 
1. From the point of view of principle it  appears that  a formulation 

of the theory using only "observables" (i.e., no Fermi fields, no charge 
transfer operators) is possible. 

2. From a practical point of view the use of "non-observable" fields 
is certainly preferable at  least for the purpose of constructing a state 
vector which represents a specified configuration of incoming particles. 
Formula (33) gives then a simple expression for the scattering cross 
sections (though not for the S-matrix). 

3. Theorem 2 is sometimes useful in analyzing the behaviour of 
Green's functions for large time differences. One recent example, in which 
the term with @out in (23) is important, is the derivation of the Adler- 
Weissberger relations with the Fubini-Furlan technique (see [15], [16]). 
While the essential parts of the discussion in [15] are correct, the 
paradoxies in the appendix disappear if proper use is made of our 
theorem 2. 
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