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Abstract. We wish to study the construction of charge-carrying fields given the re- 
presentat ion of the observable algebra in the sector of states of zero charge. It is shown 
that  the set of  those covariant sectors which can be obtained from the vacuum sector by 
acting with "localized au tomorphisms"  has the structure of  a discrete Abelian group ~. An 
algebra of fields ~ can be defined on the Hilbert space of a representation g of the observable 
algebra 9A which contains each of the above sectors exactly once. The dual group of ~ acts 
as a gauge group on ~ in such a way that  ~(~l) is the gauge invariant part of 5. ~ is made 
up of Bose and Fermi fields and is determined uniquely by the commutat ion  relations 
between spacelike separated fields. 

I. Introduction 

In a previous paper [1] we studied how the various inequivalent 
irreducible representations (superselection sectors) of the "algebra of 
observables" 9i which occur in an irreducible representation of the 
"field algebra" ~ are related to each other. The algebra 91 was defined 
as the "gauge-invariant" part of ~. Several assumptions were made 
concerning the action of the gauge group fq, the representation of the 
Poincar6 group and the local structure of the theory. Under these 
assumptions we found that the question of whether the gauge group is 
Abelian or not reflects itself in an interesting difference in the structure of 
the set of sectors. In the case of an Abelian gauge group all sectors are 
obtained from a single one by applying "localized automorphisms" to 
the observable algebra. F o r  a non-Abelian f¢ one must instead apply 
localized isomorphisms of 91 onto subalgebras. 

Since the physical content of the theory is determined by the algebraic 
structure of 91, one may regard ~ and fq from the physical point of view 
as auxiliary constructs. This leads to the question: if we are only given 
the representation of 91 in the vacuum sector, can we construct all other 
sectors and define an ~ and a ~ in such a way that the structural assump- 
tions of [11 are satisfied? 
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A complete treatment of this problem should first of all analyse the 
meaning of the term "all sectors" (when we are only given 9.1 and not 5)- 
Thus we are considering a family of states over ~I which is larger than 
the collection of vector states in one irreducible representation, but 
certainly smaller than the set of all pure states over ~I. What criteria 
single out this family of "physical" states and what is their physical 
significance? One criterion is certainly that we are only interested in 
pure states of 9X which behave asymptotically like the vacuum state for 
observations in far away regions of space 1. However this intuitive 
partial answer is neither definitive nor precise. 

In the present paper we confine our attention to those sectors which 
can be generated from the vacuum state by applying localized auto- 
morphisms. It should be clear that this procedure will, in general, give 
only a subset of the family of states described above and, correspondingly, 
only a subset of the superselection quantum numbers. However it has the 
virtue that a complete analysis of the possible choices of ~ (within this 
restricted family of sectors) can be carried through and that furthermore, 
according to the results of [ 1], it includes superselection rules of practical 
importance. 

The main results of the analysis here are that this restricted set of 
sectors always leads in a natural way to an Abelian group of super- 
selection quantum numbers ("charges") and that within this set of sectors 
there is only the alternative of Bose or Fermi statistics, the statistics 
being coupled in an intrinsic way to the charge. Given this set of sectors 
there is still some freedom in the choice of field algebra, but only because 
the commutation relations of fields carrying different charges are not 
intrinsically determined. The classification of the possible field algebras 
is essentially a problem of group extensions which is completely analysed 
in Section V and Appendix I. 

It has to be pointed out that the programme of generating the field 
algebra from the observable algebra was initiated by Borchers [2]. The 
difference between his input and ours was discussed in [1]. For  the 
subset of sectors treated in the present paper our main conclusions are 
identical with those of [-2]. However, from our point of view this is a 
special case and the existence of non-Abelian gauge groups and para- 
statistics cannot be excluded without additional physical principles. 

Our notation here will, with minor modifications, follow that of [1] 
and so will the assumptions on the vacuum representation of the ob- 
servable algebra. For  the convenience of the reader we shall, however, 
state the relevant assumptions and definitions here. 

1 We neither wish to concern ourselves with problems of cosmology nor with the 
properties of a material medium filling space with a finite density. 
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If (9 is a region in space-time we denote by 91((9) the algebra generated 
by all the observables which can be measured within (9. We are not 
interested in the exact way in which 9.1((9) depends on the shape of (9 
and for this reason we shall always suppose in this paper that (9 is a 
closed double cone 2. The set of closed double cones will be denoted by 
5C. We make the following four groups of assumptions: 

1. There is a correspondence 

(9-~91(e), (9 E x (1.1) 

between closed double cones and von Neumann algebras on a Hilbert 
space Jgo 3. If (91, (92 E ~ and (91 C (92, then 9/((92) C 91((92) whilst if (92 
and (92 are spacelike separated 91((91) and 91.I(02) commute. The C*- 
algebra of quasilocal observables 9J is defined as the uniform closure 
of U 9~((9) and is assumed to be weakly dense in the set of all bounded 

operators on Jt~o . 91((9') denotes the C*-subalgebra of 91 generated by 
all 91((9i) with (9 i ~ J (  spacelike to (9. 

2. The Poincar6 group £f is represented by automorphisms a L of 
91, L ~ £f. a L transforms a local subalgebra 91((9) onto the subalgebra of 
the transformed region 91(L(9). 

3. There is a strongly continuous unitary representation Uo of £f 
on ~ o  implementing the automorphisms aL, L E 5f: 

Uo(L)A Uo(L) -1 = aL(A), L ~ 5Y. (1.2) 

The representation U o satisfies the following spectrum condition: the 
energy operator has its spectrum confined to E > 0, the eigenvalue zero 
being nondegenerate and corresponding to the vacuum state co o which is 
represented by a vector t2 a 5~f o 

coo(A) = (Q, A~), A ~ 91. (1.3) 

4. Duality holds for each double cone: 

91((9) = 91((9')', (9 ~ 5U. (1.4) 

The last assumption is supported by the analysis of [1; Theorem 4.1] 
and the known results for the free fields [3 and 1; Appendix]. 

An automorphism 7 of 91 is said to be localized in (9 ~ J f  if 

v(A) = A for A6  91((9'). (1.5) 
2 By a closed double cone we shall unders tand a closed set with non-void interior 

which is the intersection of a closed forward light cone with a closed backward light cone. 
By acting with a suitable Lorentz t ransformation any closed double cone may be reduced to 
the s tandard form 

{x E R* I Ix°t + Ixl < R ,R  > 0 } .  

3 The reason for choosing the local algebras to be weakly dosed  is that the representa- 
tions of these local algebras considered here are all unitarily equivalent (cf. [ 1], Theorem 6.1). 

13" 



176 S. Doplicher, R. Haag, and J. E. Roberts: 

It follows from this definition and (1.4) that if (91 6 f and (91 D (9 then 

A ~ ~((91) implies 7 ( A ) ~ ( ( g J .  (1.6) 

The identity automorphism is denoted by ~ and is clearly localized in 
any (9. The automorphisms localized in (9 form a subgroup of the auto- 
morphism group of 9.I which we denote by F((9). We let 

r = ~ r((9) (1.7) 

denote the group of all localized automorphisms. 
The algebra of observables 9] has been defined by its vacuum re- 

presentation which we denote by z~ o 4. We can define further representa- 
tions ~z by composing rc o with a localized automorphism. 

= rCoO ~. (1.8) 

The representations considered in this paper are those of the form (1.8) 
which satisfy in addition the following covariance condition: 

a) There is a strongly continuous unitary representation of N, the 
covering group of £f, implementing the automorphisms e L 

U(L)re(A)U(L) -1 = rc(c~r(A)), A~9I,  L ~  5 (1.9) 

The subsets of F and F((9) which give such representations will be denoted 
by F c and Fc((9 ) respectively. Thus the set of sectors considered in this 
paper will be those corresponding to representations rc o °7 with 7 e Fc- 

This set of sectors can also be characterized without using localized 
automorphisms. They correspond to representations re which satisfy a) 
above and the following two conditions: 

b) Strong local equivalence. There exists an (90 e S such that 

t rc I 9-I((9o) = ~o ] 91((91)) (1.10) 

where the symbol ~ denotes unitary equivalence. 
c) Duality. If (9 e J(( and (9 D (9o, then 

7~(9.I((9)) = 7c(9.I((9'))'. (1.11) 

The last condition rules out the occurrence of non-Abelian gauge 
groups [1; Theorems 4.1 and 5.6] and ensures that the corresponding 
set of sectors has the structure of an Abelian group. Condition b) is 
equivalent to saying that the sector contains a state strictly localized in 
(90 and cyclic for 9.1((9;). 

4 The symbol ~z 0 is used whenever we wish to stress the fact that the realization of ~I 
as an operator algebra on 2/f o is also a representation of 9/. 

s For simplicity we use the symbol L to denote both an element of ~ and the cor- 
responding element of £~o. 
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An important feature of the analysis in this paper is that all the 
structural properties of gI which are relevant to our task are proved in 
an elementary fashion in Sections II and III by using localized auto- 
morphisms. Typical examples are the Bose-Fermi alternative (Lemma 2.3) 
and the spectrum condition (Proposition 3.2). It seems that all properties 
which are usually expressed with the aid of the field algebra can be 
expressed directly in terms of localized automorphisms and in this sense 
the reconstruction of the field algebra is perhaps unnecessary. 

H. Localized Automorphisms 

This section is concerned with some basic facts, which are of an 
algebraic nature, about localized automorphisms. 

Let d((9) be the set of all unitary elements in 9.I((9) and d the union 
of all sJ((9) for the different double cones (9. Then d((9) (resp. d )  is a 
group under the multiplication in the algebra 9.1, and generates 9.1((9) 
(resp. a dense subalgebra of 21) by linear combinations. We introduce a 
group homomorphism o- of .~ into F, carrying s~((9) into F((9), by the 
definition 

U ~ d ~ v : a v ( A ) =  UAU -1, A~9.I. (2.1) 

We denote by J((9) (resp. J )  the image of d((9) (resp. d )  under a; 
then J is a subgroup of the group of inner automorphisms of 9.1 and a 
normal subgroup of F. In fact, if @ = a v e J and Y e F, 7@7-1 = o_v(v) e j .  
We can thus define the quotient group F/J;  the canonical homomorphism 
onto this quotient will be denoted by 7 E F ~ p  ~ F/J. 

Acting with 7 ~ F on the vacuum representation no we obtain a 
representation no o 7: 

no o 7(A) = no(7(A)), A 6 ~1. 

In this way we get a map 7-~ no o 7, where ~ denotes the unitary equiv- 
alence class of the representation n. Our first lemma says that the kernel 
of this map is exactly J .  

2.1. Lemma. I f  ~1, 72 E iV, no o 71 is unitarily equivalent to no ° 72 /f 
and only if 717~ 1 ~ J .  

Proof. Clearly the relation n o o 71 ~ no ° 7z is implied by 7~y~ e J ;  
we have to prove the converse implication. 

Let (9 be a double cone such that 71,72 ~F((9), and V a unitary 
operator on J/go such that 

no(72(A)) = Vrc0(71 (A))V -1, A e ~I. 

Since 7~(A)=72(A)=A if A e g t((9'), it follows that Veno(9.1((9'))' 
= no(9.1((9)) by the duality property, hence ol~y~ 1 e J((9). 



178 S. Doplicher, R. Haag, and J. E. Roberts: 

The preceding lemma implies that the map 7 ~ ' 7 "  of F into the 
spectrum 96 of 9i sets up a one-to-one correspondence between the 
quotient group F / J  and the family of equivalence classes of representa- 
tions obtained from the vacuum sector by the action of localized auto- 
morphisms; this family can accordingly be given a group structure. 

As explained in the Introduction, we establish the relation between 
localized automorphisms and fields only for the subset Fo i.e. for those 
automorphisms which transform the vacuum representation rCo into a 
representation rc o o 7 covariant for the Poincar6 group. For  those auto- 
morphisms we can prove a locality property closely related to the com- 
mutativity or anticommutativity of fields at spacelike separations. 

2.2. Lemma. I f  C1 and (92 are spacelike separated double cones, the 
automorphisms from Fc localized in (ga commute with those localized in (92. 

Pro@ Let 71 ~ Fc((91), ~2 ~ Fc((92) and A E ~i((9). Let (93 and (94 be 
translates of the double cones 61 and (92 respectively such that 

(i) (9 C (9; ~ (9•, 
(ii) there exist spacelike separated double cones (_95, (96 with (91 w (93 

C (95 C (9~ and (92 cJ (94 C (96 C (9~. 
Let 7~ and y~ be translates of 71 and 72 localized in (93 and (94 respec- 

tively. Then since 71 ,726. / ' c ,  Lemma2.1 shows that 7~ = °vlYl and 
7'2=~v2yz with u1EgA((gs) and Uzegi((g6). Now since (9C(9;c~(9~, 
7~7~(A) = 7~71 (A) = A. Hence av~ 71 av2 72(A) = av2 72av~ 71 (A). However 
71(Uz) = Uz, 72(U1)= U1 and U1 U2 = U2U1, hence 

7172(A) = 7271(A). 

Thus 717z = 7271 as required. 
The elements of Fc can be further classified into Bose or Fermi 

automorphisms. 

2.3. Lemma. Let 7t, Y2 e Fc be automorphisms leading to the same 
sector ~, i.e. ~z o o 71 ~- 7Zo ° 72, and U the element of ~¢, defined up to a 
phase, such that av71 = 72(Lemma 2.1) ; then, if 71 and 72 are localized 
in spacelike separated double cones, we have 

71(U) = + U (2.2) 

with the sign depending only upon the sector ~ and not upon the choice 
of 71, ~2. 

Proof. Assume 71 ~ Fc((90 and 72 ~ Fc((92) with (9~ and (92 spacelike 
separated double cones; by the preceding lemma 71 commutes with 
72, hence with o" v also. Since ;qtr v = %~(v)7~ it follows that o-~(v ) = trv 
and therefore that 

71(U) = g~l,ra U, g~l,r2 ~ T6" (2.2') 

6 T denotes the group of complex numbers of modulus one. 
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By the Eq. (2.2') we see that the number  e~,,~ depends only on the pair 
7~, 72 and not on the phase of U. Further by definition it is easily seen that 

= . ( 2 . 3 )  

Let 73 e F(C3) be an au tomorphism leading to the same sector ¢, with (93 
a double cone containing (92 and spacelike to (9~ 7; then 73 = O'rvT2 
=aV" 7~, with U ' =  WU,  and, by the duality property, W~d((93) ;  
therefore 7~ (W) = W, and multiplying Eq. (2.2') by Won the left we obtain 

71 (U') = e~,,~ U' = L',,~ U ' ;  

hence ~ , ~  = %~ .~. Thus the value of e~,,~ does not change when we 
vary the second argument  within the specified limitations. Eq. (2.3) tells 
us the same is true of variations in the first argument, 

Applying this process repeatedly we find that 

e~1,~ = e~i,~ ~ = g~ (2.4) 

for any pair 7~, 7~ e F c localized in spacelike separated double cones and 
leading to the same sector {. Therefore by Eq. (2.3) we get e~ = 1; hence 
e¢ = +_ 1, and the Lemma is proved. 

It  can be easily seen that 

i.e. e is a homomorph i sm of  F c / J  into the two element group { + 1}. The 
kernel of e is the subgroup of F c / J  of Bose sectors and elements mapping 
onto - 1 form the coset of Fermi  sectors. In a similar way, we define in 
F c the subgroup of Bose automorphisms and the coset of Fermi auto- 
morphisms, whose elements map onto Bose and Fermi sectors respec- 
tively. 

A localized automorphism 7 E F c may correspond to a "multiplica- 
rive" superselection rule in the sense that there is a pdwer of 7 which 
leaves the vacuum sector invariant, i.e. 

7 v ~ r ;  

in this case, if 7 is a Fermi automorphism v is even. 
The next Lemma  is of a purely technical nature but will be essential 

when reconstructing fields corresponding to muttiplicative super- 
selection rules. 

2.4. Lemma. I f  Q ~ F c is such that no ° 0 ~ ~ no for  an integer v, then 
there is a 7 in the J - c o s e t  J ~  such that 

7 ~ =  t .  
7 Notice that, for 7 ~ Fc, there are sufficiently many spacelike separated elements in 

the coset iT, in particular the space translates ~7~t~ 1, for suitable translations x. 
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Proof .  Let U c d be such that 

~0 v : O" U . 

Since ~fl~ = 0~Q, we have Q(U) = 2U with 2 E T. We first show that 2 = 1. 
Let W e  ~¢ be such that aw~ and fl are localized in spacelike separated 

regions (see footnote 7); then aw~(U ) = b\ and therefore 

2 W U W  - I  = U .  

However by Lemma 2.3 ~ ( W ) =  + W, hence ~*(W)= ( +  1)~W i.e. 

( +  t ) ~ W U W  -1 = U; 

therefore 2 = (+__ 1)v; since the ( - )  sign can occur only if v is even, 2 = 1. 
Now let (9 be a double cone such that ~ c F((9), whence U c 9I((9). The 
automorphism ~ is normal s on the yon Neumann algebra 91((9) and 
Q(U) = U; hence Q acts as the identity on the von Neumann algebra 
93l C 9.1((9) generated by U. If the unitary element Ve S0I is a vth root of 
U -a, it follows that 0(V) = V and Q commutes with av.  The desired auto- 
morphism ~ can now be written as ~ = CrvQ. 

The reader will notice that Lemmas 2.2, 2.3, and 2.4 can be rephrased 
for automorphisms in F -  but not necessarily in Fc - which belong to an 
J - c o s e t  containing "sufficiently many" spacelike separated auto- 
morphisms. 

Ill. The Abelian Group of Superselection Quantum Numbers 

We defined F c in the Introduction as that subset of F consisting of 
all localized automorphisms ? for which ~o °? is covariant with respect 
to the Poincar~ group. If 91 describes a physically sensible theory, we 
might expect that each locally normal pure state co, which approaches 
the vacuum state co o rapidly at large spacelike distances, gives rise to a 
sector ~ where the covariance and spectrum conditions are auto- 
matically satisfied. This would in particular imply that Fc = F. Our 
present framework may be too wide to realize this situation but we can 
at least prove that F c is a group and disregard any of the more singular 
objects ? ~ F, ? 6 Fc if they should exist at all. 

If  ~ is an irreducible representation of 91, there is at most one repre- 
sentation U of the covering group of the Poincar6 group such that (n, U) 
is covariant, since ~ has no non-trivial one-dimensional representations. 
Let U0 and U be the continuous unitary representations o f ~  correspond- 
ing in this way to the vacuum representation ~o and to n = ~o o 7, 7 ~ F o  

respectively. Hence 

no ° "l(o~L 1 (A)) = U ( L )  -~ 7~oO ,/(A) U(L) ,  A ~ 91.1, L e :~. (3.1) 

s Every automorphism of a yon Neumann algebra is normal ([10]; Chapter 1, § 4). 
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Given L e N and 7 ~ Fc, let 6 ~ be a double cone such that ~ ~ F((9) 
~F(L-~(9),  then we get from (3.1) 

Uo(L) -1 no(A ) Uo(L ) = U(L) -I  no(A ) U(L), A e 91((_9'). (3.2) 

Hence by duality in the vacuum sector 

Uo(L) U(L) -1 = no(UL(7)) UL(7) ~ d((9) .  (3.3) 

Further since Xo(~ZI(A))= Uo(L)- lno(A)Uo(L) ,  A Eg.I, L ~ ,  we get, 
comparing with (3.1) and using (3.3), 

~)L ~- O~LYO~L 1 = GUL(7) 7 '  (3.4) 

The meaning of this relation can be understood in the following way: 7L 
and ~ are automorphisms leading to the same sector, hence by Lemma 2.1, 
7L7 -I is an inner automorphism which determines a unitary element of 

up to a phase. The definition of UL(7) by (3.3) amounts to a special 
choice of this phase which is canonical in view of the following multi- 
plication law 

~ ,  (~) = ~(u~, (~) )  u~(~). (3.5) 

Suppose now that ~' e F c and U' is the continuous unitary representa- 
tion of N corresponding to n' = n o o ~', then 

no° YT'(~; I(A)) -- ZOo° ~ (~L 1 ~I.,(A)) 

= U(L) -~ no° 7(}'~(A)) U(L). 

Hence by (3.4) for 7' 

no ° 77'(eZ ' (A)) = U (L)- I ~0 o ))((TU L (~') ~)'(A)) U (L) 
so that 

U"(L) ~ no(~)(UL(7'))) -1 U(L) (3.6) 

implements az in the representation no o77'. A routine computation 
using (3.5) and (3.6) shows that L ~  U"(L) is a representation of ~. Now 
U o and U are strongly continuous representations o f~ .  Since the unitary 
operators form a topological group under the strong topology L-~ UL (~') 
is strongly continuous (see (3.3)). Further L-~ no (~(UL(7')))is also strongly 
continuous since localized automorphisms are locally normal. Hence 
the representation U" defined in (3.6) is strongly continuous and 7~' ~ F c. 

In a similar way we can show that ~ ~ F c implies 7-1~ F c. In fact 

0(L) = no(7-~(UL(7))) Uo(L ) (3.7) 

implements ~,~ in the representation n o o 7 -~ and L ~  [7(L) is a strongly 
continuous unitary representation of #.  
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3.1. Theorem. Fc is a subgroup of F and Fc/J is an Abelian group. 

Proof. We have just shown that  F c is a subgroup o f f  so it only remains 
to show that  the quotient  group Fc/J is Abetian. If  ?, Q e F c and L e N, 

then 90 = ~0/~ = ~ L  and 0~ = OL~ = ~LT. But by L e m m a  2.2 we may  
choose L such that 7~L = ~LT. Hence 90 = d~ and Fc/J is an Abelian 
group. 

If  we replace ~ by the g roup  of  translations in space-time, Theorem 3.1 
still holds but  the representat ions of  the translat ion g roup  in the different 
sectors are now defined only to within a cont inuous  one-dimensional  
unitary representat ion of  the translation g roup  9. 

Let 7, 7 ' e  Fc and suppose that  the energy-momentum spectrum 
in the representat ion defined by 7 is S(7). We show that  

S(77') D S(7) + S(7'), (3.8) 

Let A ~ and A r '  be open sets intersecting S(7) and S(y') respectively and 
let U, U' and U" be the representations of the covering group of  the 
Poincar6 group corresponding to ~o ° 7, re0 ° 7' and ~o ° 77' respectively. 
N o w  by (3.3) U(x)Ag2 = Ux(7) -1 e~(A)~2 so that we may pick A, A ' e  9~ 

t -I t such that the functions x-+Ux(7)-t~(A) and x~U~(7) c~(A) have 
Fourier  t ransforms with s u p p o r t s  in A/" and A p'  respectively. N o w  

t! X u ( ) ~ ,  - u" (x )7 (u , (7 ' )  -~ ~ , ( A ' ) ) A ~  = v(U~(7'))  -~ U(x)a~, 

by (3.5). Hence 

U"(x)¢ ,  = ?(U~(7) ~(Uy(7))  e~+y(A)) U~(7) -~a~(A)f2 

and by (3.5) 

tt X V ( )~ ,  -- 7(U~+,(7') --~ e~+v(A')) V~(7) -~ ax(A)f2. 

However  the strongly cont inuous  function x-~ 7 (Ux + y(7')- 1 a~ + y(A')) has 
a Fourier  t ransform with suppor t  in yV ~'by choice of  A'. Hence the vector 
~y considered in the representat ion ~c0o77' has energy-momentum 
spectrum in W +  yV' and it suffices to show that  we may  choose y such 

r ~  t that  ~y ~ 0. N o w  [I ~y112 = (Q, A 7(ay(A A ))AY2) and  since 7 is strictly 
localized we may apply the cluster decomposi t ion  proper ty  to deduce 
that  IIq~ytl2--.tlA(21I 2 1t1'(2112 as [y[-->oo. In particular for suitable y, 
~by4=0 and we have proved (3.8). Putt ing 7 ' =  7 -~ in (3.8) we get S(0 

S(y) + S(7 -~) and hence 

9 In the case of the translation group, it is also natural to consider automorphisms 
leading to sectors carrying covariant projective representations. These can again be shown 
to form a subgroup F~ of F. If Yt°o is a separable Hilbert space, F, may be identified with the 
set of those ? • F such that ~0 ° 7 carries a Borel measurable covariant representation up to 
a factor and we have a natural homomorphism of F, into the second cohomology group 
of the translation group with coefficients in T. 
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3.2. Proposition. The energy-momentum spectrum for  the representa- 
tion n o o 7, 7 ~ Fc, lies in the closed forward light cone. 

We terminate this section with two relations which will be used later 
to define Lorentz transformations of fields, l~qs. (3.3) and (3.6) give 

UL(?'Y') = UL(7) 7(UL(7')) (3,9) 

and Eqs. (3.3) and (3.9) give 

V'(L) V(L) -1 = n ' (VL(7 ' -I~)) .  (3.10) 

IV. Field Group and Field Algebra for Independent Charges 

As proved above, the family of equivalence classes of Poincar6 co- 
variant representations obtained by acting on the vacuum representation 
with localized automorphisms, has the structure of an Abelian group 
being in one-to-one correspondence with Fc/J .  These representations 
automatically satisfy the spectrum condition, i.e. positivity of the energy 
and reality of the mass. By [1; Proposition 6.4], this family coincides 
with the collection of all "sectors" which are equivalent to the vacuum 
sector when restricted to the subalgebra of some outer region and satisfy 
a duality property. The corresponding subset of superselection quantum 
numbers accordingly forms an Abelian group. 

Our task in this and the next section will be to construct fields carrying 
those charges. The construction in [1; Theorem 6.2], suggests that the 
automorphisms in Fc should be implemented by unitary elements of 
the field algebra in a representation n of ~l which contains each sector in 
F c / J  exactly once, the unitaries implementing inner automorphisms 
being observables. Since e s J determines a U e d such that o- v = e 
only up to a phase, e ~ n ( U )  is a representation of J up to a factor in 
T. Therefore we cannot choose the unitaries which implement the auto- 
morphisms in F c in such a way that they form a true representation of the 
group F c lo  W e  shall however see that we can obtain a representation 
of F c up to a factor in T. 

We divide the problem into two stages. First, find a group ~ (whose 
elements will be denoted by ~p, tp' etc.) with the following properties 

(i) d is a normal subgroup of ~ ;  
(ii) the homomorphism a of d onto J extends to a homomorphism 

~p ~o-~ of ~- onto Ic,  satisfying 
(iii) % ( U ) = t p U t p  -1 if t pE~ ,  U ~ d .  
(iv) Kernel o- = T = Kernel ( a i d ) .  

to Note that such a choice would also contradict Lemma 2,2 in the case of Fermi fields. 
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Note that because of condition (iii) the group ~ determines the 
homomorphism a from ~ onto Fc; a group W satisfying conditions (i) 
to (iv) will be called a field group. 

The second stage is to obtain the field operators by considering a 
covariant representation (n, V) of {92, o-}. Here n is a representation of 
the observable algebra and V is a true unitary representation of 
which implements the automorphisms % in the representation rc and 
moreover coincides with ~ when restricted to d .  

The field group ~ will contain in its abstract group structure all the 
formal properties we look for. For  instance, if t&, ~P2 e ~- are spacelike 
separated and "carry the same charge", i.e. o'~, a~2 are localized in space- 
like separated double cones and lead from no to the same sector, then 
properties (i) to (iv) imply ~Pl ~P2 = -- ~P2 ~P111. For  in that case ~ 2  = avaw~, 
with U e d and o-~(U)= + U by Lemma 2.3; by (iv) lp2 = 2Uq~1,2 e T 
and then ~ tp2 = _+ ~P2 ~Pt by (iii). We say that ~p is a Bose or Fermi field 
according as ~r,; is a Bose or Fermi automorphism. 

However conditions (i) to (iv) by no means define a unique solution; 
in particular the commutation relations between different spacelike 
separated fields may or may not be normal. 

In this section we construct o ~ explicitly for a group Fc/J with a 
family of independent generators which is at most countable. We post- 
pone the existence theorem for a field group corresponding to any Fc/J 
to the next section. 

Let (1, ~2 . . . .  be a countable family of independent generators of 
Fc/J. If the cyclic subgroup generated by ~ is finite, let v~ be the smallest 
positive integer such that 

~ ' =  z (4.1) 

where I = ~ denotes the identity of Fc/3. If this cyclic subgroup is infinite, 
we put v~ = 0. Let Z~ denote the additive group of integers modulo v v 
The independence of the generators i t ,  ~2, ..- is expressed by the fact that 

(n~, n~, ...) ~ [I  z ~  ~? ~"~ ... e rc /~  

is a group isomorphism 

A section s is defined 
each class ~ e Fc/J; we 
group homomorphism. 

i 

of the restricted t2 product l~ Z~, onto Fc/J~ 
i 

by picking a representative element s(~) ~ Fc in 
now choose a section s which is moreover a 

Let ~ = ~i, and (9~ be a double cone with ~,~ E Fc((gi). Since an auto- 
morphism from F c and its translates under the Poincar6 group lead to 

~ Not ice  t h a t ~ D d D T s o  - l ~ J .  
12 This  means  tha t  on ly  sequences  with a finite n u m b e r  of  non-zero  terms are  con-  

sidered. 
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the same sector, we may  suppose that  (9~ is spacelike to (gj, i@j. From 
Eq. (4.1) we see that  7 ~ e  J ;  hence from Lemma  2.4 we can choose 7~ 
localized in the same region as 7'~, satisfying 

7~ ~ = z; 7i = ~i- 

By Lemma 2.2, 7~7j = 7i7~ for all i,j = 1, 2 . . . .  ; we see then that the section 
4 ~ s ( ~ )  defined by 

4 = 4 7 1 4 n 2 2 " " - - + S ( 4 )  __ . . . . .  7 t  72  " " ,  (nl, n2, . . . ) e I ~ Z ~  
i 

is a homomorph i sm.  
We now int roduce the semidirect p roduc t  o f ~  and Fc/J  with respect 

to the action defined by s: 

~o =- ~ x =Fc/J. (4.2) 

In other  words, if ~p = (U, ( ) e o ~  o with U e s~ and 4 ~ Ft.~J, the group 
opera t ion is given by 

~W' = (Us(O (U'), 4 4'). (4.3) 

If ~p ~ ~-0, we shall write ~ = (Ut~, 4t0) whenever we need to emphasize 
the dependence of U and 4 on ~p. 

Define a representat ion a of ~o  by au tomorphisms  of 9.1 setting 

% = ~v~S(4~). (4.4) 

It is immediately seen that  the pair ~-o, o- defined in Eqs. (4.2) to (4.4) 
satisfies the condit ions (i) to (iv) above. 

For  any field group ~" we define the subgroups corresponding to 
local regions by 

.~((9) -- {~c, ~ ~ t ¢~ ~ F((9)}. (4.5) 

4.1. Theorem. Let ~ be any field group and ~Pl ~ o~((91), ~P2 ~ °~((92), 
with (91 and (92 spacelike separated double cones. Then ~ = ~pl ~pz~p~l~p~ 1 
is a phase factor depending only upon 4~1 and 4~, e = ~(~, ,  4~.~). The 
function e(~, 4') satisfies the relations 

e(4, 4') = ~(~', ~ ) - I  ; ~(4, ~) = ~ 

where e¢ = -t- i according as 4 is a Bose or Fermi sector, see Eq. (2.4). 
In particular if  ~ = ~o then e(4, 4) = +- 1 for all 4, 4' e Fc /J  and is 

given by 

e(4, 4') = I ]  e~ "~ (4.6) 
i 

n l  n 2  ~ t  ~ ' . . . .  
/ f  4 = 41 42 . . . ,  4~ ~4~ ~ 
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Pro@ 4~l~2~,Flt~i, = i so e ~ d .  Since (91 and (9 2 are spacelike sep- 
arated, a~o-~2 = a~2~r~l and a~ = z. Hence e~ T. An argument similar 
to the one in the proof of Lemma 2.3 shows that the phase factor 
depends only upon 4~1 and 4~2. By definition e is antisymmetric, and the 
remarks following conditions (i) to (iv) establish that e(4, 4)= e~ = +_ 1. 

Now let ,~- = ~o; the fields (1, 4~)e ~o((9~) commute with one another 
and (9i is spacelike to (9~, i#:j; hence e(4~, 4i)= + 1 for i,#j, Since the 
commutator e between the fields p and ~p' with spacelike separated 
supports depends only upon their charges 4, ¢', we may prove (4.6) by 
specializing ~p and ~p' to be monomials in fields carrying "elementary 
charges" 4~, all support regions being mutually spacelike. 

If ~- is any field group, the associativity of the product also implies 
the cocycle identity be = 1 ~3; we will call e the commutator cocycle of ~ .  

We see by Theorem 4.1 that the particular solution ~0 of our problem 
does not correspond to normal commutation relations. We will obtain 
the normal solution ~ by a Klein transformation. 

Let c~ denote the group of all functions from Fc/J  to T under point- 
wise multiplication: if f l ,  f2 ~ ~, (f l  f J  (4) = f l  (~) f2 (~), ¢ e Fc/J. 

We define an action of ~'7 0 on ~ by setting 

f ~ f : ~ f ( 4 , ) = f ( 4 , 4 0 ,  f~cg,  ~pe~,  ~ ' e F c / J .  

Let c¢ x ~o be the corresponding semidirect product, the group operation 
being 

(fl ,  *P,) (Ji,  ~2) = (f ,  ~'f2, IPl 1/)2). 

Let o & be the quotient group modulo the equivalence relation (f, 2~p) 
(2f, ~), 2 ~ T, i.e. ~ = g x Yo /N  where N = {(2, 2 -1) 12 ~ T}. We 

extend a to ~ by setting a(y, ~) = a r. 
We next introduce special elements f~, h~, he of ~ by the relations 

+ 1 if?~ is a Bose automorphism," 
f~(4') = (_  1), i [fT~ is a Fermi automorphism and ~' = 4~ "~ ¢"z ~ ..." 

• n l  712  . h~=f t f~ . . . f~_~ ,  h¢=h~ h2 .. if ~eFc /~ ,  ~ = ~ ; ~  . . . .  

The Klein transformation is the map of if0 into ~ defined by 

tp e ~o ~ (h¢~, ~p). (4.7) 

The range of the map (4.7) is a subgroup ~ of ~,& which, together 
with the restriction to it of the homomorphism a of ~ onto I~, yields 
another solution of (i) to (iv) above. As the map (4.7) is one-to-one we 
will identify ~- and o~o as sets, and also denote the elements of f f  by 

~3 By writing ~o~0z~p 3 = 2tp~p~p~ for mutually spacelike separated fields and calcu- 
lating 2 from e in two different ways, we deduce an identity for e, which by definition (A.t.t) 
reads 8e = 1 (cf. also Theorem 5.3), 
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~, ~1, etc . . . . .  remembering that the product operations in Y and ~o 
may differ by a sign. 

Combining our construction with Eq. (4.6) we have 

4.2. Theorem. Let ~l E o~((91), Ip 2 c ff((92), with (91 and (92 spacelike 
separated double cones; then 

I])l l]) 2 = + ID21~I 

with the ( - )  sign holdin 9 if and only if both tPl and tP2 are Fermi fields. 
In other words, we have normal commutation relations in ~ .  

Before discussing representations, we introduce the gauge group N 
and define the action of N and of the group ~ on the field group Y. 

In the present situation, Fc/J  is a countable, discrete Abelian group; 
let N be its dual group. N is the separable, compact Abelian group 
consisting of all elements g e c~ such that g(41~2)-= 9(41)g(~2) (g is a 
character) with the topology of pointwise convergence. Then Fc/J  is 
canonically identified with the dual ~ of the compact group f# [4; § 31, 
Theorem 32] by z~(g) = 9(4). 

Being a subgroup of cg C 8 ,  5# induces inner automorphisms of 8 .  
Computing the action of g e f# on (f,  ~p) e ,~  explicitly, we get 

(f ,  tp)---r(f, ~,) where alp = g(4to)~P = Z¢~(g)~P. (4.8) 

Both the sets fro and f f  are invariant under this action, and in this way 
we obtain faithful representations of N by automorphisms of if0 or if ,  
since the characters )~, ~ ~ Fc/g, separate f#. 

Now let L ~ ~ and W e Y ;  we define 

L~ = (~L(U~) UL(S(4~)), ~ ) ,  (4.9) 

where UL(o/), 7 EFc, was introduced in Eq. (3.3). Assigning to L ~ ~ the 
map ~P---'LW, relations (3.5) and (3.9) show that we get a representation 
of ~ by automorphisms of the group ~ which satisfy 

go~((9)} = o~(z;(9), L e ~ .  

The two actions g e f# ~ gtp, L e ~ ~ LW, ~v ~ Y, clearly commute with 
each other, and we have a representation of the product group f# x ~ by 
automorphisms of ~ .  The action of (g, L) e ~ x ~ on d C ~ reduces to 
that of e L . 

We will now construct field operators acting on a Hilbert space by 
displaying a suitable covariant representation (n, V) of {~i, o-}. 

We first define the representation n 

n = @ n~, with n~=no  °s(4). (4.10) 
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It acts on the Hilbert space 

~v¢~= @ Jf~ ,~- - -Yfo .  (4.10') 
~ F c l J  

Since the representations r ~ -  ~0os(~) are irreducible and pairwise 
inequivalent, u is multiplicity free and the commutant re(9.1)' coincides 
with the set of all bounded operators which reduce to a multiple of the 
identity on each 34Z~. Therefore the representation of the group cd 
defined by 

f cc~gs : (q l fT ) (~)=f (~)T(~  ), T e ~  (4.11) 

maps ~ onto the unitary group of re(9/)'. 
We introduce in J f  a unitary representation of Fc/J, which is the 

"canonically conjugate" representation to ~ [ f f .  Namely we define 

U/~F)(U) = F(~'~), TsYf ,  ~'~Fc/d ~, (4.12) 

so that ~ implements s(~), i.e. 

~ r c ( A ) ~  -1 = rc(s(~)(A)), Aegi, ~eFc/J. (4.12') 

The representation of the covering group of the Poincar6 group is 
defined by 

L-+ U(L) = @ U~(L) (4.13) 
e F c / 5  

where U¢ is the continuous unitary representation of ~ on ~ - - / ' ~ o  
such that (~,  U~) is covariant. Then (zc, U) is a covariant representation 
of {9/, c~}. 

Now we can define a unitary representation of ~ on J f  assigning to 
(f, ~) - (f,  b~, ~to) ~ ~ the operator 

~ ,  zc(U~)~/r¢ . (4.14) 

From the definition (4.4) of o', the fact that zc is a representation and 
relation (4.12'), we see that as f runs through ~ and ~ is kept fixed, the 
operator (4.14) runs through the set of all unitary operators which 
implement the automorphism a~ in the multiplicity free representation ~z. 

We are interested in particular in the restriction of the representation 
(4.14) to the two subgroups of 5 ,  consisting of the normal field group 

and the gauge group (¢; we will denote those restrictions by ~p E ~- 
-~ V(tp) and g E ~ U(g) respectively. Since (4.14) is a group representa- 
tion we have (cf. Eq. (4.8)). 

U(g) V(~) U(g) -1 = V(,q~9) -- X¢,~(g) V(y2), geff,  ~ 6 f f .  
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4.3. Remark. Let ~-o v(~) be the right regular representation of Fc/~¢ 
acting on the Hilbert space 12(Fc/J) of square summable sequences on 
Fc/d;, and let 9e~f--*u(9) be the representation of the dual group 
canonically conjugate to it, i.e. acting on an element of 12(Fc/J) by 
multiplying the i-term by 9(¢). We have then 

= ~ o  ® 12 ( r c / ~ ) ,  

= 1 ®  v(~), 

U(9 ) = I ®u(9 ) . 

4.4. Remark. Let p be an element of ~ ;  the operator V(tp) on ~ has 

the meaning of a destruction operator for the "charge" cr~ = ~to e Fc/J; 
indeed we see from Eqs. (4.10) and (4.10') that 

V(tp)H~=~g~,, where ~ , = ~ ; t ~ .  (4.15) 

Next we verify the Lorentz covariance of the operators V(~o). Re- 
calling the definitions of the transformed field (4.9) of U(L) (4.13) and 
of V(~) (4.14), we see that properties (4.15) and (3.9) imply 

U(L) VOp) U(L) -~ = V(,)p), L s ~ ,  ~peY. 

Let 3((9) denote the yon Neumann algebra generated by {V04J) Jtp 
~,~((9)}, with (9 a double cone in Minkowski space, and 3 the C*-algebra 

generated by all 3((9)%. Clearly 3((9) has the property 

U(L) 3((9) U(L) -1 = 3(L(9), L 6 ~ ; (4.16) 

and, if (ga, (92 are spacelike separated double cones, 

3((9~) C rc(~I((92))'. (4.17) 

4.S. Proposition. rc(91((9)) = 3((9)m U(f#)'; 7r(~21) = 3 ~  U(f#)'. 

Proof. Consider the following sets: first, the linear span of all V0p), 
tp e ~((9); secondly, the linear span of all ~z(U), U ~ sJ((9), (9 being a 
double cone. They are both *-algebras because of the group property, the 
first includes the second and they are weakly dense in 3((9) and rc(9.I((9)) 
respectively. Define the linear map m on ~ ( ~ )  by B ~ ( ~ ) ~ m ( B )  
= ~ U(e) B U(e) -~ dr(e), when # denotes normalized Haar measure on f#. 

f~ 

Then m is a normal, positive projection map of N ( ~ )  onto U(f#)' of 
norm 1 (see [1], Lemma 3.1). Clearly m(V(~p))= 0 unless ~t~ = z, i.e. 
V(N) ~ x(9.I). Hence m maps the first of the two *-algebras considered 
above onto the second, and, being normal, it maps 3((9) onto re(9.1((9)). 

This proves the first statement in the lemma; the second is then a 
consequence of the norm continuity of m. 
14 Comraun. math. Phys., Vot. 15 
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V. The Construction and Classification of Field Groups 

Our task in this section is twofold; we shall show that we can con- 
struct field groups ~ without making restrictive assumptions on the 
nature of the discrete Abelian group Fc/J of sectors, and we shall also 
classify all possible field groups. For  convenience we denote Fc/J by 
f# in recognition of the fact that it may be interpreted as the dual group of 
an Abelian gauge group f#. If we can construct a group satisfying (i) to (iv) 
of'the'last section, we get a commutative diagram, where.1 denotes the 
group of one element. 

T---> Y-% Fc (5.1) 

Each row or column is a short exact sequence of groups so that the third 
group in any row or column is the quotient of the second group modulo 
the first. In other words the second group of any row or column is an 
extension of the first by the third. In particular we may regard ~ as an 
extension of ~¢ by f~ and this makes it possible to reduce the problem 
of constructing g to a standard cohomological problem. This problem 
is solved explicitly in this section and the reader is referred to Appendix I 
for the basic definitions of the cohomology theory of groups and the 
connexion with group extensions. 

Before constructing a field group we investigate the extension F c of 
J by f~. Let j : f ~ F c  be a section for the canonical map Fc~f~ with 
J0) = t. Then 

J(~l)J(42) = a(~l, 42)J(4142) for ~1, 42 ~ ~ (5.2) 

where a(41, 42) ~ J satisfies the identity 

a(41, 42) a(4142, 43) = J(~')a(42, 43) a(41, 4243). (5.3) 

Here we have written J(¢l)a(42, 43) for j(41) a(42, 43)j(41) -1. If ~ has a 
countable family of independent generators, we showed in Section IV 
that we could take j to be a homomorphism s and we would then get 
a(41, 42) - 1. However there is no reason to suppose that we can choose 
j to be a homomorphism in general. 

Let i: , J ~ d  be a section of o - : d ~ J  with i( t )= I, then from (5.3) 
we get 

ia(~l, 42)ia(4t 42, ~3) = z(4i, 42, 43) [J(~l)(ia(~2, ~3))] ia(~l, ¢243) (5.4) 
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where Z(~I, ~2, ~3) E T, the centre of  d .  Rout ine  computa t ions  show that  
z is actual ly a 3-cocycle and  that  changing the sections i and  j changes z 
by a coboundary .  The  c o h o m o l o g y  class of  z is thus uniquely determined 
by the extension F c of J by ~. 

N o w  suppose  that  ~ is a field group  and let k : ~ ~ ~ be a section 
of the canonical  m a p  ~ - ~  w i t h j  = a o k and k(0 = I. Then 

k(~l) k(~2) --= b(~l, ~2) k(~l ~2) for ~1, ~2 e ~ (5.5) 

where b(~l, ~2) e ~ satisfies the identi ty 

b(~l, ~2) b(~1 ~2, ~3) = ~(~1) (b(~2, ~3))] b ( ~ ,  ~2~3)14. (5.6) 

A s j  = ao k, a(~l, ~2) = ab(¢1,~2) and hence 

b(~a, ~2) = 2 ( ~ ,  ~2) ia(¢~, ~2) (5.7) 

with 2 e C2(f~, T). C o m p a r i n g  (5.4) and (5.6), we see that  z = 62 is a 
necessary condi t ion for a field g roup  to exist. On the other  hand  we shall 
show tha t  this condi t ion is also sufficient because if z = 62, we m a y  
define b(~l, ¢2) by (5.7) and  derive (5.6) using (5.4). We now construct  the 
field g roup  ~-z by setting ~,~ = {(U, ~ ) [ U  e d ,  ~ ~ f~} with the multi-  
pl icat ion law 

(Ul,~l)(U2,~2)=(Ulj(~1)(U2)b(~1,~2),~1~2). (5.8) 

The  associat ive law for fix follows f rom (5.6), (5.7), and (5.3), and we verify 
that  ~-z is a group,  d is identified with the subgroup  {(U, z) [ U ~ d } .  
Defining 

a(v,~ ) = avj(~) (5.9) 

we get a h o m o m o r p h i s m  a f rom ~-z on to  Fc extending a : s~ ~ J .  Con-  
ditions (i) to (iv) are easily verified and we have proved  

5. t .  Theorem. There exists a field group if and only if the 3-cocycle z 
defined by (5.4) is a coboundary. 

As explained in Appendix  I, this T h e o r e m  is a consequence of a 
s tandard  result in the theory  of g roup  extensions [5]. 

We showed in the previous  section that  field groups  o ~ exist if ~ is a 
countable  restricted p roduc t  of cyclic groups  and we use this result to 
prove  the general  existence theorem.  

5.2. Theorem. Every observable algebra satisfying duality in the 
vacuum sector has at least one associated field group. 

Proof. The set of functions f rom ~ x ~ into T with the topology  of 
pointwise convergence is a compac t  space by Tychonof f s  Theo rem 

14 We may regard a and b as 2-cochains with values in J and d respectively and 
Eqs. (5.3) and (5.6) as saying that these 2-cochains are 2-cocycles provided we recognize 
that J and sJ are not Abelian and that ~ acts non-trivially on J and d. 

14" 
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[6; I § 9 N ° 5]. C 2(~, T) is clearly a closed subset of this compact space 
and is hence itself a compact space with the topology of pointwise con- 
vergence. Let G be any finitely generated subgroup of ff and let F(G) 
= {2 ~ C2(ff, T) [ 62 = z on G}. F(G) must be a closed subset since the 
condition 62 = z on G is just a simple restriction of the values of 2 at 
specific points of ff x ~. F(G) is non-empty by the results of the previous 
section since every finitely generated Abelian group is a finite product 
of cyclic groups [7, § 20]. If G I C G 2, then F(G1) D F(G2). Thus {F(G) I G 
a finitely generated subgroup of ~} has the finite intersection property. 
Hence (~ {F(G) I G a finitely generated subgroup of ~} is non-empty 

[6; Chapter I, §9, N ° 1]. Now ~ is the union of its finitely generated 
subgroups so if 2 is in this intersection, 62 = z and the result follows 
from Theorem 5.1. 

Once the existence of field groups has been established, the classifi- 
cation of all possible field groups is a standard exercise in the theory of 
group extensions [-5]. We call two field groups ~- and ~ '  equivalent if 
there is an isomorphism of Y onto Y '  which reduces to the identity on 
d .  This is the natural notion of equivalence based on the conditions (i) 
to (iv) of the previous section since the homomorphism ~ r : ~  ~ F  c is 
uniquely determined by ~ .  The discussion preceding Theorem 5.1 shows 
that every field group is equivalent to a field group of the form ~,~ where 
2 is a 2-cochain with 62 = z. Any two such cochains 2, 2' differ by a 
2-cocycle: 2'2 -1 =f~Z2((~, T). If f =  6h then 

(U, ~)~(U h(~), 4) (5.10) 

is an isomorphism of ~a  onto ~ ,  establishing the equivalence of ~ and 
~x,. Conversely, any equivalence of these field groups must be realized 
by an isomorphism of the form (5.10), so if Yx and Nx, are equivalent 
2'2 -1 = 6h. Hence the equivalence classes of field groups are in 1-1 cor- 
respondence with the elements of H2(~, T). 

This correspondence can be interpreted by relating it to the commuta- 
tion structure of the field group. Theorem 4.1 shows that the commutator 
cocycle e~ of any field group ~ determines the commutation relations 
of spacelike separated elements of ~x. Let 2' = f 2  with f e  Z2(ff, T) then 

~ ,  = f e ~  (5.11) 
where f(~l,  ~2) = f(~l,  ~2)f(~2, ~1) -1" As shown in Lemma A.1.2 f may 
be identified with the cohomology class of f .  Thus a field group is 
determined to within equivalence by the commutation relations of its 
spacelike separated elements. Let n(~) be 1 or i according as ~ is a Bose 
or Fermi sector, i.e. according as ee is + 1 or - 1 .  Then the condition 
that ~ .  has normal commutation relations may be written in the form 

~ = 6n. (5.12) 
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5.3. Theorem. There is to within equivalence one field group with 
normal commutation relations. I f  ~ is any field group the corresponding 
commutator cocycle e has the form 

= f ~ n  (5.13) 

where f e H2(~, T) and determines Y to within equivalence. Thus (5.13) 
determines a natural 1 - 1 correspondence between the equivalence classes 
of  field groups and the elements of H2((~, T). 

Proof. We first adapt the proof of Theorem 5.2. If G is a finitely 
generated subgroup of fq and ~2 = z on G, let ~G,~ be the corresponding 
extension of ~ by G, and eG,~. be the commutator cocycte of o~a, ~. We 
now define 

F ' ( G ) = { 2 e C 2 ( f ~ , T ) 1 6 2 = z  o n G a n d  eo, x = f n  onG}.  

F'(G) is again closed because the condition eG, x = 6n on G may, by 
virtue of (5.7) and (5.8), be written: 

UlJ(41) (Uz) ~(41, 42) -- ~n(41, 42) Uz](¢2) (U1) 2(42, ~t) (5.14) 

for all (U~, 4~),(U2, 42) such that 4t, 42 s G and the automorphisms 
av~j(41) and avj(42) have spacelike separated supports. The existence 
of a field group with normal commutation relations now follows as in 
Theorem 5.2. Eqs. (5.11) and (5.12) show that e has the form (5.13). The 
rest of the Theorem follows from the previous discussion. 

The cohomology groups Hz(f~, T) are calculated explicitly in Appen- 
dix I for the case that ~ is a finite product of cyclic groups. The possible 
values for the commutator cocycle e may then be calculated using (5.13). 
In any case e has the following properties: 

~(¢~, 4,) = ~(41, ~2) -1, 
~ ( 4 ~ ,  4~) = ~(4,, 4~)~(4~, 43), (5.I5) 

g(g, 4) = e~ = -+I, 

where the sign (+)  corresponds to Bose fields and the ( - )  sign to Fermi 
fields, and the second relation follows from the associativity of the product 
in ~" (cf. Theorem 4.1 and Lemma A.I.1). 

VI. Field Algebras and Twisted Duality 

Let ~,~ be a field group and define ~ = ~ × o~/N and the homo- 
morphism a : ~ - +  F e as in Section IV. We first show that any field group 
is equivalent to a subgroup of ~ .  Any element of J -  may be written 
uniquely in the form (g, ~p) where g e C1(~, T ) C ~  and ~p ~ ~,~. Given 
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f e  Z2(ff, T) define a map 4 ~h¢ from ~ to Cl(~, T) by setting 

h¢2(41) = f(41, ~z) -~. (6.1) 

Since f e Z2((~, T) we have 

h¢,(¢)h¢2(44a)=f(~1,~2)h¢~¢~(4 ) for all 4e(~.  (6.2) 

Let ~1, ~P2 e f f  with ~1 = 4~ and 42 = 4t,2 then by (6.2) 

(he,, W1) (h¢~, ~P2) = (h¢,~,f(~a, 42) ~/)11P2) " (6.3) 

Thus ~-h= {(he, ~P)I ~P e .~, ~ = 4t,} is a field group and a subgroup of 
o~. The multiplication law in ffh differs from that in f f  by the presence 
of the phase factors f(41, 42). Since f ~  Z2(~, T) was arbitrary we have 
shown that every field group is equivalent to a subgroup of ~ .  Every 
field group which is a subgroup of ~ must have the form ffh where h 
satisfies (6.1) for some f e  Z2(ff, T). The map ~p ~ Y~(h¢~,  ~) e ffh is a 
generalization of the Klein transformation (4.7) so we may sum up the 
results of this paragraph by saying that the field groups are related to 
each other by generalized Klein transformations. 

Now if ~i e ff((91) and ~P2 ~ ~-(~2) where (9~ and (92 are s pacelike 
separated double cones then (1, ~Pt) and (h~, v22) commute in f f  if and 
only if 

f(44~, 42) -1 f(4, 4~) = e(~, 42) (6.4) 

where e is the commutator cocycle of f t .  However e satisfies (5.t5) so that 

f = e-1 (6.5) 

is the unique solution of (6.4) for all 4t, 42 ~ ~" The subgroup of o & 
defined by taking f = ~-1 in (6.1) will be called the twisted field group 
corresponding to f f  and will be denoted by ~-t  It is characterized by the 
condition that Y((91) and ~*(02) commute whenever 01 and (92 are 
spacelike separated double cones, f f  and 0~-~ will be equivalent if and 
only if ~ - 1 and from (5.13) this condition may be written 

~2 ___ 1 (6.6) 

and is always fulfilled if f f  has normal commutation relations. 
The construction of a field algebra proceeds as in Section IV. The 

action of the gauge group on ~ is defined by (4.8) and the action of the 
Poincar6 group on f f  is defined analogously to (4.9) by 

LIP "~" (O~L(Utp) UL(j(~p)),  ~tp) " (6.7) 

The representation ~ of 9.I is defined by 

rc = @ r~¢, with ~z~ = rc °j(4) (6.8) 
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and acts on the Hilbert space ~ of (4.10'). q/s is defined by (4.11) but 
instead of (4.12) we now get 

('~¢tP)(~') = n0(b(~',~)) 7~(~'~ ), ~ e ~ ,  ~ ,~ 'ef~ ,  (6.9) 

where ~ is defined by (5.8) and b satisfies (5,6). We have 

r ~ ,  = n(b(~', ~))~//'¢~, (6.10) 
and 

~FCTc(A) ~/'~ -1  = 7c( j (~)(A)) .  (6.11) 

Eqs. (5.8), (6.10), and (6.11) show that we can define a representation of 
on ~ by (4.14). 5((9) is defined as in Section IV and Proposition 4.5 

is valid without modification. 
As we have a representation of the group ~ at our disposal, we may 

also define in a natural way a field algebra ~h corresponding to the field 
group ~h. In particular for ~t we have immediately 

6.1. Proposition. ~ satisfies twisted locality (c f  . [1], Definition 4.2), i.e. 

~((9')- C ~((9)' (6.12) 

for every double cone 69. 

We are prevented from proving twisted duality (cf. [1], Definition 4.3) 
for all double cones because it is not clear whether there are states of 
each possible charge strictly localized in an arbitrarily small double cone. 
However we have 

6.2. Proposition. I f  (9 is a double cone such that 5((9) contains fields 
of  all charges, i.e. if  F((9) maps onto (~, then ~ satisfies twisted duality for 
(9, i.e. 

5((9')- = ~((9)'. (6.13) 

Proof. Let A e m(~((9')') then by duality in each sector for the ob- 
servable algebra, A = @ n~(A¢) with A¢e 9]((9). Without loss of generality 

we may suppose the section j : f ~ F  c has been chosen so that j(~) has 
its support spacelike to (9. Then ~ e ~(~') and commutes with A. Hence 
A, = A¢. But this must hold for all ~ ~ ~ so A = n(A,) and 

m(~((9')') = 9.1((9) = m(~t((9)). (6.14) 

Let F e 5((9')' have tensor character { and pick a unitary U e 5'((9) C ~(C')' 
of this same character, then F U -1 ~ m(~((9')') = m(~((9)) C ~'((9). Hence 
F ~ ~t((9). But 5((9')' is a gauge invariant yon Neumann algebra and is 
therefore generated by its elements of definite tensor character under f#. 
Thus ~((9')'C ~t((9) and taking commutants and using (6.12) we have 
(6.13) as required. 
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Appendix I 

For the reader's convenience we collect in this Appendix a few 
definitions and results in the cohomology theory of groups and refer him 
to Eilenberg and MacLane [-5, 8] for further details. Let G be a group 
then an n-cochain with values in T is a function f(gl, g2,..., ft,) of n group 
elements, g~, g2 . . . .  g, e G, with values in T such that f(gl, g2,..., g,,) = 1 
if any gi is the identity. The set of n-cochains forms a group under point- 
wise multiplication which is denoted by C"(G, T). We define the co- 
boundary homomorphism 6 : C~(G, T)-~Cn+I(G, T) by 

O f )  (gl, g~, ..., g , . l )  

=f(g2, g3, ...,g~+l) [I f(ffl, g2, ...,gigi+l, ..., gn+l) (-1)~ (A.I.1) 
i = l  

"f(gl ,  ..-, g,)(_~>°+l 

An n-cochain is called an n-cocycle if ~ f  - 1 and an n-coboundary if it 
is of the form f =  6 f '  with f '  e Cn-~(G, T). A routine calculation shows 
that 66f-=  1 so that every coboundary is a cocycle. The subgroups of 
n-cocycles and n-coboundaries are denoted by Z"(G, T) and B~(G, T) 
respectively. The quotient group of these two groups is called the n-th 
cohomology group H~(G, T) - Z~(G, T)/B"(G, T). 

As pointed out in Section V, we may regard a field group ~ as an 
extension of ~ by f~, that is ~ contains ,~ as a normal subgroup and 

~ ~ / d .  Let A ( d )  denote the group of automorphisms of d and l ( d )  
the normal subgroup of inner automorphisms. Any extension ~ of 
by ~ is associated with a homomorphism O : ~ A ( d ) / I ( d ) .  0 is con- 
structed as follows: let k : ~-~  ~ be any section of the canonical map 
Y -~ ~, then U ~ k(O Uk(O- ~ is an automorphism of d and determines 
a mapping of ~ into A(d) .  The automorphisms U-~ k(~l ~2) Uk(~l ~2)-1 
and U~k(~l)k(~2)Uk(~2)-lk(~) -1 differ by an inner automorphism. 
Hence the composed map ~ A ( . ~ ) ~ A ( d ) / I ( d )  defines a homo- 
morphism 0. 0 is independent of the choice of section. 

Now i f ~  is actually a field group thenj  = a o k is a section for Fc-*~ 
and condition Off) of Section IV gives 

k(O Uk(O -~ = J ( 0  (U). (A.1.2) 

Hence 0 is determined by the extension F c of d by ~ since the image of 
U-~j(O (U) in A(d)/l( ,~) is again independent of the choice of section j. 
Now Fc may be considered as a subgroup of A ( d )  since a ? s F c extends 
uniquely from ~ '  to give an automorphism of N, Thus we see that 0 
determines the extension Fc of d by (~ since Fc considered as a subgroup 
of A ( ~ )  is just the inverse image of 0(~) under the canonical map 
A(,~C)~A(~)/I(~). The problem of constructing field groups is thus 
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equivalent to the problem of constructing extensions of ~¢ by ~ cor- 
responding to the homomorphism 0. The discussion in Section V 
leading to Theorem 5.1 corresponds to the discussion given by Eilenberg 
and MacLane [5]. As they showed, whenever 0 allows extensions, the 
equivalence classes of such extensions are in 1 - 1 correspondence with 
the elements of H2(~, T). Note that because j(~) being linear leaves the 
centre T of d pointwise fixed, ~ does not act on T and the cohomology 
groups are as defined above. 

The problem of determining all possible field groups is now reduced 
to that of calculating the cohomology groups H 2 (~, T). Given f e C 2 (~, T) 
define 

f (~l ,  ~2) = f(¢i, ~2)f(~2, {1) -1 (A.1.3) 

h.l.1. Lemma. f ~ f  is a homomorphism of C2(~, T) into C2((~, T) 
such that 

a) I f  f e Z2((~, T) then f e Z2(~, T). 
b) I f  f ~ B 2 ({#, T) then f =- 1. 
c) f=  
d) f ( ¢ 2 ,  ¢1) = f ( ~ l ,  ¢2) - l -  
e) f(~, ~) = 1. 
f) I f  f e Z2(~, T) then f(~a ~2, ~3) = f(¢1, ¢3)f(¢2, ¢3)- 

The proof of this Lemma involves straightforward computations 
which we omit. Since f - - , f  is a homomorphism, b) implies that f is 
constant on B2(~, T)-cosets. Hence for f e  Z2(~, T), f depends only on 
the cohomology class of f. 

A.1.2. Lemma. Let [ f ]  denotes the cohomology class of f ,  then 
[ f ]  ~ f defines an isomorphism of H2(~, T) onto a subgroup of Z2(~, T). 

Proof. In view of the above remarks [ f ]  --,fis a homomorphism and 
it thus suffices to show that f e Z 2 ( ~ ,  T), f---1 implies f eB2(~ ,  T). 
Using the compactness argument as in Theorem 5.2, it suffices to take 

to be a finitely generated Abelian group. Suppose that ~ = G 1 × G 2 
and that we have proved the result for G i and G 2. Given f e Z 2 ( ~ ,  T) 
with f -  i, let fi  denote the restriction o f f  to Gi, i = 1, 2. Then fi  = ~9~, 
i = 1, 2. Given ~ e ~, ¢ = ~i ~2 with ¢i e Gi, i = 1, 2. Define 

g(~) = f(¢l, ¢2) -1 g1(¢I)92(~2) (A.1.4) 
Then 

f(¢1 ¢2, ¢i ~i) = f(¢l,  ~2)- 1 f(¢1, ~2 ¢i ¢i) f(¢2, ¢i ¢i) 
- 1  , , --1 , , I r 

= f (¢ l ,  ~2) f(¢i, ¢2~2) f(~i¢i, ¢2~2)f(~i, ¢i)f(~2, ¢i) -1 

"f(~2¢i, ¢i) f(~z, ¢~)- 
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Substituting on the right hand side for f in terms of g, 91 and g2 using 
(A.1.3), f l  = 6gi, i = 1, 2 and f -=  1, we get: 

t t ~t  t , - 1 .  

Hence f = 6g and f e  B2(~, T) as required. Thus by induction it suffices 
to consider the case where ~ is a cyclic group. However in this case 
Z2(~, T) = B2(~, T) and the result is trivial. 

The fact that the homomorphism [ f ]  ~ f  is 1 - 1 has another inter- 
pretation, namely that there are no non-trivial Abelian extensions of 
Tby  ~. 

If f~ = I~I z, , ,  we may calculate H 2 (f~, T) explicitly. By Lemma A. 1.1 0 
i = 1  

it suffices to give the values of f on the generators ¢1, ~2,..., ¢, say of 
.~. By Lemma A.1.1 we must have 

f(¢~, ~j) = f(~j, ~ ) - ' ,  
f ({ , ,  ~,) = 1, i,j = 1, 2. . .  n,  (A.1.5) 

^ vi f(~i,~j)  =f(~i,~j)" '  1. 

Constructing 2-cocycles explicitly it is easy to show that (A.1.5) is the 
only restriction on f ({ i ,  {j). 

Appendix II. The Field Algebra as a Covariance Algebra 

In Section VI we defined the field algebra ~ through a special co- 
variant representation (re, V) of {9.1, o-}. We could also have obtained 
that representation by considering the covariance algebra 9.I "f [9] of 
9.1 with respect to the discrete group .N and defining on it an invariant 

pure state co'~ by the relation 

No(X ) = ~ O)o(XOp)), X ~ 9.1 ~ ; (1.2.1) 

in fact (re, V) is easily identified with the representation rca~ of N~*. This 
algebra appears then as an abstract field algebra; it has however the 
feature of being too large in the sense that some of its representations 
map d C ~ and d C 9.1 into different sets. 

We generalize here the notion of covariance algebra of 9.1 relative to 
for our case where 9X is acted upon (not by ~ itself but) by the extension 

Y of ~ characterized up to an isomorphism by the element b of H 2 (~, T). 

L e t j : ~  be a section, and define the collection 92[ <b of all those 
functions X from ~ to 9.I satisfying 

(i) X(U-~tp)=X( tp)U,  U E d ,  ~ E ~ ;  

(ii) ~ [[XOP')[[ = [[Xi[1 <oo.  
t0' e j ( ~ )  
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If X, Y• 9.1 ~'b, and 2 is a complex number, define the linear combination, 
adjoint and convolution by the relations (cf. [9J, Eq. (5, 8, 10)): 

(X + 2 Y) OP) = XOp) + 2 Y(~), ~p • i f ,  

X*0P) = ~%(X(tp- 1))., (A.2.2) 

(x • Y)(~) = Z ' ' - 1  x ( ~ ) ~ , ( Y ( ~  ~)). 

If j '"  ~ - ~  is another section, j ' ( ~ ) :  V-flj(~) with V¢ • d for all ~ • ~. 
One verifies then easily that }IXII1 and X ,  Y are independent of the 
section. Using this fact it is possible to verify by simple computations 

that, under the operations (A.2.2) and the norm II-112, 9-Ii'b is a Banach 
• -algebra. 

Defining (cf. [9], Eq. (18)): 

• ~-- ,  v(~):(v(~)x)(~') = ~ ( x ( ~ - ~  ~ ' ) ) ,  

A • ~ e ( A ) : ( o ( A ) X  ) 0P') = AX(tp') ; 

we can see that 9.I ~,b is stable under the operations V(~p) and ~(A) and 
that the following property holds 

V(U)=Q(U) if U e d .  

If ~ is an essential representation of 9.I ~'b, we obtain a covariant 
representation (re, V) of {N, a} setting 

-~(u, V): u(A)~(X) = ~(e(A)X) 
A•9.I, ~p•~,  X • ~  ~,b (A.2.3) 

v ( ~ )  ~ ( x )  = ~ ( v ( ~ ) x )  . 

The map (A.2.3) sets up a one-to-one correspondence between the 

essential representations of 9.1 ~'b and the covariant representations (u, V) 
of {9.I, a} such that 

u l W = V I W .  

The results analogous to those of [9] are valid without further 
modifications. 
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