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Abstract. A scheme is presented for the description of the states and dynamics of 
infinitely extended systems. In this scheme, the physical states of a system are taken to 
comprise the maximal folium of its locally normal states which can support a one-para- 
meter group of affine transformations, that corresponds to a certain infinite volume limit 
of the time-translational group for the states of a finite system of particles of the same 
species. The resultant one-parameter group of transformations of the physical states of the 
infinitely extended system is then taken to correspond to its time-translations. An explicit 
construction is given which serves to identify the physical states and dynamics of the system 
in terms of its interactions. The present scheme generalises that of Dubin and the author 
beyond the islands of Gibbs states. 

1. Introduction 

It is well-known that the generalisation of quantum or classical 
dynamical laws to infinitely extended physical systems presents certain 
problems (cf. [1, 2, 3]). A first approach to a dynamical theory for such 
systems was made within the C*-algebraic framework by Haag, Hugen- 
holtz, and Winnink (HHW) [4]. The scheme of H H W  was based on a 
postulate concerning the existence of a certain "infinite volume limit," 
which ted to a description of time-translations of an infinite system in 
terms of a one-parameter  group of automorphisms of the C*-algebra 
of its observables. However, al though the basic postulate of H H W  is 
satisfied by lattice systems with suitably tempered interactions [5], it is 
not generally valid for non-relativistic continuous systems [1] or for 
lattice systems with sufficiently long range interactions [2]. 

A subsequent approach to the dynamical problem by Dubin and the 
present author  (DS) [1], based on weaker assumptions than those of 
H H W ,  ted to a description of time-translations in the "island" of a Gibbs 
state in terms of a one-parameter  group of automorphisms of the weak 
closure of the associated G N S  representation of the algebra of ob- 
servables. However,  al though the DS scheme is applicable to a wider 
class of systems than that of HHW,  it has the disadvantage of being 
strictly limited to the islands of Gibbs states. This limitation is serious 
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for the following two reasons. Firstly, it rules out the possibility of 
formulating the dynamics of a system in other states, e.g. those which 
are appropriately "far" from equilibrium. Secondly, it precludes the 
possibility of deriving equilibrium conditions for an infinite system in 
terms of some suitable dynamical principle: this is a drawback because 
the Gibbs states are merely defined as thermodynamical limits of finite- 
volume canonical (or grand canonical) states, whose identification 
with equilibrium states has not, as yet, been established on a fundamental 
basis. 

The object of the present article is to construct a dynamical theory 
for infinitely extended systems, without resorting to assumptions con- 
cerning equilibrium states (e.g., such as KMS conditions). The theory 
is constructed within the C*-algebraic formalism and is based on the 
postulate that the physical states of a system constitute the maximal 
folium (defined in Ref. [6]) of its locally normal states which can support 
a one-parameter group of affine transformations that corresponds to a 
certain infinite volume limiting form of the time-translational group for 
a finite system of particles of the same species. The resultant one-para- 
meter group of affine transformations of the physical states is taken to 
correspond to the time-translations i of the system. On the basis of the 
above-described postulate, we are able to formulate an explicit con- 
struction of the set of physical states of the system and of its time- 
translation group. It will be seen that this construction generalises the DS 
scheme beyond the islands of the Gibbs states. 

The material of this article will be presented as follows. In Section 2, 
we introduce the concept of a dynamical folium, i.e. of a folium equipped 
with a one-parameter group of affine transformations, which do not 
necessarily correspond to time-translations in a physical sense. We also 
define certain classes of dynamical folia. In Section 3, we introduce our 
basic postulate that the physical folia are those locally normal dynamical 
folia whose dynamical groups correspond to appropriately defined in- 
finite volume limits of corresponding groups for finite systems (cf. Defini- 
tion 3.1). This postulate enables us to obtain an explicit construction for 
the physical folia and their time-translation groups (Proposition 3.1) 
in terms of the interactions in the system. Our main results are given 
by Proposition 3.1 and the subsequent discussion in Section 3. In 
Appendix 1, we present the proof of Proposition 3.1. In Appendix 2, 
we apply our scheme to the formulation of time-translations in certain 
folia of states of an ideal bose gas. 

t A quite different approach to the theory of time-translations has been made by 
Lanford [3], who has formulated the dynamics of a certain class of states of an infinitely 
extended one-dimensional classical system on the basis of the Newtonian equations of 
motion for its constituent particles. 
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2. Observables and Dynamical Folia 

We start by recalling that the set of observables of an infinitely 
extended system may be constructed as follows (cf. [41). Let F be the 
one-particle space (e.g., R ~' or Z ~) of the system, and let L be the set {A) 
of bounded measurable open subsets of F. By a standard procedure, 
one may construct a Fock-Hilbert space A '~ over F, corresponding to 
the species of the particles in the system, assigning to each A in L a sub- 
space A'°A of A '~ and a C*-atgebra d a  in ~(~a)  such that ~A and d A 
are isotonic with respect to A: here d a  is chosen so that its self-adjoint 
elements correspond to the bounded observables of an assembly of 
particles of the given species, confined to the region A. We define dL 
to be U d a  and d to be the norm-completion of d L. The self-adjoint 

A e L  

elements of d L (or of d )  are taken to comprise the set of bounded 2 
observables of the system. 

Let d *  (resp. d*)  be the set of all (resp. positive) continuous linear 
functionals on d ,  and let ~ be the set of elements o l d *  whose restrictions 
to the subalgebras {data ~ L} are all normal; i.e., in a usual terminology, 
A ° is the set of locally normal elements of d* .  We define ~ to be the map 
from d into the affine transformations of d *  given by the formula 

(o~(A)gb;(.))=(gb;A*(.)A), V4)ed*,  A e d .  (2.1) 

Then, following Haag, Kadison, and Kastler [61, we term a subset J 
of d *  a folium if d is norm-closed, stable under a (d)  and closed under 
convex combinations. Thus, for example, ~¢ is a folium. If K is some 
subset of d* ,  we define the folium generated by K to be the smallest 
folium containing K. If J l ,  d2 are folia in d* ,  such that d l  ¢ J2, we 
say that d l  is a subfolium of d2. In particular, if d is a subfolium of ~ ,  
we say that o¢ is a locally normal folium. 

Let d be a folium in d* .  We define I f ]  to be the norm-closed 
linear span of d ,  and [d l*  to be the dual space of I f ] .  We define the 
map A ~ A j  of d into [ J ]*  by the formula 

( A j ;  $)  = (~b; A), V~bEd ; (2.2) 

and we define d j  to be the image of d under this map. Let ~tj be the 
direct sum of the GNS representations of d induced by the elements of J .  
Then rca,(d) is a C*-algebra in a certain Hilbert space affj and (cf. [61) 
d j  (resp. [d]*) is canonically isometric with rc~(d) (resp. rca,(d)"). 
Thus, [d]* is a W*-algebra and d j  is o-([d]*, [ J ] )  dense in [d-l*. 

2 One may extend the above description by defining the set of all observables of the 
system, including the unbounded ones, to be U ~a, where ~a is the set of self-adjoim 

AeL 
operators affiliated to dA in a,~ I-7]. 
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In the particular case where J is generated by a single element co of 
d * ,  ag:, corresponds to the GNS representation rt~(d) induced by c,, 
and [ J ] *  corresponds to lr~,(d)". 

We define a dynamical folium to be a pair (J ,  %,) where J is a folium 
and %, a homomorphism of the real line R into the affine norm-preserving 
transformations of J .  We refer to the image zj(R) of R under such a 
homomorphism as a dynamical group for J .  We say that a dynamical 
folium (J ,  z j )  is locally normal if J C £o. Let ( J ,  z j )  and (J ' ,  "c j,) be two 
dynamical folia. We say that these dynamical folia are mutually com- 
patible if either J and f are mutually disjoint or if zs(t) and zj,(t) 
coincide on J c ~ J ' ,  for all t ~ R. We term ( J ,  z j)  a dynamical subfolium 
of ( f ,  z j . ) i f  J C J '  and zj(t) = zj.(t)tj, Vt ~ R. 

Let ( J ,  z j )  be a dynamical folium. We define the one-parameter group 
{z}(t)[ t~ R} of transformations of [ J ]* ,  dual to vj(R), by the formula 

(z*(t)F;(o)=(F;zj(t)(o), Vt~R, 4)E~, F ~ [ J ] * .  (2,3) 

It follows from this definition and a theorem due to Kadison [8; Corol- 
lary 4.7] that z*(R) is a group of C*-automorphisms of the C*-algebra 
[ J ]* ,  i.e. that 

z*(t)F*=(z}(t)F)* and z}(t)F2=(z*(t)F) 2, VteR, F~[J]*.(2.4) 

On the other hand, the transformations z*(R) are not, in general, auto- 
morphisms of [ J ]* .  In those cases where z*(R)CAut[J ]* ,  we shall 
term the dynamical folium (J ,  z j )  canonical. Thus, by Ref. [8; Theo- 
rem 3.4], ( J ,  %,) is canonical in cases where ~" is generated by a mutually 
disjoint set of factor states and where the map t ( sR)~(F;  zj(t)c~) 
is continuous, for all 4~ s J ,  F s [o¢]*. 

3. Physical Folia 

We now seek to characterise those dynamical folia which correspond 
to physical states and time-translatious of the system. For this purpose, 
we introduce a construction leading to a definition of a physical dynamical 
group for the infinitely extended system as a limiting form of a corre- 
sponding dynamical group for a finite system of particles of the same 
species, endowed with given forces. 

Thus, for each A ~ L, we define H A to be the self-adjoint operator 
in JfA corresponding to the Hamiltonian for an assembly of particles 
of the given species and with prescribed interactions, confined to the 
region A and subjected to some definite A-independent boundary con- 
ditions, e.g., those corresponding to rigid walls. It is assumed that, for 
each A s L  and tER, the transformation A(sd';)-+eiUAtAe -i~At 
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corresponds to an automorphism of s~;. Thus, for each A s L, we may 
define an homomorphism ~* of R into Aut dj '  by the formula 

z*(t)A = ein~tAe -ina~, Vt ~ R, A ~ ~¢~. (3.1) 

Let 4)e c~. Then $[  A is normal for all A e L and consequently 4)tA 

may be extended by continuity from d a  to d~.  This extension thus serves 
to define (4); z*(t)A) for all t e R, A ~ dA. Therefore, since dA is isotonic 
with respect to A, it follows that for each A • dr ,  4)~ ~ and t • R, the 
quantity (4); z*(t)A) is well-defined for sufficiently large A. 

Definition 3.1. Let ( J ,  zj)  be a dynamical folium in d * .  We say that 
(d,  , j )  is a physical folium if it is locally normal and if 

<z~(t)~b;A)= lim <¢;z](t)A>, V t e R ,  ¢ e J ,  A e ~ L ,  (3.2) 
A--~oo 

where lim refers to the limit over an increasing absorbing sequence of 
A--* oo 

regions A(eL), whose forms may be subjected to some prescribed 
restriction (e.g., that of Fisher [9]). 

Note. Eq. (3.2) signifies precisely that, for each A o ~ L, 

(75 j ( t )  4))1AO -~ w*'lAifla(* A(t) $I A)[ A0 '  

where *A(R) is the group of transformations of the normal linear func- 
tionals on ~¢~, dual to z*(R). 

In order to prescribe a constructive method of specifying the physical 
folia, we introduce the following definition. 

Definition 3.2. (i) We define 5~o to be the set of elements 4) in ~ such 
that lim (4); z]( t )A) exists for all A edL ,  t e R ,  where lim is taken in 

A--* ce A~oo 
the same sense as in Definition 3.1. Thus, for each t e R, we may define 
~(t) : 5~o ~ d *  by the formula 

(~(t)q~; A)  = J im (q~; ~](t)A),  V4) ~ 5~o, A e d L . (3.3) 

(ii) We define 

6°1 = {4) t ~b e 6°o; ~(t)4) e 6Po, Vt e R; ~(tl) z(t2)4) 

='c(t I 4- t2)$, Vtl, t 2 e R } .  

(iii) We define 50, for integers n > 1, by the following recursion 
formula: 

5P,={qgl~b ~5°,_t ;  e(A)z(t)4)eSf._l, Vt~R,  A e d } .  

(iv) We define 5 P = (~ 5P,. Thus, ~ is stable under e(A) and z(R). 
n=O 
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(V) We define ~z to be the map from R into the transformations of 5 ° 
given by the formula zs~(t)= r(t)ls~, for all t in R. The following Proposi- 
tion will be proved in Appendix 1. 

Proposition 3.1. (i) 5O is a folium, Vs,(R) is a dynamical 9roup for 5~, 
and (5O, xs~) is a physical folium. 

(ii) I f  (d,  zj)  is a dynamical folium of the system, then (d, z j)  is a 
physical folium if and only if it is a dynamical subfolium of (5O, zs~). 

In view of this Proposition, we term 5O the set of physical states of 
the system and represent its dynamics by the group %,(R). The physical 
folia of the system are simply the dynamical subfolia of (5O, %,). Thus, the 
physical folia are mutually compatible, in the sense specified in Section 2. 

Note. In cases where the system satisfies the HHW postulate that 
for all t e R and A e ~¢L, ~*(t)A converges normwise as A ~ 0% it follows 
from Definition 3.2 that 5O = 5¢. Thus, in these cases, the physical states 
are the locally normal ones. 

Note. In cases where the system satisfies the DS postulates, the DS 
scheme is the restriction of the present one to the folia generated by the 
Gibbs states. For, if ~b is a Gibbs state on ~ ,  as defined in DS, then it 
follows easily from postulates (III) and (IV) of DS that the folium ,¢ 
generated by ~b is stable under r~(R). Thus, defining ~j(t)--zs~(t)t J,  it 
follows that (d, ~j) is a physical folium. Further, it is easily shown that 
zj(R) is precisely 3 the dynamical group for the Gibbs folium J that is 
obtained from the DS postulates. Hence the present scheme is a gener- 
alisation of that of DS. 

Appendix 1 

Proof of Proposition 3.1. (i) It follows from Definition 3.2 (i) that 5°0 
is a convex set; and thence by Definition 3.2 (ii), (iii) that 5°, is convex for 
all n e Z+. Thus, by Definition 3.2 (iv), 50 is convex. Further, by Defini- 
tion 3.2(iii), if ~b~so,, then ~(~4)~b C 5O,-1 and therefore, by Definition 3.2 
(iv), 5° is stable under c~(~). Thus in order to prove that 5O is a folium, it 
suffices to establish that 5O is norm-complete. This we shall do by 
showing that 5O, is norm-complete for all n ~ Z+. 

Let {~blFleZ+} be a sequence in 5oo which converges normwise to 
q~(Ed*). Then since, by Eq. (3.t), ttz*(t)Apt---t[AI[, it follows that 
lira (q~z; z*(t) A) = (q~; z*(t) A)  V A ~ dA,  the convergence being uniform 
I-+o9 

3 Specifically, if (Jg,~, 1r4,, Q+) is the GNS triple induced by q~, then each tp(E J) corre- 
sponds to a unique normal state ~ on ~0(d), with ~p=~ozcei and (zj(t)~p;A) 
=- (fp; U¢(t) ~¢(A) U4~ ( -  t)), where Ug,(R ) is the unitary group denoted by {~lt e R} in DS, 
Proposition 3. 
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with respect to t and A. Hence, since {05~} e 5°0, it follows easily from 
Definition 3.2 (i) that 05 e 5#0. Hence, 5oo is norm-complete. 

It also follows from the above, together with Definition 3.2 (i), that 

(z(t)(05-05,);A)= lAi_moo(05-05,;z*(t)A), V teR ,  A 6 d  L . (AI.1) 

Hence, since tlz*(t)Atl =- I[A]t, it follows that 

I l z ( t )  (05 - 051)11 -<- 1t05 - 05llI • 

It is a simple consequence of this inequality, together with Defini- 
tion 3.2(ii), (iii), that 5O, is norm-complete, for all n sZ+. Hence, by 
Definition 3.2(iv), 5# is norm-complete and therefore cj, is a folium. 
Further, by Definition 3.2(i), (iv), 50 £ Ae; and by Definition 3.1(i)-(v), 
zy is a homomorphism of R into the affine norm-preserving trans- 
formations of 5#, i.e. ~s~(R) is a dynamical group for 5#. Consequently, 
by Definitions 3.1, 3.2(i), (v), (5O, zs~) is a physical folium. 

(ii) Suppose that ( J ,  z j )  is a dynamical subfolium of (5O, ~s~)- Then 
it follows directly from Definitions 3.1 and 3.20), (v) that ( J ,  z j )  is a 
physical folium. 

Conversely, suppose that ( J ,  z j )  is a physical folium. Then it follows 
from Definitions 3.1 and 3.2(i) that J C 5oo and that ~ ( t )  = ~(t)l~, Vte R. 
Further, in view of the group property of zj(R), it follows from Defini- 
tion 3.2 (ii) that J C 5Ol, and from Definition 3.2 (iii) that J C 5O,, Vn~Z+. 
Hence, by Definition 3.2(iv), J C 50. Thus we have proved that J C 5# 
and that ~j(t)-z(t)l J, i.e. by Definition 3.2(v), that zj(t)---Zsdt)Ij. In 
other words, ( J ,  z j )  is a dynamical subfolium of (5 #, zs~). Q.E.D. 

Appendix 2 

We shall now apply the above scheme to the simple model of an 
ideal bose gas. Specifically, we shall show that if d is generated by a 
Weyl algebra over the Schwartz space ~(F), then the dynamics of certain 
physical folia correspond to quasi-free evolutions (as defined in Ref. [ t0]) 
of a Weyl algebra over a certain subset ~ ( F ) ( 3  ~(F)) of Lz(F). This 
represents a generalisation of the corresponding result obtained by DS 
(Appendix 1) for the islands of Gibbs states. 

Let us first note that the Fock-Hilbert space :~f for an assembly 
of bosons may be uniquely specified, up to unitary equivalence, by the 
following conditions (cf. [11]). 

(a) There exists a map W from Lz(F) into the unitary operators in 
such that 

W(f) W(9)= W( f  +9)exp(½i Im(J,g)),  Vf, osL2(F) (A2.1) 
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where (f, 9) denotes the LZ(F) inner product of f with 9: thus, W is a 
Weyl representation of U (F) in N(~cF). 

(b) There exists a vector f2 in ~ which is cyclical with respect to the 
C*-algebra generated by W(L2(F)) and which possesses the property that 

(f2, W(f)f2)= exp - ¼ Ilf[t 2, V f E L2(F). (A2.2) 

For each A ~ L, we define idA to be the strongly closed linear span of 
W(L2(A))Q, and dA to be the C*-algebra generated by W(~(A)), with 
~(A) = { f  [ f 6  ~(F), suppf C A}. It follows from these definitions 
that d ,  the norm closure of ~ da ,  is simply the C*-algebra generated 

A ~ L  

by W(~(F)), and that d j  = ~(~A)= {W(LZ(A))} ". 
We assume that, for each A ~ L, the group v*(R) of automorphisms 

of o~¢~' corresponds to a quasi-free evolution of d j ,  i.e., that z](R) is 
induced by a unitary representation UA of R in LZ(A), with 

z](t) W(f)  = W(UA(t ) f ) ,  Vt ~ R, f ~ L2(A). (A 2.3) 

We also assume that, if Ao ~ L, UA(t) converges strongly on LZ(Ao), as 
A--, 0% for each t E R, i.e., that there exists a unique unitary representation 
u of R in L2(F), such that 

u(t)lL2(ao) = s-lirnuA(t)lL2{Ao), g Ao ~ L.  (A 2.4) 

We also assume that u(R) maps 9(F) into the Schwartz space 5e(F). 
These assumptions are satisfied if, for example, ua(t)=e iaa' and 
u(t)=e i~t, where A a is the Laptacian over A with rigid or periodic 
boundary conditions, and where A is the Laplacian over F. In this case 
u ( R ) ~ ¢ ~  (cf. [1; Appendix 1]). 

Let (J ,  ~ )  be a physical folium and define W , : @ ~ d j  by the 
formula 

W~(f) = (W(f))j ,  V f e ~ .  (A 2.5) 

We shall confine our attention to those folia possessing the following 
properties. 

(i) If f is an element of the Schwartz space 5e(F) and if {f,} is a 
sequence in ~(F) which converges (Se)-wise to f ,  then a([J]* ,  [ J ] )  
- lira Wj(f,) exists and is independent of the sequence { f,} in N(F), 

A--+ oo 

which is chosen to approach f. We define the above limit to be We(f), 
thereby extending Wj from @(F) to 5e(F). 

(ii) IfA s L, 9 e L2(A) and {9,} is a sequence in ~(A) which converges 
L2(A)-wise to 9, then a([J]* ,  [ J ] )  - lira Wj(0,) exists and is independent 

A~oo 

of the sequence {9,} chosen to approach 9. We define the above limit to 
be Wj(9), thereby extending W# from N(A) to LZ(A). 
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(iii) a([~]*, [ J ] ) -  lira Wj(ua(t) f )  = W•(u(t) f),  Vt ~ R, f ~ ~(F). 
A~ct~ 

(iv) (J, z j) is canonical, in the sense defined at the end of Section 2. 
Let N(F) be the vector space of finite linear combinations of 

{u(t)flt  ~R, f s~ (F)} .  Then N(F) is a subset of 5:(F) and is stable 
under u(R). Thus, it follows from Eqs. (A2.1, 3, 4), together with Defini- 
tion 3.1 and assumptions (i)-(iv), that: 

(a) Wj(~(F)) is stable under z*(R) and that 

z}(t) Wj(f) = W/(u(t) f) ,  Vt ~ R, i t  ~(F) ; 

(b) W: is a Weyl representation of ~(F)  in [J]*;  and 
(c) d j  is the C*-algebra generated by Wj(~(F)). 
Hence, by Eqs. (A2.1, 3, 4), time-translations in ~¢ correspond to the 

quasi-free evolution of the Weyl algebra Wj(~(F)), induced by the one- 
parameter transformations u(R) of N(F). 
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