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Abstract. A space-time has a local extension through a point on its b-boundary if 
and only if an appropriate number of covariant derivatives of the Riemann tensor have 
limiting values on a curve ending at the boundary-point, measured in a parallely propagated 
tetrad. The extension has the same differentiability as the space-time if the curve is "rea- 
sonable" in a well-defined sense. 

1. Introduction 

In General Relativity a space-time (M, 9) is usually called singular [1] 
when it is incomplete; the most general sense of this being that it possesses 
curves ~ inextensible at one end with finite length when measured with 
a parallely propagated tetrad {X} (i.e. ~ [ ~  (9 (X, k))2]I/2 d s <  oo). 

By Schmidt's [2] construction, such a curve defines a point on a boundary 
that can be attached to M, the b-boundary. Points on the b-boundary can 
arrise merely from "cutting out" part of a space-time: such points 
disappear when the removed part is replaced, which leads us to classify 
boundary points into those which can be so disposed of by an extension, 
and those for which this is impossible. Only a point of the latter type 
should be regarded as a true singularity. 

Next one seeks to characterise those boundary-points where an 
extension is possible. In a forthcoming paper [3] Ellis and Schmidt split 
the problem into two questions. First, is a local extension (to be defined 
shortly) possible? Secondly, do the local extensions give rise to a true 
extension? In the present paper we give sufficient conditions for the 
existence of local extensions of differentiability class C 2 and C k, where k 
(3 __- k _< oo) is the differentiability of the metric on M. It is shown that, 
provided the boundary-point  is accessible by a curve which is not too 
pathological (e.g. a causal curve), then a local C k extension is possible 
if and only if the components of all relevant covariant derivatives of the 
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Riemann tensor, in a paraltely propagated tetrad, tend to limits on the 
curve. An example will be given to show that in general this only ensures 
a C 2 extension. 

2. Terminology and Notation 

For simplicity we shall phrase the results in terms of a general 
(pseudo-) Riemannian metric. Thus f~k(M) will denote the set of all C k 
metrics of a given signature on a paracompact Hausdorff manifold M 
of dimension n, n _> 3, with k possibly oo. 

Let (M, g), (M', g') be two (pseudo-)Riemannian spaces, L and E, 
respectively, their (pseudo-)orthonormal frame bundles and 0 f and 0 ~' 
the standard horizontal forms on these bundles: if X s T~(L) with 
z= IX Xt thenwecanwri te~ ,X=~iX and Oi(X):= ~i. Indices i,j, 
run from 1 to n. Immersions ?, ?' of I:= (0, 1) in L, L' will be called 
equivalent if, for all s, Og(~,(s))= Oi'(¢'(s)). Immersions tc, K' of I into M, M' 
will be called equivalent (relative to 7, 7') if 7 and ¢ are equivalent 
horizontal lifts of g, g' respectively. 

Let K, ~c' be equivalent proper embeddings relative to horizontal lifts 
?, ?'. Then we define a map z~,~, U~,~,~ U~,, where UT~., and U~, are 
neighbourhoods of re(I) and ~:~(I), respectively, as follows. The bundle 
metric [2] d@nes a field of orthogonal surface elements along ?~. The 
projection of this yields a field of transverse surface elements on ~c(I)z 
There is a neighbourhood 0 of ~c(/) such that for every point x in U 
there is a unique point s~ e I and a unique geodesic joining x and tc(s.~), 
whose tangent vector Z~ at ~c(s~) lies in one of these transverse surface 
elements. Choose Z~ so that expZ~ = x. Define 0 '  similarly in M' with 
respect to re'. 

For Z ~ T~(~)(M) let Z be the horizontal lift of Z at 7(s) and let 2 '  
be the horizontal vector at ¢(S) for which 0i(Z) = 0~'(2'). Set t(Z): = re,(2') 
where ~z is the  projection in L. Finally we define U~, as the subset of 
points x in U such that z(x)e U', where z(x):=expt(Z~), and set 

! . 

To specify the transverse surface element field explicitly, choose 
vectors V (~ = 1, 2 . . . . .  n - 1) at a point Xo = ~c(so) satisfying 

where 

= (2) 
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and for any vector A, A i are the components relative to the X: 
i 

A = A i x .  (3) 
i 

Then (1) is preserved by the propagation equations 

d V i d YJ 

ds ~ - yi Z ds 

which then define V(s) via (3) at all s. These vectors generate the surface 

element field, and can now be used to define pseudo-Fermi coordinates ~i 
in Ut,~,: simply set 

J 

The definition ot" normal coordinates based on a point X in G(M), 
the set of all (not necessarily orthonormal) frames, is the usual one [5] 
with ~?/axilo = X. 

i 

Suppose g e ffk(M). For any X E L and any ordered finite set kt of 
integers (Jl,J2 . . . .  ,jp) with p =< k + 2, 1 <Jr < n, define 

Jp i v  - 1 ,i5 

Then if K : I - , M  is a C 1 immersion with horizontal lift ? we define 
R~u(s):= Ru(?(s)). In this context we shall write 1#[ for p, the number of 
indices, and denote by P, the set of all such #. For # = (Jl . . . .  ,jp) we let 
i j . . .  kp l . . ,  q denote the set (i , j , . . . ,  k , j  1 . . . .  ,iv, l , . . . ,  q). 

3. The Existence of Extensions 

Unless otherwise stated, the following assumption will hold 
throughout this section: 

A. M is an n-manifold, n> 3, gc f fk (M)  for 3 <_k<_ oe. x:I--*M is a 
C 1 (proper 1) embeddin 9 parameterised by a generalised affine parameter 
[4], i.e. there exists a horizontal lift 7 such that ~ (yi)2 = 1 [y i  from (2) 

i 

and (3)]. x is inextensible at 0 as a C o curve, and so defines a point q~ on 
the b-boundary of (M, g). 

We shall say that M is locally C z extensible from ~c through q~ if there 
exists an open set U C M with K(I) C U, a manifold M' with a g' ~ ffl(M'), 

i In the sense of Nash  [6]. In m o d e m  terminology, simply an embedding. 
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and an isometric diffeomorphism ~o : U ~ M '  such that ~0x is extensible 
at 0 in M' as a C o curve. 

Suppose this to be the case. Then ~c':= (p~c has the horizontal lift 
7': = ~o.7 (q). : L] U-~L'  is the usual inducedmap) and 7' is also extensible 
at 0. Hence the numbers R'J'(s) tend to limits as s - .0 .  But by the iso- 
metry R~/=  R~,, and so a necessary condition for extensibitity is the 
following statement: 

B. For every i 2 ~ P. with 112[ <= k + 2, the function I~, tends to a limit 
o 

R~ as s tends to 0. 

We note that for IPl _-< k + 1 

d . . . .  o 

ds R~u = YJR~"J = YJ(R~j + o(t)) 

where the "o" notation refers to the behaviour as a function of s. So 
o o , 

7 7 J R~(s) = Ru + n~jz  + Ilzll 0(i) (4) 

where z j = i YJds '  and Ilzll 2=  ~ (zi) 2. Then, by induction, 
0 i 

_ 1 l~' z j5 z jk÷2 "" + ( k -  2)! -'~*,..Jk+a "'" + ffzlf k-2 o(1). (5) 

Note that the z i are the coordinates induced on ~c(I) by an equivalent 
embedding in the standard fiat space of this signature (e.g. Minkowsky 
space). 

As is suggested by (5), and as will be seen later on, the differentiability 
of a possible extension is determined by the behaviour of the o(1) term, 
and this in turn depends on the behaviour of ilz[[ as a function of s. To 
formulate this we define a spiral curve as an immersion ~ c : I ~ M  such 
that for some (and so for any) horizontal lift ;~ we have llzlI = o(s). Other- 
wise the curve is said to be non-spiral. We can now give the main result 
as follows: 

Theorem. Suppose that M,  g, ~c and 7 satisfy A and B above. Then M is 
locally C 2 extensible from K through q~. If,  in addition, t¢ is a non-spiral 
curve, then M is locally C k extensibIe from ~ through q~. 

The first stages of the proof can be outlined in the form of three 
lemmas, whose proofs will be indicated briefly in the last section. 

Lemma 1. For any set of  numbers 1~, where # runs over P~ with 
4 < 1121 < k + 3, satisfyin9 the Bianchi identities 

Ruktm v + Rijimkv + Rijmklv --  0 
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for all v ~ P~, tvl < k - 2, there is a manifold M' and a metric g' ~ ff°~(M') 
having these numbers as the components of the covariant derivatives of 
the Riemann tensor with respect to some X ~ 12. 

Lemma 2. Let x be as in A. For any manifold M', any g' ~ (#~(M'), 1 > 2, 
and any point X ~ U there is a horizontal curve 7':(0, s0)~U which is 
equivalent to 71(0, So) and has Li.~omT'(s ) = X. 

We note that we can always rescale the generaliscd affine parameter 
by choosing a different lift, altering X by a pseudo-orthogonal trans- 
formation (e.g. Lorentz). Thus without loss of generality we can take 
s o = l .  

Lemma 3. Let K' be a C 1 immersion of (0, 1) in M' having a horizontal 
lift 7' for g' ~f#t(M') such that LimT'(s) exists. Then there is a metric 

s--* O 

g" ~ fft(M') and a horizontal curve y" : I ~ E' such that: 
(i) Y" is equivalent to Y 

(ii) zc" 7" is a (proper) embedding, where zc": E ' ~ M '  is the bundle 
projection 

(iii) Limi'7"(s)=Limi'7'(S) where i' (resp. i") is the inclusion of E 
(resp, 15') in G(M) 

(iv) g ' - g "  makes m'th order contact with the zero cross section at 
rc' X (i.e. all derivatives exist and are zero). 

We thus acheive a horizontal curve 7" equivalent to 7,owhose projection 
is a proper embedding and which satisfies / ~ " ~ R ~  for all P~Pn, 
4 < [ttl < k + 3. Now we alter the metric in the set V":= U~r,, so that R~" 
becomes equal to R~,, while leaving 7" equivalent to V. To see that this is 
possible, take pseudo-Fermi coordinates in V" and require that the 
metric have the same first derivatives as the old metric on ~c(I). Then the 
derivatives gij, vlx(X) for v e P,, 2 < ]vt < k + 1 are uniquely specified by an 
algebraic relation in terms of the Riemann tensor and its covariant 
derivatives. 

It thus follows that we can choose this alteration 6g to vanish outside 
a tube I/~p~lJ <~0P"), and we can then select e small enough to give 
6g~j,k < IIXtl 2 in normal coordinates based on X. This means that the new 
metric will be C 2, since all the directional derivatives of 6g~,k vanish 
at the point 0 : =  rc'X and tend to zero, as this point is approached. 

If, however, the curve is not spiral then the "o" term in Eq. (5) becomes 
o (II z ll k- 2). Moreover, it is simple to prove the following: 

Lemma4. If K' : I ~ M '  is a non-spiral curve (immersion) for 
g' e fqk(M') and {x i} are C k coordinates about Limx'(s), then 3K', s 1 such 

s ~ O  

that for s < sl, llxll > K'  llzll. 
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Thus the "o" term becomes o(llxll k -2)  with [Ixll of the same order 
as s (K"s< lLxlt <K's). It follows immediately that the altered metric 
is n o w  C ~. 

The final step is to map a subset of U~¢ into V" by the map z, thereby 
establishing a metric g*:=  (z*)- i g in the tube II~p~ll < e(~p")/2. This metric 
can be joined smoothly onto g" outside ll~p~ll < ~(~p"). We must now show 
that the resulting metric, call it g, is in general C 2, and for non-spiral 
curves C ~. 

Choose normal coordinates x j relative to X and consider a point 
P' = {x i} = lc'(sl). Then set up normal coordinates {w ~"} and {w i*} both 
based on X(s 0 but using the metrics g" and g* respectively. Then for the 
coordinates of a point Q sufficiently near P' we have 

t l w " -  w* II < g ttzll k (6) 
where H depends on the Riemann tensor and its derivatives, i.e. on the 
R~ at sl. But the components of the metrics in their proper normal 
coordinates are given by series expansions with coefficients depending 
on the R~(sl) which are the same for both metrics up to order k. Thus 
(6) implies that the coordinates of the two metrics in a single normal 
coordinate system, e.g. w", are related by 

I l g * - g ~ l l  < M(-~'.(sO)Ilzll ~ . 

Similarly, we have for the derivatives 

[Ic~.g*-Oug~)]] <Nllzjl k-r, for r= l /~ [<k ,  (7) 

where N can be taken absolutely constant. 
Now we transform back to the normal coordinates x i. The trans- 

formation depends only on the two basis frames X and X(s~), not on 
any other property of ?,, and so it follows that (7) holds with the left hand 
side evaluated in the coordinates x i. Differentiability now follows on 
choosing a smaller tubular neighbourhood, if necessary, and using the 
same argument as for the previous alteration in the metric. 

Corollary. I f  M, g, ~c and 7 satisfy A. and B., with (M, g) being a space- 
time and ~c a causal curve, then M is locally C k extensible from ~ through %. 

Proof. The embedding ~c' in Minkowsky space equivalent to ~c is 
also a causal curve, and so satisfies [Iz[[ > s/[/2. It follows that ~c is not 
spiral. 

4. A Spiral Curve without a C k Extension 

We complete the discussion by demonstrating the necessity of the 
restriction to non-spiral curves by an example of a curve which satisfies 
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A. and B. but whose boundary poim q~ does not admit a C ~ extension 
from ~c for any l >  2. 

First take the positive definite metric on R 2 ds 2 = (1 -t- x) 2 (dx 2 -t- dy2), 
having ~/Oy as a Killing vector and non-zero Riemann tensor and first 
derivative at the origin (R1212 -~ --1, R1212;1 =4) .  Take for tco a curve 
in R 2 which keeps returning to the origin, such as that obtained by 
describing successively the sides of a sequence of squares in the positive 
quadrant with two sides on the axes, the n'th square having sides of 
length 1/2". Define 70 to be that horizontal lift of ~: whose 0-endpoint is 
(O/~x, O/Oy) and let s denote the generalised affine parameter for this 
lift. As usual Y~(s)= Oi(~o). 

Next construct a flat 2-space K containing a properly embedded 
curve x equivalent to Xo. This can be done by first taking an immersion 
~, in Euclidean space E z equivalent to ~co, and then mapping R 2 to E 2 
diffeomorphically by a map q~ such that for all s e I there is a unique 
x s s R  with Kl(s)= ~o(xs, s). The required space K is the inverse image 
of the metric space E 2 under (p (i.e. R 2 with metric induced by q~*) and 
~(s) = (xs, s). 

If we now alter the metric on K while keeping it and its first derivatives 
on ~: unchanged then, as shown in the previous section, we can achieve 
a Riemann tensor which gives the following behaviour for Ru y : 

R~21z ~ - 1  R1212z=O (8i) 

K~212, = 4  (8ii) 

while leaving ~c equivalent to t%. Since the Bianchi identities are trivially 
satisfied as a consequence of the Riemann tensor symmetries there are 
no constraints on the Riemann tensor and any number of other derivatives 
transverse to the curve may be specified arbitrarily. 

To form a space-time we now take the metric product of K with 
two-dimensional Minkowsky space. The dimension of the manitbld will 
not enter the discussion here (although it played a role in the proof of 
the theorem) and so to simplify the formulation we give a description 
only in terms of the two-space K. 

Suppose that this space-time had a local extension from ~ through %. 
Then in the extension we can take normal coordinates x '~ about the 
endpoint so that they differ on the curve from the original coordinates 
x * = (x, y) according to 

Ix i - x"[ < N1 s 4 (9) 

for some N 1. 
But the Riemann tensor on the curve is governed by 

R1212~--- ~ yIR12121 d s = 4 z '  
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and it is easily calculated that, for some N2, Iz 1 - x l l  > Nzs 3. Thus from 
(9) we see that at points where x~= 0 

I / ~ 1 2 1 ~  - R12121 > (4N21N1) tlx'll 4/3. 

But this occurs for arbitrarily small values of s, whenever the original 
curve returns to the origin. Thus the Riemann tensor cannot be differ- 
entiable at the origin in the extension, because it is given from the R~ 
through the tetrad X whose coordinate components satisfy X j = ~ + 0($2). 

Thus the extension is at most C 2. 
We note that the situation has a certain stability: sufficiently small 

variations, both of the curve and of the metric, do not affect the non- 
extensibility. 

5. Proofs of Lemmas 

Proof of Lemma /. Since the derivatives at the origin of the com- 
ponents of the metric in normal coordinates are determined by the 
covariant derivatives of the Riemann tensor at the origin, and vice versa, 
the problem reduces to that of finding a function g(=gi2) on R" with 
specified derivatives gO at the origin. If the Taylor series converges in a 
neighbourhood of the origin there is no problem; if it does not converge 
take 

g = ~ ~ (1/(qu)P) 1-I f(q.g°u llPxk') 
v lul=v i=1 

where p = (kl, ..., k v) 

qu= M a x i s  °, 1-1 (2rip Maxs<:v Sup f(S'(x))V 
and f is a C ~ function R + R  satisfying 

x Ixt < 1/2 

f(x) = xllxl Ixl > 3•2. 

Each term in the series becomes equal to the corresponding term in a 
Taylor expansion for small enough x, while the choice of f and the q, 
ensures that any derivative of the series will converge uniformly. 

Proof of Lemma 2. ?' must satisfy the ordinary differential equation 

~,' = ~ Yi(s) Jf'i(s) = : fr(7'(s), s) (lO) 
i 

where )f[ are the standard horizontal vector fields dual to the 0 i, We 
cannot immediately take X as the initial value for this equation, since 
the Y~ are not continuous at s = O. Instead, we must take an initial value 
X0 and integrate the equation in the direction of decreasing s, choosing 
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X o so as to arrive at X when s = 0. The existence of such an Xo follows 
from a contraction-mapping argument. 

First we restrict attention to a neighbourhood U of X in which for 
any functions yi 

I I fy(y ,s ) l l<P V s e I ,  V y e U  

(where the norm is evaluated in the bundle metric, or in a coordinate 
system). Then we restrict the range of s and the distance of X0 from X 
so that the development of (10) remains in U. Now, measuring norms 
in some coordinate system {yP} in the frame bundle, there will be a 
constant K such that for W1, W2 in U 

t12~(w0 ~ - 2,(W~)P Jl < g I[ W~ - W~II. 

Let 7', ~" be two solutions of (10). Then for small enough So, depending 
only on U, 

sl ' s2 < S o y  lly,(sl)p _ y,,(sl)al[ __< eKIs,-~21 llT,(Sz)a _ 7 - ( s 2 ) f l H  . 

We can take So < (l /K) • log(3/2). Then the mapping c~ defined by 

~(Xo) ~ = x g  + x e  - 7'(o)~ 

[wherefi denotes components relative to the chosen coordinate system 
and 7'(0)= LimT'(s)] is a contraction mapping and defines the required 

s-*O 

X o by iteration. 
The same arguments easily give the following 

Lemma 5. Let  9ij, 9'ij be the components o f  two metrics on an open 
set U C M with respect to some f ixed coordinate system, and let 7, 7' be 
equivalent horizontal immersions in the frame bundles with the same 
endpoint in G(M). Then there are constants K, So, P depending only on 9 
such that ,for 0 < s < s o and 

[O'ij, k - gij, k[ 2 = :q)2 < p 

we have ~j,k 
117~-7'~11 < Kq~s. 

We note that Lemma 4 follows from this. 
Proof  of  Lemma 3. Choose normal coordinates for (M', 9') relative 

to X and in a closed ball V in these coordinates consider the set of metrics 
of the form 

9i} = g'~j + hij 

where the h/j are C a functions having all their derivatives zero at the 
origin. The set of all such h/j forms a complete metric space (in fact a 
Frechet topological vector space) in which the hq such that g" is a metric 
of the required signature form an open set I!b which we identify with the 
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corresponding set of metrics g". Moreover, we can find a neighbourhood 
of g' whose closure lies in (5. It suffices to show that the set of elements 

of (5 for which the equivalent curve ?" is a (proper) embedding is dense 
in the complete metric space ~. 

Take a closed interval J = [a, b] C I and consider ?j: = ?" l J .  Then 
we show that the subset (sj of (5 for which tcs: = n?j is not self-inter- 
secting and does not pass through the origin is an open dense set. This is 
clearly the case for the set of metrics for which there is no passage through 
the origin, and so we need only consider the self-intersections. From 
Lemma 5 the quantity 

Inf t[~:~(sl)- ~d(s2)[I 
sl,s2~s Is 1 - s21 

depends continuously on the metric g" and is non-zero when 7~7j is not 
self intersecting. Thus (sj is open. Suppose that it is not dense in ~, 
i.e. that there is an open set $ in (5 in which all metrics give rise to inter- 
sections. Let go be a point in this set and Xo the corresponding curve. 
The continuity of Xo in the compact interval J ensures that there is an 
element ~ of R" with ~ ~ ~" = 1 such that all intersections are removed 

¢g 

by all sufficiently small displacements of small parts of the curve in the 
direction ~, or sufficiently near ~. Then all metrics of the form 

. , + ~ f  _~i~j) gij = gij ( ~  ~Z ") (6~j 

for a strictly monotonic f and small enough e will be free from inter- 
section. 

Thus (sj must be an open dense set. To complete the proof, we now 
need only take a countable sequence {J~} of intervals covering I. From 
Baire's theorem ('] ( ( s s f ~ )  is dense in ~ and the lemma is proved. 

i 
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