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Abstract. It is shown that a certain classof cosmological models admits discrete isotropies. 
These models are solutions of Einsteins field equations, characterised by: (1) the matter is 
described as a perfect fluid, and (2) there exists a group of motions simply transitive on three- 
surfaces orthogonat to the fluid flow vector~ 

§ 1. Introduction 

In a recent paper  [1] Ellis and MacCaUum examined in detail plop- 
erties of solutions of Einstein's field equations for a perfect fluid which 
admit  a three-dimensional group of isometries simply transitive on 
hypersurfaces orthogonal  to the fluid flow. Investigations of the properties 
of observations in these cosmological models 1 show that all measurable 
relations such as the magnitude-red-shift relation in any direction are 
invariant under certain reflections in the rest space of an observer moving 
with the matter, The main purpose of this paper is to show the existence 
of a discrete isotropy group in nearly all of these models, which induces 
the reflection symmetries mentioned above. 

Discrete isometries of a Riemannian space must be treated differently 
from continuous ones, because no linearised geometrical object such as 
a killing vector field exists. In § 2 it is shown that if a space admits a 
transitive group of isometries all further isotropies can be determined 
and are connected with automorphisms of the Lie algebra. 

This is applied in § 3 to positive definite three-spaces with a simply 
transitive group of isometfies and it turns out that all these spaces admit 
at least one discrete isotropy. The space sections of the cosmological 
models under consideration therefore admit discrete isotropies. 

The question is now whether the isotropy in the space sections is 
induced by an isotropy group of the space time. The models are determined 
by solving a Cauchy problem with data given on one of the space sections. 
§4 shows that every isometry of the Cauchy data corresponds to an 

1 A paper on this by the authors of [1] is to appear. 
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isometry of the development of the data. As a consequence of the con- 
straint equations the discrete isotropies of the space sections leave the 
extrinsic curvature also invariant. Hence the Cauchy data are invariant 
under the isotropies and this implies the discrete isotropies of the solution. 

§ 2. Discrete Isotropies in Riemannian Spaces 

A Riemannian space admitting a connected simply transitive group 
of motions can be constructed in the following way. If G n is any n-dimen- 
sional Lie group then the right translations 

R ~ : x ~ x a  x , a ~ G  n (2.1) 

form a Lie transformation group on G" which is isomorphic to G". 
To endow G ~ with a Riemannian metric (of any signature) invariant 
under all right translations a scalar product ge(X, Y) is defined in the 
tangent space Te(G") of the identity e of G" and then extended on G" 
by the mappings R,. More precisely: for any a e G" there exists one and 
only one right translation R, mapping e into a. The scalar product in 
Ta(G") is therefore uniquely defined by the condition that (R~), : Te(G") 
-~ T~(G") is an isometry, that is 

g~(X, Y): -- ge((R,,-1), X ,  (R,-1)• Y). (2.2) 

Now we have to show that this metric is invariant under all right 
translations. For R b any right translation and x any point of G". 

Rb = Rx b o Rx_, (2.3) 

holds and therefore we can construct the mapping 

(Rb), : rx ~ rRb(x ) = T~b (2.4) 
by 

T~ (Rx-l)', T e (Rxb).> T~b. (2.5) 

Both mappings in (2.5) are isometries. Therefore (2.4) is an isometry and 
(2.2) is invariant under all right translations. We denote this Riemannian 
space by V" = (ge, G"). 

It is obvious that the spaces constructed in this way are all spaces 
with simply transitive groups of isometries. 

The Lie algebra of the Killing vector fields is the algebra of the in- 
finitesimal right translations [2]. An important role is played by the 
infinitesimal left translations, because these are invariant under all right 
translations and therefore by (2.2) have constant scalar products on G n. 
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From the construction we see that a space with a simply transitive 
group of isometrics is completely determined by the group G" and the 
metric at one point. If G" is not simply connected there exists a uniquely 
determined covering group G". Hence for every space V" with a simply 
transitive connected group of isometrics there exists a simply connected 
space t?",whichislocallyisometricto V". The local structure is completely 
determined by the Lie algebra G" and a scalar product in G_". (We can 
identify G" with T~(G").) 

In general a simply transitive connected group of isometrics wilt not 
be the maximal group of isometrics. We consider here a special way 
in which further isometrics can arise: 

Theorem 2.1. In a simply connected space V"= (9~, G") any auto- 
morphism ~ of G" with a(G)= g¢ induces an isometry of V ~. 

Proof. Since G" is simply connected there is a one-to-one correspond- 
ence between automorphisms of G" and G_", which is given by O--, (~b,)¢. 
For  any automorphism q~ and any a e G" 

• = Ro(a) o • o Ra-1 (2.6) 

holds. That (2.6) is true can be seen by applying both sides to x e G n. 
If we take the • with (O,)e = ~ it can be shown that 

O,  : T,-~ To~,) (2.7) 

is an isometry. We can construct this mapping because of (2.6) by 

T~ (Ra-1)~, T¢ (0') , T¢ (aa). > Te(~). (2.8) 

According to the assumption all mappings in (2.8) are lsometries, 
therefore O is an isometry. 

Further isotropies in a space with a simply transitive G n are not 
necessarily automorphisms of G". But the following is always true: 

Theorem 2.2. Suppose G~o is the maximal connected group of isometries 
acting transitively on V ~. Then the maximal group of isometrics G ~ is 
generated by G~o and a discrete group of automorphisms of the Lie algebra G_~. 

Proof. Let us assume that G~ is not maximal. Then there exists an 
isometry O of V" not contained in G~. If • has no fixed point, there must 
exist a further isometry 71 leaving P fixed. 7 j is an automorphism of the 
Lie algebra of all vector fields on V" [2]. As 7 j is an isometry and G~ the 
maximal connected isometry group on V", T must map the algebra of 
killing vector fields of G~ into itself, so that it must be an automorphism 
of G_~. 
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§ 3. The Isotropy Group of the Space Sections 

We consider now 3-dimensional, positive definite spaces admitting 
a simply transitive connected isometry group G 3. In [1] it is shown that 
in any of these spaces we can find an orthonormal triad e~ (v = 1, 2, 3) 
with the following commutation relations ([1], (2.16)) 

[el, e2] = ae  2 + n3e3, 

[e2, e3] = nx el ,  (3.1) 

[e3, eli = n2e2 - ae3,  

a, n i are constant, n 1 • a = 0. The vector fields e,, are invariant under G 3, 
that is they are a basis in the Lie algebra of the right invariant vector fields 
of G 3. We can choose a basis ~ of the Killing vector fields with 

(~v)e ~--" (e,)e - (3.2) 

Then the ~ also have the commutation relations (3.1).To apply Theorem 2.1 
of § 2 we must therefore look for orthogonal linear mappings c~ of T~ 
(in which the (e~)e are a basis) which are automorphisms of (3.1), that is 
c~[e~, %] = [c~(e,,), c~(e~)]. We consider first the groups of class A which 
are defined by a = 0 .  In this case (3.1) reads 

[el, e2] = n3 e3 ; [e2, e3] = nj e 1 ; [e3 ,  e~] = n 2 e 2 . (3.3) 

It is obvious that the following reflections which we denote by 5e~ 
are automorphisms: 

5~1 : (% e2, e3)~(el, - e2 ,  - e3 ) ,  / 

5~2 : (ei, e2, e3)----~(-ei, e2, - e3 ) ,  / (3.4) 

5e3 : (el, e2, e3)--' ( -  % - ez, e3). 

A short calculation shows that for n~ = n2 the rotations in the (e~, e2) 
plane are also automorphisms. Similar results hold for n~ = n3, or n2 = n3. 

We are now able to determine the maximal group ~(V 3) of motions 
of these spaces: 

dim.3(V3)= 3: The maximal isotropy group is discrete, so the iso- 
tropies are automorphisms (§ 2). Thus (3.4) is the maximal isotropy group. 

dim.3(V 3) = 4: The space cannot have constant curvature, therefore 
one of the vectors e~ is a distinct Ricci eigenvector. ([1] it is shown that 
all e~ are Ricci eigenvectors for groups of class A.)  

The isotropy group contains the rotation in the plane orthogonal to 
the non-degenerated eigenvalue, the isotropies (3.4) and an isotropy which 
acts in Te as the total reflection if V 3 is symmetric [3]. 

dim,~(V3)=6: The spaces are spaces of constant curvature. The 
isotropy group is the complete 3-dimensional rotation group (9(3). 
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Which of the three cases can occur depends on the group type and the 
values of the hi. A list is given in [1], § 7. 

The existence of the discrete isotropies (3.4) implies that the vector 
fields e~ are geodesic. 501 corresponds to an isometry leaving the vector 
field e~ invariant. Therefore the first curvature vector ~t must be invariant. 
As it lies in the e 2 - e  3 plane, b~ must vanish at e and therefore every- 
where. (G 3 leaves e~ invariant !) 

For  groups of class B (a 4: 0, n 1 = 0) the commutation relations are 

[el, e 2 ] = a e 2 + n 3 e 3 ,  ] 
[e2, e33 = 0,  

[e3, e l l = n 2 e 2 - - a e  a. 
In any case we will find that 

50t : (% e2, e3)--, (e~, - ez, - e3) 

(3.5) 

(3.6) 

is an automorphism of (3.5). The only further possible automorphisms 
are rotations in the e 2 - e3-plane if n 2 = n3, because e I is an invariant 
vector of G 3 [1.]. 

For  the maximal isometry group ,~(V 3) we find the following: 
dim,~(V3)= 3:5°1 is the only isotropy; 
dim,~(V3)=4: 50~ 1-dim group of rotations, and possible further 

automorphisms of the 4-dim Lie algebra. 
dim.~(V 3) = 6: ,~(V 3) = C(3). 

§ 4. The Isotropy Group of the Cosmological Models 

We consider now the cosmological models of [t] .  These are space 
times V 4 filled with a perfect fluid which admit a group G 3 of isometries 
acting simply transitively on closed spacelike three-surfaces orthogonal 
to the fluid flow vector. Thus the orthogonal congruence of the group 
orbits is geodesic. We assume further that every orthogonal geodesic 
meets every group orbit only once. Under these assumptions the tetrad 
system defined locally in [1] exists globally on V 4 and the topology of V 4 is 

V 4 = G 3 x R 1 . (4.1) 

Using the results of a paper by R. Geroch [4] it is easy to see that 
every group orbit is a Cauchy hypersurface of V4: Take the orbit 
Y : = G 3 x {0} C V 4 then the future Cauchy development ~+(Y) (see [9]) 
of 50.consists not merely of points of 50 because J is three-dimensional 
and spacelike. 
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Suppose ~+(Y)4:  G3× E0, o9), then ~+(5P)4:0, where J/f+(5 e) is 
the future boundary of ~+(5 p) (see [9]). ~¢'~+(50 must be a group orbit 
because N+(5~), 3f+(5 ~) are invariant under the group. Therefore W+(SP) 
is a spacelike three-surface. This is a contradiction, so that Jr°+(5 ~) = 0. 
The same holds for d/f-(Y) = 0 and this implies [4] that 5 ~ is a Cauchy 
surface. 

In [1] it is shown that the solutions are determined by a well posed 
Cauchy initial value problem, which has a unique solution if we give 
the metric and the extrinsic curvature on ~ Therefore we can consider V 4 
as the maximal Cauchy development corresponding to certain initial 
values, which satisfy the constraint equations. 

Now we can prove that every isometry of the Cauchy data corresponds 
to an isometry of the maximal development. 

Theorem 4.1. t f  V 4 is the maximal Cauchy development of initial data 
invariant under a simply transitive G 3, then every further isometry of the 
initial data induces an isometry on V 4. 

Proof. Suppose 0, d are the Cauchy data on 5 P invariant under an 
isometry J~ We define a diffeomorphism f : V 4 ~ V 4 in the following way: 
Ifp ~ V 4, there exists a unique geodesic qf(P) through p orthogonal to Y. 
p'=Cg(P)nS is mapped by f i n t o  q'. Then we define f (P) as the point 
on the orthogonal geodesic cg, through q' which has the same distance 
on cg, from q' as p from q on ~. Let g be the solution of the field equations 
determined by the data 0, d- Then f(g) is again a solution because the 
field equations are tensor equations, g and f(g) are determined by the 
same initial data, therefore by the uniqueness of the solution f (g )= g 
must hold so that f is an isometry. Together with the work done in [1] 
it is now easy to check which of the discrete isotropies determined in § 3 
induce discrete isotropies in the considered cosmological models. We 
have only to look whether the extrinsic curvature is also invariant under 
the isotropies. 

Theorem 4.2.Every model of class A admits at least three discrete 
isotropies acting in the space sections, given by (3.4). 

Proof. The extrinsic curvature is in the notation of [1] given by the 
expansion tensor Oab. Lemma 4.1 in [1] states that as a consequence 
of the constraints the triad e~ is an eigentriad of O~b. Therefore O,b 
is invariant under (3.4). Theorem 4.1 gives then the isotropy in V 4. 

Theorem 4.3. Every model of class B other than the models of group 
type VI h with h = - ~ admits at least one discrete isotropy of the kind (3.6). 

Proof. By [1], Theorem 5.1, el is an eigenvector of the expansion tensor 
in all cases besides VIh(h = --{). Therefore O,b is invariant under (3.6). 
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Models invariant under a group of type VIh(h = -  ~) may admit 
the discrete isotropy (3.6) (if e~ is a shear eigendirection) or may not 
(if e~ is not a shear eigendirection). Which of the possible cases occurs 
is dependent on the choice of the initial data. 

§ 5. Isotropy Implies Homogeneity 

The discrete isotropies (3.4) are not only necessary isotropies in a 
homogeneous model of class A but are also sufficient to imply that a 
cosmological model is homogeneous. 

Theorem 5.1. Suppose V 4 is a solution of Einsteins field equations 
jbr a perfect fluid with the property that R,bc~ . . . . .  R~bcd;~Io at any point 
are invariant under three linear mappings 5 ~, acting in a spacelike hyper- 
surface (see (3.4)), keeping the orthogonal vector fixed, then V 4 admits 
a local group of isometries acting transitively on three-spaces orthogonal 
to the fluid flow vector. 

Pro@ The vector fixed under all 5P~ must be the fluid flow vector u a, 
because it is the unique timelike eigenvector of Rab. The congruence u" 
must be geodesic and hypersurface orthogonal because otherwise /#, 
co" would not be invariant under all 5~v. We consider now the intrinsic 

geometry of one of the three-surface 5 p orthogonal to u ~. R~k . . . . .  eik;jem 
must be invariant under 5°~. If these tensors determine three vector fields 
e~ covariantly up to the signs, then the rotation coefficients are scalars 
when we fix an orientation. Therefore their gradients must vanish, other- 
wise we would have a covariantly determined vector. From this we know 
that the 3-spaces Y orthogonal to u" admit a group, With similar argu- 
ments it follows that the expansion tensor O,b of the congruence u" 
must be invariant under the group acting on 5 p. Theorem 4.1 shows now 
the existence of a local group of isometries on V 4. When no covariant 
tetrad is defined by R,bce and its derivatives up to the third order the 
space is locally rotationally symmetric. Then the results of [5] show 
that the space admits a local G 4 acting on three-spaces, 

A very short proof can be given under the assumption that all deriv- 
atives of R,bcd are invariant under 5P~, if one uses the theorem that the 
number of independent scalars and the dimension of the orbit of the 
maximal group of isometries add up to the dimension of the space [6]. 
But as there is so far no general agreement whether this theorem is 
rigorously proved for indefinite spaces, the longer version above has 
been given here. 
24 Commun. math. Phys., Vol. I5 
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§ 6. The Topology of the Space Sections 

Every  connec ted  Lie g roup  is topo log ica l ly  the direct  p roduc t  of  a 
compac t  s u b g r o u p  K and  R n [7].  K is uniquely  de t e rmined  up to 
conjuga t ion .  W e  assume now tha t  the  space sect ions G 3 are  s imply  
connected.  

If  G 3 is compac t ,  then G_ 3 mus t  be semis imple  [3]. Then  G_ a mus t  
be of  type  IX. The  g roup  mani fo ld  is the cover ing mani fo ld  of  the  3- 
d imens iona l  r o t a t i o n  group.  

If  G 3 is no t  c o m p a c t  then we m a y  have ( topological ly)  

G3 = K l x R  2, G3 = K 2 x R  a, or  G3=R 3 (6.1) 

wi th  K t, K 2 compac t .  As no  semis imple  Lie  a lgebra  of d imens ion  smal ler  
than  three exists the fol lowing mus t  ho ld :  

K 1 = r 1 or  K 2 = (T t x r t ) / N ,  (6.2) 

[8],  where  T t is the  ro t a t i on  g roup  in two d imens ions  and  N some 
discrete s u b g r o u p  of  T 1 x T 1. Because of (6.2) the only  s imply connec ted  
g roup  in (6.1) has  the man i fo ld  R 3. 

F r o m  these spaces  we get every space sect ion which is no t  s imply  
connec ted  by  ident i f ica t ion  of  the orb i t s  of  an i somet ry  f wi thou t  fbxed 
points .  If  f leaves every Ki l l ing vec tor  field of  G 3 invar ian t  the new 
space will also admi t  a g lobal  group,  o therwise  only  a local  group.  
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