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Abstract. A number of useful inequalities, which are known for the trace on a sepa- 
rable Hilbert space, are extended to traces on yon Neumann algebras. In particular, we 
prove the Golden rule, H61der inequality, and some convexity statements. 

A number of useful inequalities relating the traces of operators on 
a Hilbert space are known 1 when the trace is defined in the usual way. 
In this paper, we consider generalizations of some of these inequalities 
to traces on yon Neumann algebras. In a subsequent paper, we will 
discuss applications to entropy and statistical mechanics. 

In what follows ~ will always be a normal, faithful 2 semifinite trace 
on a yon Neumann algebra, 9.I, of operators on a Hilbert space ~ .  This 
means that z is a function, defined on 9.I + = {A: A > 0} and extended to 
the 2-sided ideal, M, whose positive part is M + = {A: A > 0 and z(A) < oe } 
with the following properties 3: 

a) z (A)>0 if A > 0 .  (1) 

b) ~(A + ).B) = ~(A) + 2z(B) if (2) 
i) 2 in C; A, B in M or, 

ii) 2 > 0 ;  A,B>O.  
c) T(A)=v(UAU*) if (3) 

A > 0; U is unitary. 

d) z(AB)=~(BA) if (4) 
i) A in M, B in 9.1 or, 

ii) B = A *  in 9.1. 

e) (Normal): If {At} is a bounded increasing net of positive 
operators, then sup z(Ai) = "c (sup Ai). (5) 

i 

* Battelle Fellow, 1970-1971. 
1 See, for example [1-4].  
2 The restriction to faithful traces is not really necessary, (see [5], Corollary 2, p. 83) 

but simplifies things slightly. 
3 Properties (a), (bii), and (c) suffice to define a trace (see [5], p. 81). 
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t) (Semi-finite)4: If A > 0  and z(A)= o% then there exists 
a B such that 0 < B < A and z (B) < oo. 

g) (Faithful): r (A)=0  and A > 0 = ~ A = 0 .  In addition, one can 
show that z has the following useful properties 5 : 

h) A-~z(AB) is ultraweakly continuous for A in 91, B in M. 

i) ]~(A*B)IS~z(A*A)z(B*B) if A*B is in M. (6) 

j) There exists a family, (xi), of vectors in 2tf such that 
z(A)= 2(XkAXk) if A > 0 .  (7) 

k 

k) ]z(AB)<z([ABI)<IIAII z([Bt) if A in 91, B in M. (8) 

There are five topologies which one uses frequently on yon Neumann 
algebras: norm, ultrastrong, strong, ultraweak, and weak. Some of the 
properties of these topologies simplify on norm-bounded sets. We will 
have occasion to make use of the following facts 6, which are not true 
on unbounded sets. 

a) On norm-bounded sets, multiplication is continuous in the strong 
topology. 

b) On norm-bounded sets a sequence is ultrastrongly convergent 

~=~ strongly convergent, 

ultraweakly convergent, 

~=~ weakly convergent. 

In particular, we note that Property (h) now implies that A-~r(AB) is 
strongly continuous on norm-bounded sets. 

The first theorem can be thought of as a special case of Fatou's 
Lemma. 

Theorem 1. Let (A,) be a sequence of positive operators convergin 9 
weakly to A. 

Then: 
z (A) N lira z (A,). (9) 

Proof. This follows immediately from Property (j) and Fatou's Lemma 
as stated in Theorem A.2 of the Appendix. 

The next three Theorems generalize results of Golden [2] and 
Thompson [3]. 

4 This  definition of semi-finiteness is valid only for normal  traces. 
5 See [5]; Proposition 1, p. 82; Theorem 2, p. 88; Corollary, p. 85; Theorem 8, p. 106. 

See [6]; pp. 171-176 or [51 . 
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Theorem 2. "c [(CD) 2p + '3 =<_ "c [ ( C D )  2p (D C) 2"] 

_~< "C [ ( C  2 D2)2p] , 

= "c[C 2~ +1DZp + 13, 

i f  C, D >= O, and ~ (C) or t (O) < 00. 

Proof. First note that, e.g. 

0 <= z [Dt/2(CD) 2~ CD 1/2] = ~ [(CD) 2p" ~] 

(to) 
01) 
(!2) 

Now one has: 
z [(CD) 2p +'] = t [(CD) 2p (CD) z'] 

<_ t [( C D)2P (DC) 2"] (17) 

= ~ (%) 
and 

[(C 2 02) 2p] = z [(~o)2~]. (t8) 

Thus (tl)  is satisfied if 
r(%) < ~ [(%)2p] . (19) 

Now we prove (1 i) by proving (19) under the inductive assumption that 
(11) and (12) are true for all k < p. From (16) we have 

[(% -0  ~ ]  = ~ [(% -~ -1 & - ~  - ~)~] 
__< t [(%_~_ ~)2~ ( / ~ _  ~_  1)2k]  

< t [(%_<k.~ ~)) 2k+' ] k<p, 

so that all terms are real and positive. Now note that the theorem readily 
follows from (4) and (6) when p = 0, i.e., 

and note that: 

z[(CD) z] = t [(CD) (CD)] 

__< t [(CD) (DC)] = z [CZD2]. 

tt is easy to see that (10) is a special case of(6) and that (12) follows from 
repeated application of (11). Therefore it suffices to give an inductive 
proof of (11) under the assumption that (12) is true for all lower p. To do 
this we introduce the notation: 

~,, = (CD)Z ' (DC)  2m , (14) 

fi,, = (DC)2"~(CD) z" (15) 

[(~,,)'] = r [(/~m)9 (16) 
= ~ [(~,,,-, 3 m -  0"] .  

(13) 
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where the first inequality follows from (12) and the second from (6) and 
(16). This shows that v [(%_k) 2k] increases with k so that (19) is satisfied 
as required. 

Theorem 3. 

v[(CD2~(DC)2~]<z[CZ~D2"+'C2~] if C , D > O .  (20) 

Proof. Let (D,) be an increasing net of positive operators converging 
strongly to D, such that v(D,)< oe Vn 7. Then 

[(CD) 2p (DC) 2~] ~ lira ~ [(CD.) 2~ (D. C) 2~] 

< lim ~[C2~D2"+'C2~] 
- -  n - +  oo 

=.c[C2VD2p+l C2p], 

where the first inequality follows from Theorem 1, the second from 
Theorem 2 and the last from normality of the trace. 

Theorem 4. 
r(e A + B) < ~(ea/Z en e A/2 ) (21) 

f a) A, B are setf-adjoint operators, bounded above, and b) A + B is 
essentially self-adjoint. 

Further, if  ~(e A) < oo or z(e ~) < ~ then 

,: (e A + B) < z (e A e~). (22) 

Proof. Let Xp = (e A/2~ + ~e B/2" + 1)2~ (eB/2p+ l eA/2p+ 1)2p. 

It then follows from the Trotter formula (33) that Xp--+ e A + B strongly. 
Theorem 3 implies that z(Xp)< z(Xo) for all p. Applying Theorem 1, 
one thus gets: 

"c(e A+B) <_ lim z(Xv) 
p ~ o O  

<*(Xo) 
= ~ (e A/2 e ~ eA/2). 

If v(e B) or z(e A) < 0% (22) follows from (4). 
The next few theorems are closely related to the inequalities in Sec- 

tion 2.5 of [11 . 

Theorem 5. (H61der Inequality). 

Ir(AB)[ =< r(IABI) (23) 

< [*(JA[*/=)] ~ [~(]B]1/1-~)] 1-~ ( 0 < ~ <  1). (24) 

7 Let (E,) be the net in Theorem A.5 and D. = D~/2E,,D 1/2. 



28,* M . B .  Ruskai :  

Further, whenever the right hand side of (24) is finite A B  is in M, and 

(AB) =  WA). (25) 

Proof. This is just  a special case of more  general theorems proven by 
Kunze  and Ogasawara  8. Since their proofs are somewhat  complicated 
and incomplete,  we give a simple complete  p roo f  in Appendix B. 

Theorem 6. The function f (x) = log z (e a + ~B) is convex on ( -  oe, 0o) if: 

a) B is a bounded, self-adjoint operator, 
b) A is a self-adjoint operator, bounded above, and 
c) A) < o o .  

Proof. First note  that  Theorem 4 implies that  

z(e a + xB) < z ( e A  e xB) < CX3 whenever "c(e A) < Zt3 . 

We first prove the theorem under  the assumption z(e A/z) < ~ .  Then  
w.l.o.g., we can choose e > 1/2 so that  -c(e ~a) < ~ and z(e ~(a+~m) < o~. 
Now 

f ( e x  + (1 - c 0 y) = logz [e ~(A+xB)+(1 --~)(A+yB)] 
< log z [e c'(A + xn) e (~ - ~)(A + yn)] 

< log [~ (e A + :,B)] ~ [1: (e A + rB)] 1 - ,  

= c~f(x) + (1 - e ) f ( y ) ,  

where the first inequali ty follows from Theorem 4 and the second from 
Theorem 5. To  prove the theorem in general, let the spectral decompo-  
sition of  A be 

HAIl 

- - G O  

and define: 
- k  IIAII 

Ak= ~ 2-~-dE(2)+ ~( 2dE(2) .  (26) 
-oo O~ - k  

Then 
HAlf ] 

"c(e ~Ak) = T e~dE(2) + ~ eZ~dE(2) 
- -  - - k  

< z(e a) + e ~llAll ~ ( I -  E( - k)) 

=< [1 + e  ~[lail e k] z(e a) 

< o o  for all k .  

Fur ther  Ak 1" A strongly, e nk T e a ul trastrongly and e nk- a ~ I ultrastrongly. 
W.l.o.g. we can choose ex  + (1 - cz) y = 0. Let  fk(x) = z(eak+~B). It then 

8 See [7], L e m m a  1.5, and [8] L emma  3.1. 
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follows from normality that 

f(0) = z (e A ) = lim z (e Ak) = ~im fk (0), 
k-~oo 

and from the preceeding argument that 

fk(0) < ~fk (X) + (1 -- ~)fk (Y) " (27) 

Using Theorem 4 again, one gets 

fk(X) < 1ogz [e Ak-a eA+:'~] . 

Since e A k - A  -->[, ultrastrongly, Property (h) implies 

lim fk (X) < 1og'c (e A + xB) = f (x ) .  
k-*oo 

Combining, one gets 

f(0) =< lim [ e L ( x  ) + (1 - c~)fk(y)] 
k oo 

<- ~ f (x) + (1 - oOf (y ) 
as required. 

Theorem 7. (Peierls-Bogolyubov Inequality). 

l I'c(eA+~)] z(eAB) 
og [ z ( - ~ - ]  >- "c(eA------~ 

(28) 

(29) 

if A, B satisfy the conditions of Theorem 6. 

Proof. If f is a convex function and a < b, then 

f ' (a)  <= f ( b ) - f ( a )  
b - a  

' 0  Let f (x)  be as in Theorem 6 and a = 0 ,  b =  1. To compute f ( ) ,  let 
g(x)=logz(eAe ~B) and note that f ( x )<g(x )  for all x, f(0)=e(0),  and 

Then 

z(eA Be xB) 
g'(x)= z(eAe~B) . 

Z (e A B) 
f '  (0) = g' (0) -- z (e A) 

< f(1) -- f(O) 

1 ['c(eA+B) ] 
- -  
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Appendix A 

Theorem A.1 (Fatou ' s  Lemma)9.  I f  (f,) is a sequence of non-negative 
I~-measurable functions, f , ( x ) ~  f (x) a.e., and ~ is a positive measure, then 

5fdl~ < lira inf 5 f , d # .  (30) 

Theorem A.2. 
! im %,< !irn ~ ckn (31) 

if Ck, > 0 for all k, n and the indicated sums and limits exist. 

Proof. This is just  a special case of  T h e o r e m  A.1 wi th /z  a discrete 
measure.  

Theorem A.3 (Trot ter  formula)  1°. 

e A + B = s-lim (e A/n e~/ ' )  n (32) 
n ~ o o  

a) A, B are self-adjoint operators bounded above, and b) A + B is if 
essentially self-adjoint. 

Theorem A.4. 
e A + B = s-lira (e a/" eW") "/2 (e B/" eA/") "/2 

if A, B are as in Theorem A.3. 

(33) 

Proof. Apply  (32) to e (A+B)/2. Tak ing  the subsequence k = 2n gives: 

e(A + m/2 = s-l im (e A/k e~/k) k/z . (34) 
k--~ c~ 

Since A is bounded  above,  e A is a bounded,  self-adjoint opera to r  and 

Hea/k]l =(tleAl] )l/k . 
Therefore,  

t1 eA/k e'/kll k/2 __< (/lea J[ It e ']l) i/z, 

and the sequence in (34) is bounded  independent ly  of k. Then  reversing 
the roles of  A and B in (32), and using the fact that  mult ipl icat ion is con- 
t inuous on bounded  sets in the s t rong topo logy  gives the desired result. 

Theorem A.5. The set of all projections in M forms an increasing net 
which converges strongly to the identity. 

Proof. T o  show that  the project ions in M form a net we must  verify 
that  E v F is in M whenever  E and F are. Let  F'= E v F - E .  There  

9 See, for example, Royden [9], p. 113. 
lo See [10], p. 109; [11], Theorem VIIL31, p. 295. 
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exists 11 a partial isometry W such that  W* W = F '  and W W* < F. Thus  

~(E v r )  = ~(E) + z(F') 

= r(E) + ~(W* W) 

= ~(E) + : ( W  W*)  

< ~ (E) + z (F) < c~,  

and E v F is in M. Since M is s trongly dense in 9.I 12, this net must  
converge to the identity. 

Appendix B 

Proof  of  Theorem 5. a) Note  that  the first inequality is just a special 
case of  (8). 

b) We show 13 that  ~(IABI)< 1 if 

[IA[Iv=lIBIIq=l, and ~ ( E ) < o v  
where: 

llAl[p= [z([ALP)] ~/~', 1/p+ 1/q= 1, and 

E = project ion on the range of  tAl. 
Using the polar  decomposi t ion,  one can write 

FABI = V2BAB,  

A = IAt V A , 

= IBt v ,  
and 

z(iABI)='c(glAI WIB I X) 

where W = 1~ and X = V~ V~* are partial isometries. N o w  let 

j~ (z) = z [E(eI + IAlP)" W(eI + Ialq) 1 - ~ X j .  

lim f(1/p) = ,(tABI). 
~ ' 0  

f~(z) is entire. 

f~(z) is bounded  on 0 < R e z  < 1 by ,(E)(1 + ~)2 since 

NAIIp= 1 ~ ]JAil_-< 1. 
4) If,(iY)I = I* [ e(e + ]ALP) ~" W (e + IBI q) (e + IBIq)-*YX] l 

= Ir ([p.I.] IBI q) + ez([p.I.] E)I a4 

< r(IB[ q) + ez(E) = 1 + er(E). 
11 See [6], p. 200. 
~2 See [5], and the construction in Corollary 2, p. 83. E is the identity for a normal, 

faithful, semi-finite trace. 
~3 The argument in Part (b) of this proof was communicated to the author by 

O. E. Lanford. 
t4 [p.I.] stands for a partial isometry. 

Then:  
1) 

2) 

3) 
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5) ]f~ (1 + iy)[ = [z [E  (e + [AI p) (e + [A[P) *y W(e + tBt)-~v X]  [ 
= < 1 + ez(E). 

Therefore  ]f,(z)l < 1 + er(E) on 0 __< Rez  =< 1, and 

z(IABI) = tim f (1/p)  < 1 + lim ~z(E) = 1. 
e ~ O  e ~ O  

c) By considering A/I[Arl p and B/[JBtlq, one can d rop  the restriction 
i[A[lp= lIBi[q= l. 

d) We now show that  one can d rop  the restr ict ion z(E) < ~ .  Write  
IIAll 

the spectral  decompos i t ion  of  IA] as iAl = ~ 2dF(A). Let  Ek = 1 --F(1/k). 
0 

Then  Z(Ek) < kPz([Al p) so tha t  [IA lip < ~ ~ z(Ea) < oo. Then the project ion 
on the range  of EkA has finite t race so that  

T(IEk ABI) <= JIEkAHp lIBIIq . 

Let  X k = [EkABI. Then  

X~ = B*A* EkAB , s-lim X 2 = B * A * A B  = X 2 
k--~ oO 

and (X 2) is an increasing, uni formly bounded  sequence of posit ive oper-  
ators. Therefore  ~s s- l imXk=[ABI.  Thus,  using T h e o r e m  1, one finds 

k-~0o  

([ABI) _-< lira z (IEk ABI) 

__< lira ilEkAilp IIBIJq 
k~oo 

= lIAll, ILBIIq. 

e) Clearly [ABi is in M +. Since AB = YIAB[ and M is a 2-sided ideal, 
AB is in M. 

f) To prove cyclicity, we can assume w.l.o.g, that A > 0. Let A k = EkA 
with Ek as in part (d) above. 

"C(Ak) ~ [l A I[ Z(Ek) < 00. Therefore,  by Proper ty  (d) 

But 
Z(AkB ) = z(BAk) Vk .  

k [(A - Ak) B]] ~ tlA - Akijp [[BHq 

=(z[!k,~PdF(2)]) lip [lBila ~--=7~ O. 

15 By the Stone-Weierstrass Theorem, t-~t 1/2 is uniformly approximable by poly- 
nomials on [0, iiXZll3. Since the sequence (X~) is bounded, s-limP(X2)=P(X 2) for any 

polynomial P. Therefore s-lira Xk = X. 
k ~  
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S imi l a r ly  
l ira Iz [ B ( A  - Ak)] I = 0 .  
k-~co 

T h u s  
z (A B) = 2ira  z (A k B) = l im  z (BAk) = z ( B A ) .  
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