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Abstract. Associated with the charged Kerr solution of the Einstein gravitational field 
equation there is a Killing tensor of valence two. The Killing tensor, which is related to the 
angular momentum of the field source, is shown to yield a quadratic first integral of the 
equation of the motion for charged test particles. 

The Hamilton-Jacobi equation for charged particle orbits in the Kerr 
spacetime 1 has been found by Carter [1] to be solvable by separation 
of variables. The separation constant, an expression which is quadratic 
in the orbital tangent vector, provides in turn a fourth first integral of the 
equation of motion for charged particles, the other three having been 
obtained by reason of the two symmetries of the field, and the conserva- 
tion of the particle rest mass. Walker and Penrose [2] have demonstrated 
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Foundation, grants GP-8868, GP-20023, and GU-1598; the Air Force Office of Scientific 
Research, grant 903-67; the National Aeronautics and Space Administration, grant 
44-004-001 ; and the Westinghouse Corporation. 

** Present address: Max-Planck-Institute for Physics and Astrophysics, 8000 Mfin- 
chen 40, F6hringer Ring 6, Germany. 

1 Throughout the discussion we refer to the general Kerr family of gravitational fields, 
with or without either an electromagnetic field [3] or a cosmological constant [t].  
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in an earlier communication how the fourth first integral of the geodesic 
equation arises from the existence of a tensor K,b which satisfies 2 
V(,Kb,) = 0. In the present communication we show that the quadratic 
Killing tensor may be used to obtain also Carter's fourth first integral 
of the equation of motion for charged test particles. 

To expedite the discussion, we begin with a simplified proof of the 
existence of a quadratic Killing tensor for the Kerr spacetime. The proof 
is based on the following r_emark: let o A and ~A be a normalized spinor 
dyad whose correspondin 9 null vectors l" ;= OA-6 A" and n" :=  IA~ -'t" are 
tangent to congruences o f  nonshearing null geodesic curves 3, and let 
d? be a complex scalar such that ~ An = ~ O(AtB) satisfies the vacuum Maxwe l l  
equation 

vAA' q~AB = 0. (1) 

Then the quantity XAn := ~ -  3/2 ~PAn satisfies the twistor equation 4 

V(A A' XBc ) = 0. (2) 

To see this, we observe that the dyad component 

6 q~3/2 0 A 0 B 1 c V(A A'  [{]) - 1 / 2 0 B  l c ) ]  = 0 A V A A ' O  _ 2 0 o B 1A VA A" OB 

of V(A A" XBC ) is simply one of the dyad components of V aa" [4) O(AZB)], which 
vanishes by virtue of the Maxwell equation. The component with o A and 
t A interchanged vanishes for the same reason, and the remaining two 
components vanish by virtue of the GSF conditions on o a and tA. 

The converse of the remark above is also true: If V(A A' XBc) = 0, then 
the principal spinors of XAB are GSF, and (XcD XC°) - 3/2 XAB satisfies the 
Maxwell equation. More generally, the principal spinors of a Killing 

2 We use the notation of Penrose [4], as does paper [2]. We also make a number of 
corrections to paper [2]. Eq. (5) should read V~A A" XBC ~ = 0. In Eq. (4), the components 903 
and 030 should be 2 t a t a R  - ~ sin20; the component n z of Eq. (16) should be (r 2 - a 2 - 2 m r )  2, 
and the component Q,1 in Eq. (t7) should be r 2 +  a z -  2 m r .  The equation immediately 
preceding Eq. (17) should read Qb, = - 2R2 l(bne). Finally, to be consistent with the B a t t e l l e  

conven t ions  for Latin and Gothic indices, the indices in the first line following Eq. (16) 
should be Latin. The first unnumbered equation after Eq. (17) and the remark following 
it should read 

"6",6~6; V° QbC = g'(° Vo Q bC) - Q~(" v~ g ~) 

in any coordinate system x", with 6] := V~x", so that V, = a/~?x".'" 
3 Such spinors will be said to be G S F .  We notice that the G S F  condition o A o B V A A" On = 0 

is preserved under the resealing oa-* 20 A for an arbitrary complex scalar 2. 
4 For a conformally flat spacetime, a solution of Eq. (2) describes a symmetric twistor 

of valence two. A solution of Eq. (2) is generally referred to as a K i l l i n g  sp inor  o f  va lence  two.  
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spinor of arbitrary valence are GSF 5. In the case of a non-flat vacuum 
spacetime, this fact would allow us to conclude from the Goldberg- 
Sachs theorem [5] that at most two of the principal spinors of a Killing 
spinor of arbitrary valence are not proportional. 

Upon examining the Bianchi identities it may be seen readily that in 
any vacuum spacetime of type {22} with a Weyl spinor ~p O(a OB Zc ZD) we 
can construct an electromagnetic test field of the kind we have been 
considering above: JAB = ~])2/3 O( A 1B). Moreover, it is well known that in 
correspondence with each vacuum spacetime of type {22} there exists a 
parametrized family of type {22} solutions of the Einstein-Maxwell 
equations for which the principal null directions of the electromagnetic 
field coincide with those of the gravitational field 6. Here the test electro- 
magnetic fields of interest are already at our disposal. Associated, then, 
with each of these spacetimes is a Killing spinor of valence two 7. 

Given the Killing spinor XAB we define the tracefree symmetric tensor 

P.b : = X A B ~ ( A ' B ' "  

AS a consequence of Eq. (2), P.b is found to satisfy, as it is shown in paper 
[2], the conformal Killing equation, 

V(,,Pbc)= P(,,gbc) 

where 9.b is the spacetime metric and where the vector P" is defined by 
p.  := ½ Vb/~b. If P. is the gradient of a scalar P, then it may easily be 
verified that the tensor 

K,b := P,b -- Pg,  b 

satisfies the Killing equation: 

V(oKbc) = 0 .  (3) 

5 Let us consider, for example, an algebraically general Killing spinet X m . . . A ,  of 
valence n: 

VA'(AXA,...A.) = 0, 
1 n 

XA~...A, = e (A, ,..O'A,,) . 

Upon transvection n times with ~a the twister equation becomes 

n n n 

o'A aAI , . .  t~A- VA,(A XAI.. .A.) 

n-1 n n n 
( ~ A I ~ A I ) . . . ( ~ "  '(7 An ,)I(TAo'A"~TA'A(~An]=O 

n 
which is seen to be the G S F  condition on the congruence defined by aA. 

6 Kinnersley [6] has provided an explicit algorithm for generating the electrification 
of any type (22}  vacuum spacetime. 

v The argument given in paper [2] for the existence of a Killing spinor of valence 2 
is not quite complete as it stands for the charged  Kerr solution, since the proof given would 
seem to rely on the vacuum Bianchi identities. Our procedure here should clarify that 
derivation, 
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Let us examine the condition that Pa be a gradient. This condition 
may be expressed in a particularly convenient form if we first observe that 
the stress-energy tensor 

of the test electromagnetic field ~bAn is proportional to the conformal 
Killing tensor P~b, and satisfies 

as a consequence of the vacuum Maxwell equation. From these facts it 
follows that 

pa = ½ Vbp.b = f2  ~b g b f  = I(.nb) Vbf -- ¼ V . f  

where f :  = (4)q~)-1/2. Therefore, the requirement that P. be a gradient is 
equivalent to the existence of a scalar h such that 

I(.nb) Vb f = V a h . 

We shall now consider explicitly the case of the Kerr spacetime. In 
the coordinate system of paper [2], the scalar q~ is given by 

4 = ( r -  ia cos0) -2 

so that f = r 2 + a 2 cos 2 0. A simple computation shows that 

l(anb) v b f  = g a ( l r 2 )  . 

Thus we establish that the Kerr spacetime admits a Killing tensor of 
valence two 8 

The equation of motion of a test particle with charge e, moving under 
the influence of an electromagnetic field F.b, may be written 

tcVcta=eff V"c, (4) 

where t a is tangent to the orbit of the particle. As in the case of an affinely 
parametrized geodesic orbit, as would be given by e = 0, the equation 
of motion admits g"bt. t b as a first integral since 

t ~ Vc(g~bt.tb) = 2tbff Vet b = 2~ t+ ffFb~ = 0.  

Suppose that g.b admits a one parameter group of isometries 
generated by a Killing vector ~", so that ~ g . b  = 0. A first integral may 
be constructed from Ca provided that the electromagnetic field is also 
invariant under the action of the group. In fact, we may demonstrate that 
Lf~Fab = 0 is the necessary and sufficient condition that there exist a 

8 We comment,  incidentally, that our analysis is more  generally valid for the charged 
Kert~NUT spacetimes [1, 7] wherein the Killing tensor assumes the form 

K,b = (1-- a cos0) 2 l(,nb) + r2m(,mb) 

where 1 is the N U T  parameter. 
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scalar e such that 

t c Vc(~"t a + ea) = 0.  (5) 

Using the equation of motion (4) we find Eq. (5) to be satisfied if and 
only if 

for which we have the integrability condition 

V o(Fbj   = o 

Then, using Maxwell's equations in the form 

2V~.Fbl ~ + VcF.b = 0 

we arrive at the desired relation: 

~cVcF.b + Fa~Vb~C + FcbVo~C:= ~¢F.b=O.  

If a local vector potential A. for Fab be chosen with the gauge condition 
~ ¢ A  a = 0, then ~ = ~aA a, and the conserved quantity is given by 

~a(t. + eA 3 . 

Thus far our discussion of first integrals has been valid in general. 
We restrict our attention now to those spacetimes which admit a Killing 
spinor Xas, and ask under what conditions we can construct from XAB 
a quadratic first integral for the orbits defined by Eq. (4). First we con- 
sider the case in which the orbit is null s. If the tangent to the orbit is 
written ta :=  2a~ a', then the equation of motion (4) assumes the form 

(6) 
F.b : =  ~ABeA,B , 3t- ~A,B, eAB 

from which we deduce that 

tc Vc "~A -~- ~ ~) AB ~B = ico,~A 

for some real scalar co. A suitable new choice for the phase of 2 A serves to 
eliminate co. Then the equation of motion becomes 

tC Vc)CA nt- e~)AB2B = o  . 

It is easy to see that the complex scalar X :=  XAB2a2 B formed from 
the Killing spinor XAB is constant along the orbits, t"V. X = 0, provided 
that 

XB(a q~c) ~ = 0 ,  

which is precisely the condition that XAB and ~baB be proportional. 
Therefore, for those spacetimes in which the principal null directions of 
the electromagnetic field are aligned with those of the Killin 9 spinor 

9 The null charged particle orbits are, due to their conformal invariance, of some 
interest in connection with the theory of twistor quantization [8]. 
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we obtain a f i rs t  integral f o r  the charged null orbits. This cond i t ion  is 
fulfilled, of course,  for the charged  Ker r  spacet ime.  

W e  now d e m o n s t r a t e  the cons t ruc t ion  of a first integral  f rom the 
Ki l l ing  tensor  

K~b : = XAB XA'B ~ -- Pg.b  

for the non-nu l l  charged  par t ic le  orbi ts  in the  K e r r  case. App ly ing  Eqs. (3), 
(4), and  (6) we find tha t  

tc Vc(Kab t ,  tb) = 2etaf f  Kb(~Fo b = - 2~t~ff [ X a c  X, '(A'  ¢~'c')  

+ XA'C' XB(A 4'~c)], 
which vanishes ident ica l ly  due  to  the p r o p o r t i o n a l i t y  X a R - - ¢ - 3 / 2  CaB. 
Thus  we ob t a in  the  first in tegra l  

K ab t a t b • 

W e  remark ,  finally, on  the  physical  meaning  of  the Ki l l ing sp inor  in 
Ker r ' s  spacet ime.  Suppose  tha t  f rom the  Ki l l ing  sp inor  XAB we cons t ruc t  
the b ivec tor  

M.b := XAB,~A, B, "4- XA,B,~AB. 

Then in the l inear  a p p r o x i m a t i o n  to Einstein 's  theory,  this b ivec tor  can 
be shown to be re la ted  to the express ion for the to ta l  angu la r  m o m e n t u m  
of  the  source  of  the g rav i t a t iona l  field s° . 

The authors are grateful to Jiirgen Ehlers and Ivor Robinson for their conversation. 
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lo This last remark can be made in a more concise way in the language of twistors, 
to which, in the linearized theory, Killing spinors have an especially close relation. 


