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Abstract. Matrix elements of internal symmetry currents and energy momentum 
density tensor are constructed in Migdal Polyakov conformal invariant bootstrap field 
theory-. Their 3-point functions satisfy Bethe Salpeter equations which determine any free 
coefficients that may still occur in the conformal invariant Ansatz. Ward identities are 
verified for all n-point functions. They imply correct equal time current commutation 
relations. A proof of generalized unitarity is also given. Various equivalent forms of the 
propagator bootstrap are discussed. Our algebraic techniques also yield an eigenvalne 
equation for first order correction to the exactly conformal invariant theory, assuming 
the latter is Gell-Mann Low large momentum asymptote of a renormalizable finite mass 
theory. 

Introduction 

The M i g d a l - P o l y a k o v  b o o t s t r a p  a p p r o a c h  [ 1 - 5 ]  to  cons t ruc t  a 
conformal  invar ian t  q u a n t u m  field theory  offers an  interest ing a l ternat ive  
to  the up  to  now only  ava i lab le  canonica l  p e r t u r b a t i o n  theory.  This  new 
a p p r o a c h  has been  shown [5] to be free f rom U V  and  infrared divergences.  
Moreove r ,  it m a y  be h o p e d  to r ep roduce  correc t ly  the behav io r  of  
real is t ic  s t rong in te rac t ion  q u a n t u m  field theory  (QFT)  in a selected 
class of  high energy limits,  since it appea r s  [6]  tha t  the G e l I - M a n n  Low 
l imit  [7, 8] of  p e r t u r b a t i o n  theore t ica l ly  r enorma l i zab le  theories indeed  
is confo rma l  invar ian t  1. 

F o r  the phys ica l  i n t e rp re t a t ion  of  the theory  one should  show how 
to ext rac t  observables .  Since one is dea l ing  with an  infrapar t ic le  theory  

1 The crucial point is the softness for the trace of the stress tensor in the finite mass 
theory, which was proven recently by Schroer [6]. Use ofconformal symmetry was advocated 
long ago by Wess and Kastrup [9], That the divergence of the dilation current should be a 
soft operator, i.e. emphasize low frequencies, was first conjectured in Ref. [10]. The discussion 
was extended to conformal symmetry in Ref. [11]. The hypothesis became powerful after 
Wilson combined it with the notion of operator product expansion [ 12]. 
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[13] an S-matrix does not exist [12]. Therefore, and also as a further 
check of the consistency of the theory, one looks for other observables 
characteristic for local QFT: local charge and current, and local energy 
momentum, i.e. a stress tensor. These should satisfy the appropriate 
Bethe-Salpeter equations to guarantee that they are local operators, 
and Ward-Takahashi identities which identify them. 

Furthermore, if the theory is a local QFT it must also satisfy the 
axiomatic positivity requirements, for which generalized unitarity [14] 
is sufficient. One knows that a massive theory does satisfy generalized 
unitarity if its Green functions have the many-particle structure [15] 
familiar from canonical perturbation theory. For the many-point Green 
functions, these structure properties are manifest in skeleton expansions. 
For the vertex and the propagator, they are assured by their integral 
equations (here called bootstraps). Generalized unitarity will then also 
hold for the Gell-Mann Low limit theory if the massive theory considered 
is a renormalizable Lagrangian one. 

However, it seems nevertheless desirable to attempt a direct verifica- 
tion of generalized unitarity for the conformal invariant Migdal-Polyakov 
theory since one does not want to start with the assumption that it is 
Gell-Mann Low limit of a massive theory. 

These are the problems to be studied in the present paper. In going 
along, we shall also have occasion to study integral equations for the 
3-point functions and, especially, the 2-point functions [16]. They provide 
convenient alternative forms of the propagator bootstrap, more tractable 
than unitarity type relations because analytic continuation to euclidean 
space [17] can be performed. This avoids the difficulties inherent in the 
use of conformal invariance in Minkowski space [ 18]. 

Conformal invariant QFT is a noncanonical theory. It relies on 
Wilson's idea [t21 of dynamical dimensionality of fields, which in turn 
signals the breakdown of canonical equal-time commutation relations. 
Therefore, one cannot use the canonical formalism to infer existence of 
conserved local currents associated with symmetries. An explicit 
demonstration is needed 2. 

We will explain in detail how to construct Green functions involving 
internal symmetry currents (Section 2) or the stress energy tensor 
(Section 3). It will be proven in Section 4 that all the Green functions so 
constructed satisfy the appropriate Ward Takahashi identities, as a 
consequence of the bootstrap equations stated in Section 1. We remark 
that Ward identities are not true skeleton graph by skeleton graph, as 

z A demonstration of gauge invariance in renormalized perturbation theory which 
does not use the canonical formalism (i.e. a regularized Lagrangian) has been given by 
Brandt [-19] for Q.E.D. Some of our algebra has been inspired by his. 
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is known from canonical perturbation theory 3. It will be shown that 
they are restored after summing up. The Ward identities are also obeyed 
by Green functions involving more than one current. This assures that 
the currents satisfy correct equal-time commutation relations. 

In conformal invariant bootstrap field theory, locality and spectrum 
condition are satisfied order by order in the skeleton graph expansion. 
This result is implicit in Ref. [20]. It will be shown in Section 5 that also 
generalized (off mass shell) unitarity relations are satisfied 4 (after 
summing up) but only for the presumably discrete set of values of 
coupling constant and dynamical dimensions of fields which satisfy the 
bootstrap conditions. This is to be contrasted with canonical perturba- 
tion theory, where locality and spectrum conditions are also true order 
by order, while unitarity is fulfilled qua relation between formal power 
series, i.e. in a sense identically in the coupling constant [21]. 

The graphical notation used throughout the paper is explained in 
Appendix A. The Appendix B contains a short remark on the small- 
distance behavior of some functions involved in the Ward identities. 
Finally, in Appendix C we review some implications of the results of 
Ref. [8] for the expected connection with massive theory and give an 
example of how to compute corrections to the exactly conformal 
invariant theory. 

Not considered in this paper is the problem of extracting from the 
conformal invariant theory predictions for observables of the realistic 
finite mass theory. Apart from the total e + e--annihilation cross section 
into hadrons (see Section 2) this always requires consideration of Green 
functions at exceptional momenta, where the asymptotics is complicated 
by infrared effects, as was discussed in Ref. [8]. 

1. Integral Equations 

Construction of a conformal invariant field theory is based on the 
observation of Migdal [1, 2] and Polyakov [3] that integral equations 
for dressed vertex (and propagator [4]) allow for a conformal invariant 
solution. 

The integral equation for the vertex reads 

- ( ~  = i - ~  (1.1) 
3 If in perturbation theory one inserts the complete expansion for vertex and pro- 

pagator into a truncated skeleton graph expansion, some graphs of sufficiently high order 
in the coupling constant are included while others of the same order are not included. 
As a consequence such an approximation is not gauge invariant. 

4 Strictly speaking, certain convergence assumptions are made in order to guarantee 
uniqueness of the solution of Eq. (5.4c). For these to hold, negligibility of infinitely often 
reducible graphs is sufficient but not necessary. (Cp. also Appendix B.) 

17" 
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where the right hand side (RHS) involves the Bethe Salpeter (BS) kernel. 
An inhomogeneous term (bare vertex) is absent because it would violate 
conformal symmetry. This is in agreement with the compositiness con- 
dition Z 1 = Z 3 = 0. Eq. (1.1) will be referred to as the "vertex bootstrap". 

As an integral equation for the dressed propagator one can use the 
off-mass-shell unitarity relation for the 2-point function in the form 
proposed by Polyakov [22]. From a computational point of view it has 
turned out to be more convenient to use a renormalized form of the 
Schwinger Dyson equation for the 2-point function. Such an equation 
was derived by one of us some time ago [16] for ~b 3 theory in six dimen- 
sions. Analogous equations for q~4 theory in four dimensions were given 
by Wu [23], Taylor [24], and Johnson [25]. These equations are in 
essence a rewriting of the presciptions of the Bogotiubov-Parasiuk- 
Hepp renormalization technique, and we will discuss them at the end 
of Section 5. For the purpose of this paper other, with respect to the 
resulting bootstrap equivalent, equations are more interesting. They will 
now be described: 

For general n-point vertex functions (including for n = 2 the negative 
inverse propagator), Bethe Salpeter kernel etc. let us define 

Qi = "charge" flowing into leg i. 

In particular, for the dressed 3-point vertex and the dressed propagator 

= Dv - ( 2 (  - Q ,  (1.2a) 

X = D t = Q (X]'-X~)xl xf ; Q = "charge" flowing from i to f .  

Q may be either a conserved internal charge, or a component pu of 
momentum, with # 4 = v so that [P' ,  x ~'] _ = 0. 

With this notation, the integral equation for the dressed negative 
inverse propagator (=  2-point vertex function) reads 5 

Xi Xf 
(1.2b) 

It involves again the Bethe Salpeter kernel. The equation is finite and 
well defined by the criteria of Ref. [5] for noncoinciding external coor- 
dinates xi • x/. Extension to a distribution defined for all xi, x / i s  trivial 
and unique because of dilatation invariance. 

s In all of the following, we insert combinational factors as appropriate for one 
hermitean field, such that an internal charge Q is represented by a matrix and the familiar 
sign rule for loops from Fermi components is to be observed. 
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We remark that Eq. (1.2 b) is meaningful and valid also in renormalized 
perturbation theory, for xi ~ x I. The proof of this fact parallels that given 
in Ref. 1-16] for Eq. (5.8) below. 

If a propagator carries some internal charge, one may use either the 
"charge form" or the "momentum form" of (1.2b). They are obtained by 
choosing Q = internal charge, or Q = momentum W in definition (1.2a). 
Only one of them is needed as a dynamical equation, but both forms give 
equivalent results. In fact there is still another equivalent form of the 
propagator bootstrap (1.2b), for each choice of Q. It is obtained from the 
B.S. equation for a conserved current resp. stress tensor's 3-point func- 
tion and is given in Eqs. (2.11) resp. (3.19) below. Use of Eq. (2.11) as a 
bootstrap equation for charged propagators was independently pro- 
posed by Migdal 6. We shall show in Section 4 and 5 that all these various 
forms of the propagator bootstrap are equivalent, modulo validity of the 
vertex bootstrap (1.1), to imposing the generalized unitarity condition 
for the 2-point function, Eq. (5.5) below. They are then afortiori equivalent 
to each other. 

Eqs. (1.1) and (1.2) are solved by the unique conformal invariant Ansatz 
for dressed propagator and 3-point vertex Eqs. (1.5), (1.7) below, and one 
obtains a set of algebraic equations to determine coupling constants and 
dynamical dimensions of the fields. 

The higher n-point vertex functions, n ~ 4, and the Bethe Salpeter 
kernel are to be constructed by skeleton graph expansion in terms of 
dressed propagator and 3-point vertices. In particular, the Bethe Salpeter 
kernel is: 

~ - ~ + ~  + ~ + - . .  (1.3) 

The factors Q x  ~ resp. P " x  ~ (v #: t~) multiplying the BS kernel in (1.2b) 
may be distributed within any BS graph in an obvious way: 

~ - ( l  Z 0L+Zv 0 v ) ~ - ~ + ~ + ~ +  ... (1.4) 

Summation is over all possibilities of attaching a cross to a line or a vertex 
within any skeleton graph. All contributions proportional Q x  a, with x, 
an integration variable, cancel out because of charge resp. momentum 
conservation. 

Throughout the present paper we shall adopt normalization of the 
propagator as 
G(x, 0) = 2dF(d)(- x 2 -~- ie) -d resp. iVx2a-~ F ( d -  ~ ) ( -  x 2 AV ie) ÷-d (1.5) 

where d is the dynamical dimension of mass of the field involved. 
6 Migdal, private communication through Todorov. 
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Full conformal invariance implies a selection rule 

(0lq~(x)~p(y)10)=0 if d ~ 4 d ~ .  (1.6) 

Because of the explicit factors x involved in (1.2b) (which spoil manifest 
conformal invariance) it is not evident that selection rule (1.6) is reproduced 
by Eq. (1.2b). However, in the commonly discussed models there is only 
at most one fundamental field for any given spin and internal quantum 
numbers. Selection rule (1.6) is then automatic. On the other hand, 
Eq. (1.2b) is manifestly dilatation symmetric, and with selection rule 
(1.6) assured, conformal invariance of the propagator follows already 
from dilatation symmetry and ys-invariance. 

For later convenience, we will also reproduce the unique conformal 
invariant expression for the 3-point vertex function 

F(X 1X2X3) = - -  ig F(D - Z6 i ) -  1 x12 2 63 xt-3262 x2-32g~l (1.7) 

where x'~'u = ( -  (xi - xJ) 2 + ig) ~/2, D = No. of space time dimensions and 
61 = 62 = 6a = ½(D - d) if all fields have the same dynamical dimension d. 

2. Currents Associated with Internal Symmetries 

Let us consider a theory which is symmetric under some compact 
semisimple m-parameter internal-symmetry group G - for instance 
chiral S U (3) x S U (3). That means the Green functions are unchanged 
under an infinitesimal transformation of fields 

(2.1) 

with matrices X a forming a (in general reducible) skew hermitean re- 
presentation of the Lie algebra of G. _~ denotes a column vector composed 
of all the basic fields of the theory. 

In such a theory there ought to exist local currents j~,(x), a = 1... m, 
such that 

[~(x),j~(0)]~o = 0 = - iXa~(x)  6(x) + S.T., a = 1... m ; (2.2) 

S.T. stands for gradient terms. 
As is well known 7, commutation relations (2.2) translate into Ward 

Takahashi identities for the time ordered Green functions of the theory. 
They may be stated most compactly in the language of generating func- 
tionals. Let 

G~(x; Yl.-. Y,)= (01 T* {]~(x)!~(Yl)..._~(Y,)} 10)co,,~, (2.3 a) 

G(y l . . .  y,) = (0] T{!~(yl)... ~(y~)} 10) ... . .  (2,3 b) 

v The effect of Schwinger terms in Eq. (2.2) may be compensated by appropriate choice 
of seagulls such that one may demand that "normal" Ward identities (2.5) hold. See Ref. [26]. 



Conformal Invariant Quantum Field Theory 253 

the connected Green functions, and _J(y) a row vector of (possibly 
anticommuting, c-number) source functions such that the scalar product 
_J(y)_~(y) may be formed. The generating functionals G] (x, J} and G{J} 
are then constructed in the usual way, viz. (cp. e.g., Sections II.2-3 of 
Ref. [27]) 

i k 
Gu(x'J} = ~ ~¢1 Sdy l ' ' ' dykJ(y l l ' ' ' J - (yk)  Gau(x;yl'' 'yk) (2.41 

etc. The Ward Takahashi identities (WTI) are 

6 
/x a V~ Gu(x,J_} =i_J(x) XaGx{J_}, where Gx{J } ~_ 6J_(x) G{J_}. (2.5) 

It suffices to consider the currents associated with one generator (charge) 
out of every simple component of the symmetry Lie algebra. The 
remaining currents may then be obtained by applying an internal symmetry 
transformation. We may therefore without toss of generality take matrix 
X" to be diagonal (the label a will be dropped henceforth): 

X ~  = - iQ~6~ (no summation). 

For  the nonvanishing 3-point Green functions one obtains then from 
WTI (2.5) 

V~ Gu(x; y, z) = Q G(y, z) {6(y - x) - fi(z - x)} (2.6) 

where Q is the charge of the component field ~b(y), and G(.,.) its 2-point 
function. 

It will be helpful to write down also the differentiated Ward identity 
for the proper 3-point vertex function Fu(x; y, x). This proper vertex is 
obtained from the Green function Gu(x; y, z) by amputation on arguments 
y and z, viz. 

Gu(x; y, z) = S ~ dy' dz' G(y, y') F~,(x; y', z') G(z, z') . 

As a consequence of WTI (2.6) its Fouriertransform 

/~,(Pl ; P2, P3) (2zO° f(ZPi) - ~ dxl  ... dx3 ei zPxI~(Xl ; x2, x3) (2.7a) 

satisfies the Ward identity 

F"(0; p, - p) = Q V; d -~ (p, - p). (2.7 b) 

In configuration space, momentum differentiation i V~ = x } -  x u,, 
The n-point vertex function Fu(x; Y l . . ,  Y,) is the one particle irreducible 

part of the connected Green function Gu(x;y~ .. .y,),  amputated with 
respect to arguments y~ ... y,. It satisfies WTI which are obtained from 
(2.5) most conveniently by a functional Legendre transform, as explained 
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in detail in Ref. [27]. In written-out form they read 

g~l] , (X;ya . . . y , )=  ~ , Q i 6 ( x - y i ) F ( y l . . . y , )  (2.7 c) 
i 

where Q~ is the charge flowing into leg i, and F(y l . . .  y,) is the ordinary 
n-point vertex function, that is the amputated one-particle irreducible 
part of the Green function G(yx.. .  y~) defined in t?~. (2.3 b). 

The most general conformal invariant Ansatz for the current's 3-point 
function Gu(x;yaY2) has already been found by Migdal [1]. For the 
reader's convenience we reproduce his result. 

For a scalar field with charge Q and dynamical dimension d 

" v - D + 2 ; ~ " - D + 2  x D 2 2 - a d l ' ( d )  2 -a (2.8a) ( r ( ] l l ( X 3 )  ~b(x1) @(x2)}5 = ~ss~23 ~r 3 "13 

while for a Dirac field in D = 4 space time dimensions 

(T{j~(Xg)~(Xm)F)(x2)}>= y a,~,sc~x;¢v"&~ x~?~. 
i=s,v,r (2.8b) 
.2  a+ 1/2r(d + ½) x122aTr(~i212Qi212)  

where 

.2ij = ( x  i --  x j ) .  y ,  xi~ = ( - -  (xi  --  x j )  2 + ig) ~/2 , Qi = (1, F~, ½[Fa, 70])" 

Migdal's selection rule is automatically fulfilled for theories as described 
at the end of Section 1. 

The Ward identities (2.6) are fulfilled if 

as~ = Q F(½-D - 1)/47~ D/2 (2.9) 

a~ + 4a v + 24 a r = Q/8 7c 2 . (D = 4). 

After Ward identities are imposed, the e.m. vertex of a charged spinor 
field still depends on 2 parameters, say av and a>  These are not free 
parameters, however, but are determined by the dynamics of the system. 

Indeed, not every conformal invariant expression of the form (2.8) 
will automatically represent the 3-point function of a local field j~(x). 
Rather, for this to be the case it is necessary that the appropriate Bethe 
Salpeter equation be satisfied. It reads 

with BS kernel from Eq. (1.3). An inhomogeneous term (bare vertex) is 
absent, as in Migdal's bootstrap equation (1.1), because it would not be 
conformal invariant. Summation over charged fields to which the 
current couples is understood on the RHS of (2.10). Thus, if there is more 
than one charged field, (2.10) will be a system of equations for the current's 
various 3-point functions. 
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Applying the convergence criteria of Ref. [5] it is straightforward to 
show that the RHS of Eq. (2.10) is conformal invariant and free from 
divergences in the context of the present theory. 

Thus if we insert into Eq. (2.10) the most general s conformal invariant 
Ansatz (2.8) for the 3-point functions G, the (system of) equation(s) will 
be thereby solved and one obtains a system of linear h o m o g e n e o u s  equa- 
tions for the coefficients a~; % .... This is not, however, sufficient to 
guarantee an acceptable solution. For instance, the trivial solution 
a~ = . . . .  0 is not acceptable if Q ~ 0 since it does not satisfy the Ward 
identity condition (2.9). It must, therefore, be shown that also the validity 
of Ward identities for Gu is reproduced by the RHS of (2.10). If this is 
true then Eq. (2.10) reduces to an inhomogeneous system for the para- 
meters (e.g. a v,  aT) that are still free after Ward Takahashi identities have 
been imposed. Barring unexpected degeneracies it will uniquely determine 
these parameters. (In the spinless case, such uniqueness is trivial since 
there is no free parameter left.) 

It suffices to verify consistency of the differentiated Ward identity 
(2.7b), because every conformal invariant expression that satisfies (2.7b) 
will automatically satisfy (2.6) (see last footnote). Basically this comes 
from the fact that all momentum dependence of 3-point functions is 
completely determined by conformal invariance. 

Let us then insert W.I. (2.7b) on both sides of the BS equation (2.10). 
Using the notation defined in Eq. (1.2a) with Q = internal charges we 
find (after amputation) 

m / e ,  

. . . . .  × - '  = ½ (2.1t) 

It has to be shown that this equation is satisfied for physical values of 
coupling constants g and dimensions of fields d. Physical 9, d are such 
that the bootstrap condition (1.1), (1.2b) are satisfied. Now Eq. (2.11) 
is another integral equation for the (charged) propagators. We shall 
show in Section 4 that it is equivalent to Eq. (1.2b) (with Q = internal 
charge) modulo validity of Migdal's vertex bootstrap condition (1.1). 
Thus it will indeed be satisfied if Eqs. (1.1) and (1.2b) are true. Conversely 
we may also use (2.11) in place of Eq. (1.2b) as propagator bootstrap. 
Of course, this is true only for a charged propagator. We shall however 
see in Section 3 that there is an analogous equation coming from the 
Ward identity requirement for the stress energy tensor, which can be 
used also for purely neutral fields. 

8 Conservation of the 3-point Wigh tman  functions (but not, of course, correct 
normalization !) turns out to be an automatic  consequence of conformal symmetry and 
canonical dimensionality d = D-1 of the current. Here as everywhere D = No, of space 
time dimensions (4 in the real world). 
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With the current's 3-point function determined, the higher n + 1-point 
vertex functions, n > 3 can be constructed by skeleton expansion: 

We have drawn a box instead of a bubble to indicate that only the whole 
graphs need be connected and one-particle irreducible. This notation is 
explained in Appendix A. 

It will be shown in Section 4 that all the Green functions abtained 
from this construction satisfy Ward Takahashi identities (2.7c). 

Amplitudes involving several currents may be constructed in the 
same way. (cp. e.g., Sections 1.5 and VI.3 of Ref. [27]) e.g., the vertex func- 
tions involving two currents and one or more field operators are calculated 
from ~ v 

~. v zi S_~..~?i (2.13) 

and are finite for noncoinciding arguments, by the criteria of Ref. [5]. 
A new feature appears, however, when one constructs Green functions 
involving only currents - i.e. fields of canonical (integer) dimensionality - 
and no other fields. 

Let us consider as an example the 2-point function 

G eo(x, 0) = (0l T* {je(x) j~(O)} I0 ) .  (2.14) 

It can be computed according to (cp. Section VI.3 of Ref. [27]) 

with the "momentum differentiated" BS kernel given by Eqs. (1.2a), or 
(1.4), where Q = P" a component of 4-momentum. (To work out the first 
term one needs the amputated vertex function. Amputation can be 
readily performed on Eq. (2.8) with the help of the "vertex graph identity" 
of Parisi, Peliti and d 'Eramo [28].) 

The RHS of(2.15) turns out to be well-defined and dilatation invariant 
for x ~ 0. (Recall that overall divergence in momentum space does not 
show up in configuration space for x • 0.) Because of current conserva- 
tion (implied by the results of Section 4) the result must, therefore, come 
out in the form 

G , ~ ( x , O ) = c o n s t ( V , V ~ - g , ~ [ ] ) ( - x 2 + i O )  -°+2 , x ~ O .  (2.16) 

This function does not posses an extension to a conformal invariant (or 
even dilatation invariant) distribution if D = even integer > 2. This is the 
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"vengeance of canonical dimensionality'. The most general extension 
of expression (2.16) to a distribution is 

const(V~V~-gu~E3)(- x2 + iO)-D+2 + ZC,  D"6(x). (2.17) 

The natural choice is to set the Cn with n > ½D - 2 equal to zero. In (2.17) 
the first term is now defined by 

( - x 2 + i O )  -°+2= lim - - ( e + D - 2 ) ( - x Z + i O )  ~. (2.18) 
~ - D + 2  ~ 

This definition is appropriate because the distribution ( -  x z + i0) ~ has a 
pole at e = - D  + 2 with residue proportional E3 ~D-2 6(x). Expression 
(2.18) is not a homogeneous distribution - its Fouriertransform contains 
a factor logq 2. This means that it is impossible to define the T*-product 
in (2.14) in such a way that it is dilatation invariant. This is a special 
feature associated with canonical dimensionatity. 

Let us note, however, that the Wightman function of two currents is 
dilatation and conformal invariant. It is uniquely determined by (2.16) 
and analyticity requirements in configuration space: 

(0 Ij~(x),L(O)lO) = const(V, V~ - 9,~ ~ )  ( -  x2 + iex°)-D+2 . (2.19) 

In contrast with expression (2.17) this is a well defined homogeneous 
distribution. As a consequence the well known prediction [29] of dilata- 
tion symmetry for the total cross section of e ÷ e- ~hadrons  is true in the 
present theory without modification. Even its absolute magnitude could 
be computed in principle. To this end one would have to evaluate and 
sum the graphs contributing to the RHS of Eq. (2.15). 

3. The Stress Energy Tensor 

In a local quantum field theory there ought to exist a conserved stress 
energy tensor 0.v such that generators 

P. = Sd oo .(x), M.v = Sd O(x.%- (3.1) 

implement infinitesimal Poincar6 transformations, viz. 

[4(x), pu] = iVUq~(x); etc. (3.2) 

In a conformal invariant theory one shall also want the stress tensor to 
implement infinitesimal dilatations and special conformal transforma- 
tions. That is, currents 

D~(x) = x~O~ ; K~u(x) = 2x~xuOvQ - x 2 0~, (3.3 a) 



258 G, Mack and K. Symanzik: 

ought to be conserved and obey commutation relations 

S da;[qS(0), D,(x)] _ = - id ~b(0) 

0 ~ ~2 (3.3 b) 
j d~[¢(0),  K~Ax)]_ = 0 
f2 

with d the dynamical dimension of mass of the field ¢. Conservation of 
currents (3.3 a) requires that the stress tensor be traceless: 

O~,(x) = 0. (3.4) 

Wilson [t2]  has shown that the stress tensor must necessarily have 
dimension do = D. 

For the sake of clarity it is convenient to consider first the 3-point 
Wightman function 

W , ~ ( x ;  Y l ,  Y2) = (OlO,~ (x )  O(Y l )  ¢(Y2) 10). (3.5) 

It must be conserved, symmetric and traceless. 

(a) V ~ x W u ~ ( x ; y l , y 2 ) = O ;  (b) WuU(x;yl,y2)=0. (3.6) 

Constructing the most general conformal invariant Ansatz satisfying 
these requirements one finds first of all the selection rule 

(0[0,,,(x) qS(y) ~(z)10 ) = 0 if d~ + d~. (3.7) 

For the nonvanishing 3-point functions it turns out that tracelessness 
(3.6 b) plus conformal invariance with do = D implies conservation (3.6a) 
already. (See note added in proof.) 

Let us first consider scalar fields 4)(x) only: The most general traceless 
conformal invariant Ansatz is found to be (cp., e.g., Ref. [30]) 

WP'v(x1 ; x 2 ,  x 3 ) ~ - b s X l ?  + 2 [ ~ r V ;  .3 V ~ VI~- - O/~v P~ VQ 1 

D - 2  - " ~ _ - - D + 2 - O - 2 - 2 d  (3.8) 
--- ~13 Y~23 + 2 ( D -  i) (gU~ Vf 1~1 V~ V~)] 

in a world with D space time dimensions. Here 

x~j = [ -  (x ,  - x~) 2 + i e ( x  ° - x°)]~/2; V -  V+ V. (3.9) 

The Wightman function corresponding to a different ordering of fields is 
obtained from (3.8) by analytic continuation in the coordinates x~. In 
particular it is therefore possible to compute from (3.8) equal-time 
commutators. Recalling Eq. (1.5) one finds 

(01[0°~(x), ¢(y)] qS(z)10)lxo=,o = -iWx(01d?(y)4)(z)10)5(x-y)+'-" (3.10) 
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provided one chooses 

b~ = ¼ n - ~ ' v ( ½ n )  - 1  r(1 + d) 2 e . (3.11) 

To verify this one uses the well known identity 

~x o Ll(x)lxo=0 = - a ( x )  

for 
A (x) = ¼ir~-D/2 F(½D - 1) { ( -  x 2 + iex°)  -}D+ 1 _ c.c.}. 

In Eq. (3.10) the dots stand for gradient terms. The implications of 
C.R. (3.2) for the 2-point function are, therefore, fulfilled. The C.R. of the 
remaining generators M,~, D, K~, could also be verified by completing 
Eq. (3.10). 

The time ordered Green function 

G~'~( x, Yl Y2) = (01T*{O"'(x) 49(Y~) qS(Y2)} 10) (3.12) 

is determined by the Wightman function up to contact terms popularly 
known as "seagulls". We shall wish to choose these seagulls such that the 
T* product is conformal invariant; this fixes them up to one free con- 
stant 2. The result is 

G , , , ( x l ; x 2 x 3 ) = R H S  of ( 3 . 8 ) + ~ r  - 1  bs (3.13) 

• {O(X1 - -  X2) "~ ~(X1 --  X3)} X232d g~v 

but with a changed iz-prescription everywhere, viz. 

xi 5 = [ -  (xi - x j) 2 + ie] ~/2 . (3.14) 

From expression (3.13) one obtains the Ward Takahashi identity 

v~ ~.~(x, y~ y2) = - i(a(x - y l )  ~ + a(x - y2) ~ )  C(yl y~) 
(3.15) 

- i2 V~{g)(x - Yl) + (5(x - Y2)} G(yl  Y2)" 2d(D - 2)- 1 

with 2-point function G(y l  Y2) given by Eq. (1.5). 
We shall find it convenient later to specify 2 such that the Green func- 
tion is traceless: 

G~(x; Yl, Y2) = 0 .  (3.16) 

This is achieved by taking 

2 = (2 - D ) / 2 D .  (3.17) 

With this choice of 2 there remains in (3.1 5) the "abnormal" second term. 
We emphasize, however, that Ward identities (3.1 5) do guarantee correct 
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commutation relations (3.2), (3.3) as is clear fiom our discussion of the 
Wightman function. 

Not every conformal invariant Ansatz for the 3-point function G,~ 
need a priori be matrix element of a local field Ou,(x ). Rather, the 3-point 
function should also fulfill the appropriate Bethe-Salpeter equation viz. 

~v~:~ = ½ ~ v ~  (3.18) 

On the RHS, summation is understood over the fields to which the 
stress tensor couples (i.e. all of them). 

We must show first that the RHS of (3.18) is finite, if so it will then 
automatically be conformal invariant by the results of Ref. [5]. 

We recall that conformal invariant skeleton graphs may be represented 
by generalized Feynman integrals in the sense of Speer [31]; this is done 
by substituting the graphical representation of the dressed 3-point 
vertex, Fig. 1, where undotted lines stand for dressed propagators, 

< 2  : 

Fig. 1. The dressed vertex 

Eq. (1.5), while dotted lines stand for generalized Feynman propagators 
2 a' F ( d ' ) ( - x 2 +  iO) -a' with d' such that at every "bare vertex" one has 
conservation of dimension Z d = D .  Since overall divergences are 
harmless as discussed before, we only have to look for divergent proper 
subgraphs. There are two of them; they are shown in Fig. 2. They are found 

~ ~ ' o  and mirror 

Fig. 2. Divergent subgraphs in RHS of Eq. (3.18) 

to be logarithmically divergent for arbitrary values of the dynamical 
dimension d. However, the divergent part of a logarithmically divergent 
generalized Feynman integral is independent of momenta. Therefore, by 
Lorentz invariance it must be proportional to 9 ~ ,  as 9 "~ is the only 
symmetric 2 na rank tensor that can be formed with no momenta available. 
(This argument still holds with spin ½ fields present, since {Tu, 7v} = 29,v.) 
Thus a divergence could only arise in the trace. However, the integrand 
is traceless by (3.16), therefore the RHS of (3.18) is also traceless and free 
from divergences 9. 

9 The reader will now understand why we chose seagulls such that G~ is traceless, 
as it would be with an ordinary T-product. 
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Thus (3.18) is a meaningful equation. We still have to show that it is 
fulfilled by the Ansatz (3.t3) with b~ from (3.11), for physical values of 
coupling constant g and dimension d. As in the analogous case of internal 
symmetry currents it suffices to show that the Ward identity at zero 
momentum transfer is correctly reproduced by the equation. 

Let us use the following notation 

--×x -~ I = P"(x'[ - x~) - 
x i x f  

gv'~P~(x~ - x})I -1 (3.19a) 

where P is the momentum flowing from i to f .  In configuration space 
language W = - i V y .  Definition (3,19a) agrees with (1.2a) for /~#v, 
Substituting WTI (3.15) on both sides of Eq. (3.18) and integrating over 

dx x ~ we obtain (after amputating) 
. -x - .  

_ X-t = 1 ~ (3.19b) 

It suffices to consider this equation for v # a in (3.19a). The validity for 
the traceless part then follows from Lorentz invariance. 

Eq. (3.19b) is the analog of Eq. (2.11), with the external charge 
replaced by momentum in (3.19 a). Noncommutativity of P, x is irrelevant 
here since [Pv, x~] = 0 for v # a. 

We shall show in Section 5 that Eq. (3.19b) is equivalent to imposing 
unitarity on the 2-point functions. We shall also show, in Section 5, 
that it is equivalent to the "momentum form" of Eq. (1.2b). Thus it will 
be satisfied if the bootstrap conditions are fulfilled. Alternatively one 
may use (3.19 b) itself as the propagator bootstrap, all the other propagator 
equations (1.2b), (2.11) and propagator unitarity are then automatically 
fulfilled, modulo validity of the vertex bootstrap (1.1). 

In a theory with spin ½ fields, the most general Ansatz for the stress 
tensor's 3-point function involves some arbitrary coefficients, much as in 
Eq. (2.8) for the current. They have to be determined from Eq. (3.18) in 
analogy with the procedure described in Section 2 for the current. 

With the stress tensor's 3-point function known, the higher n-point 
functions may again be constructed by skeleton graph expansion as 
for the internal symmetry currents in (2.12), viz. 

~ t v < =  1 ~ v ~  (3.20) 

The result is finite and conformal invariant by the criteria of Ref. [5]. It 
will be shown in Section 4 that the construction will also guarantee 
validity of Ward Takahashi identities. 
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Written out for vertex functions they read 

n - l {  
v#r,v(x;yl...y,_O=-i ~=~ f(x--yk) Yx~r(y~..,Pk...y,,-,X) (3.21) 

This is equivalent (cp. Section 1.5 and II.3 of Ref. [27]) to WTI for Green 
functions which read in functional form 

d ~v 
Vt, Gt'V(x, J} = - iJ(x) ~ Gx{J}+ i -b- V~(J(x) Gx{J}) • (3.22) 

The notation used here is analogous to that defined in (2.3) and following 
equations. 

4. Verification of Ward Identities 

In this section we shall demonstrate that 
a) The n-point functions (n>= 4) constructed by skeleton graph 

expansions (2.t2) resp. (3.20) satisfy Ward Takahashi identities as are 
required by current conservation and C.R. (2.2) resp. (3.2) f. 

b) Eqs. (2.11) resp. (3.19) are equivalent to the internal symmetry 
resp. momentum form of the propagator bootstrap (1.2b). 

Both of these statements hold only if the vertex bootstrap condition 
(1.1) is fulfilled. 

Let us start with the WTI for internal symmetry currents. We shall 
use the following notation, which generalizes (1.2a). Let q~(x) a test func- 
tion. Then, for a general n-point vertex, we define 

"~xo  ° 
Q~ = charge flowing into leg i 

In particular (4.1) 

and 
tp 

,,, D ~ ' -  = o [ ,~ (xo - ,~ (xo l - - ,  Q = charge flowing from i t o f .  (4.2) 

If we insert the WTI (2.6) for the 3-point function G,(x; Yt,  Y2) into the 
RHS of skeleton graph expansion (2.12) we see that validity of WTI- 
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identities (2.7C) for n + 1 ~ 4 point functions holds if 

- ~0 - = ( 4 . 3 )  2 

for arbitrary test function ~o. As always, the quadratic box is used to 
indicate that (connectedness and) 1-particle irreducibility requirements 
are waived, but only to the extent that the whole graph remains connected 
and 1-particle irreducible (see Appendix A). 

We will begin with deriving Eq. (4.3) for n = 3 from the vertex bootstrap 
(1.1). Let us note that (t.1) may be written as 

- - ~  = ~c - ~  (t.1') 

Summation is over all nontriviat skeleton graphs F. The skeleton con- 
dition means in this case that there is no proper 3-point subgraph, and 
no selfenergy subgraph. 

Next we observe that the ~' x-operauon defined in (4.1) may be 
distributed over any skeleton graph in an obvious way, as explained 
after Eq. (1.4). Because of charge conservation all terms involving 
Qiq)(xi), with x i an integration variable, will cancel out. We obtain in 
this way from Eq. (1.1') ~ 

" - ~  = l~ DI~-(Q)- + v~ Ov " -~  = ~ ~  + g - ' ~  (4.4) 

The irreducibility requirements 2i, 3i are explained in Appendix A. 
They come from the skeleton condition on (1.1'). The meaning of boxes 
was explained after Eq. (4.3). We now consider Eq. (4.4) as a linear 
inhomogeneous integral equation for the "crossed" vertex. Its solution, 
if one exists, will be unique, assuming that the homogeneous equation 
has no nontrivial solution. This will be ruled out below. Thus it suffices 
to demonstrate that expression (4.3) for n = 3  is a solution of (4.4). 
Inserting it gives 

,g4~, 2 i ,  2i 

2 ~ (4.5) 

Both sides of this equation involve exactly the same set of skeleton 
graphs, thus equality is manifestly true. 

Let us now discuss the homogeneous equation associated with (4.4). 
Since there is no reason to suspect that it has a nontrivial solution in the 
first place, we shall be content with very briefly sketching an argument. 

To arrive at Eq. (4.4) we have only used the vertex bootstrap (1.1). 
The vertex bootstrap determines the dynamical dimension(s) d as power 
18 Commun. math. Phys,, Vol. 27 
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series 10 in g, but still leaves free the coupling constant g. To take advantage 
of this fact it is convenient to consider temporarily the Green functions 
defined by skeleton expansion for arbitrary values of g, with the under- 
standing that the propagator bootstrap is to be imposed only at the end 
to fix g, while the dimensions have already been determined as functions 
of g through the vertex bootstrap. Eq. (4.4) is then an identity in g, and 
both sides are power series in g. (For ~b3-type theory this follows from 
holomorphy of the RHS of (4.4) in d. For Yukawa theory a slightly more 
involved argument can be given [32].) Now the difference of RHS and 
LHS of Eq. (4.3) would have to be a solution of the homogeneous equa- 
tion associated with (4.4). On the other hand (by the same argument as 
above) it is a power series in g, even after dependence of d on g, i.e. the 
vertex bootstrap, has been taken into account. But a nontrivial power 
series solution of the homogeneous equation (4.4) obviously does not 
exist. 

It may be instructive for the reader to remark that Eq. (4.3) for n = 3 
may also be obtained from Eq. (4.4) by iteration, assuming the iteration 
converges. After the first iteration step 

v ~ (~2i,3i .~2i,3i 

(4.5') 

-2 - t ~  3red. 

and after N iteration steps 
~9 

~ 2i,~ Ntimes {~)2i,exact~y Ntimes 3red _@._=½_~ ar~ + _ ~ j _  (4.5") 

We must now assume that the iteration converges, that is the second term 
on the RHS tends to zero as N---, oe. Then we obtain relation (4.3) for 
n = 3 by letting N--* oe in Eq. (4.5"). In particular, if we specialize to 
(p(x) = x ~ we obtain 

x,'-@x3 = ½ xl x3 (4.6) 
Xz 

in the notation of Eq. (1.2a), Q = internal charge (see Appendix B). 

lo This follows from theholomorphyproper t iesof the  RHS of Eq. (1.1) in dimensions d, 
which are implicit in Ref. [5]. 
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With relation (4.3) proven for n = 3 we can use this result to establish 
its validity also for n > 4. We start from the skeleton graph expansion 
for the ordinary n-point vertex function. We apply the operation ~ and 
distribute the cross over each skeleton graph by summing over all 
possibilities of attaching the cross to a line or vertex, as before. We obtain 

, ~  =zD, ~ ~ + z D  ~ 

/ ' ~ n  , , ' / '~n~v v , - / :~  = (4.7) 
1 ,~%2i,3i ] j~l~2i,3i 

as a generalization of (4.4). We now insert Eq. (4,3) for n = 3 to obtain 

~P 

1 ~2~,3i  I ,Ll~2i,3i _ 1 ~ 2 i  (4 .8)  

q.e.d. Note that the LHS of Eq. (4.3) includes some graphs with 3-point 
subgraphs; these 3-point subgraphs contain the line with cross attached, 
however. An example is shown in Fig. 3. 

Fig. 3. A graph contained in the LHS of Eq. (4,3) 

This type of contribution is provided by the second term on the RHS 
of Eq. (4.7) or (4.8). (For a pertinent remark hereto, see the end of 
Appendix B.) 

Finally we wish to show that Eq. (2.11) is equivalent to the internal 
charge form of the propagator bootstrap (1.2b). 

Let us consider the RHS of Eq. (1.2b) and distribute the x -operation 
as in Eq. (1.4). That is 

Eq. (1.2a), (No superscript q0 means (p(x)=xv.) with notation as in 
Inserting identity (4,6) gives 

18" 

(4,9) 
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Thus finally 

(4.10) 
+I " I~ 

q.e.d. 
Let us now turn to the s t r e s s  e n e r g y  tensor .  Let us introduce the 

notation 

x = go(Xl) V ~ + g o ( x z ) ~ - ~ g o ' ~ ( X l ) - - ~ g o  ' ( x 2 ) -  (4.11a) 
X 1 X 2 X 1 X 2 

with go' ~(x) = V~ go(x) and d the dimension of the field. Let further 

" X  z Xn 

with ~ to be determined below. 
Now consider 

x + - - ? ~ +  ~ + - - ( ~  

which may be considered as part of a larger graph. We will determine ~ 
in such a way that all contributions involving (p(x~) or go, ~(x~) for i = 1, 2, 3 
combine to a total derivative which drops out after integrating over 
x 1, x2, x 3. One finds by straight-forward computation that this is 
satisfied if one chooses 

1 
o h = --~ d i . (4 .11  c) 

d~ = dynamical dimension of the field in the propagator attached to x v 

With these conventions, the {-operation may again be distributed 
over any graph as in the treatment of internal-symmetry currents. 
Contributions involving go(x~) or go,,(x~), with x~ an integration variable, 
drop out after integration over x v Thus from here on we may repeat 
word for word the discussion of Ward identities for internal symmetries. 
We find in this way that 

a) WTI (4.3) hold also for the stress energy tensor, with operation 

explained in Eqs. (4.11). 

b) Eq. (3.19) is equivalent to the momentum form of the propagator 
bootstrap (1.2b). 

Part b) could also have been proven without going through (4.11c) 
by noting that go, ~ = 0 if go(x) = x", # 4: v. 
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The Ward identities (4.3) imply that WTI (3.21) are fulfilled. To see 
this one takes the divergence of skeleton expansion (3.20) and inserts the 
WTI for the 3-point function on the RHS. After smearing with a test- 
function (p this can be combined with Eq. (4.3) to imply (3.21). 

The proof of Ward identities remains valid as it stands if there are 
two or more currents involved in the Green function. Let j~(x) the 
current with respect to whose argument one wants to differentiate. It is 
then always possible to choose linear combinations .j~(x') of currents 
such that 

[]a~(X'),jo(X)]e.t, = qajau(X' ) (~(X'-- X) ÷ S.T., (4.12) 

as for the fundamental fields discussed in Section 2. The vertex functions 
involving several currents are constructed by skeleton expansion as in 
Eq. (2.13). To verify the Ward identities, one first performs the cross 
operation on (2.10) and solves for the crossed three-point function as 
(4.4) was solved for the crossed vertex. The result is 

(4.13) 

divergence of(2.13) gives, using (2.12). 

V V V V 

4  -4-2 + +½ 

as desired, equality being proven with the help of (4.13), (4.9) and (4.3) in 
the forms 

= + 1  + + 

/ . . . \  
1,>2 >2 1,>2 1,>2 

1~>2 

The generalized Ward identities (4.3) have an interesting geometrical 
interpretation. They reflect local implementability of non-symmetry gauge 

where the box is the four-point vertex function plus the two skeleton 
graphs one-particle reducible in the crossed channels. Taking the 
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transformations resp. space time transformations. For instance, the 
Ward identity for 0~, at zero momentum transfer (i.e. with ~0(x)= x *) 
corresponds to a transformation x~-~x~+ea}x~ where a~=0  but 
a ~p =# - a p~. (A different type of such transformation - an infinitesimal 
change in physical coupling constant - will be discussed in Appendix C. 
Its local implementability is related to causality, cir. Ref. [33].) Thanks 
to the tracelessness of G u~, (3.16), the cross operations to all infinitesimal 
symmetry transformations (i.e., to elements of the full conformal group) 
give zero identically. 

5. Unitarity 

We recall first that the contribution of any skeleton graph in con- 
formal invariant field theory may be written as a generalized Feynman 
integral in the sense of Speer [31]. In other words, the integrand is a 
product of generalized Feynman propagators 

& ( x i j ,  ai~) = 2 a~ r ( a ~ )  ( -  x 2 + i~) - ~ ,  ; x~ = x, - xj (5.1) 

with certain prescribed values of exponents c~,j. Indeed, the dressed 
propagator is itself of this form, and the dressed vertex function may be 
written as a product of 3 of them, as indicated in Fig. 1. 

We observe that such generalized propagators may be decomposed as 

&(x, 6) = O(x °) ~+(x, a) + 0 ( -  x °) a - ( x ,  a) 

where A + is a positive frequency function 

A+( x, a) = 2aF(a) ( -  x2 -}- iex°) -a°c S dp e-ipxO(p O) (pe)-@D+a 
p2>O 

and A -(x, ~) is a negative frequency function. 
As a consequence, the hypothesis of Veltman's general cutting rule 

[34] is satisfied 11. This gives a rule for computing the absorptive parts 
(discontinuties) of an arbitrary generalized Feynman integral. The result 
is not yet of the form of an off-mass-shell unitarity relation for our 
skeleton theory, however, because one also has to admit for cuts through 
dressed 3-point vertices. They' come from cuts through dotted lines in the 
notation of Fig. 1 and Ref. [5], viz. 

The off-mass-shell unitarity relation suitable for a zero mass infraparticle 
theory involves only cuts through physical dressed propagator lines, 

n We are referring here to Section 2 of Veltman's paper; its main result Eq. (2.10) 
and following paragraph will be referred to as "general" cutting formula, to distinguish it 
from formulae discussed in later sections of Vettman's paper. 
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i.e. undotted lines. It reads 

n c u l  l i n e s  

(5.3) 

Here, a cut line stands for the positive-frequency absorptive part of a 
dressed propagator. As a consequence, only positive energy can flow 
from the unshaded to the shaded side of the cut. Complex conjugation 
is understood for the part of the graph on the shaded side of the cut. 
Summation is over pairs of skeleton graphs (FI,/'2) such that the entire 
graph (with the cut imagined absent) does not contain any selfenergy 
subgraphs. Also, connectedness is only required for the graph as a whole, 
i.e. each half of the graph may be composed of several disconnected 
pieces, among them even single lines. Cuts through external lines are 
understood to have no effect on vertex functions. 

The form (5.3) of the unitarity relation, which involves absorptive 
parts of dressed propagators, rather than free ones (phase space) was 
discussed by Polyakov [22] and other authors. 

To prove validity of relation (5.3) in our theory, let us consider first the 
3-point vertex. Veltman's general cutting formula gives 

X 2 ~ • X2 

which is also obvious by inspection. It also gives 12 

(5.4a) 

(5.4b) 

and analogous equations for the higher order graphs in the vertex 
bootstrap equation (1.1) or (1.1'). Now on account of the vertex bootstrap, 
the LHS of Eq. (5.4a) agrees with that of (5.4b) plus higher ones for all y, 
x 1, x 2 and therefore in particular for y0<  x°l, x°. Thus the right hand 
sides, which are the analytic continuation of the left hand sides from 
y0 < Xl o, x 0 through the upper yO half plane to all real y0, must also agree 
for all y, xl,  x 2 by uniqueness of analytic continuation. Analyticity in the 
upper yO half plane is true because only positive energy can flow 
through the cut. 

12 Here xl, x 2 are unmarked "x-type" vertices in Veltman's nomenclature, while y 
and all internal vertices are "y-type" vertices. Veltman's alternating signs have been absorbed 
into factors - i resp. i for each marked resp. unmarked internal vertex. If y is unmarked, 
no internal vertex can be marked for frequency reasons. 
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Summing up, we have in obvious graphical notation, for unrestricted 
external arguments (internal ones are integrated over) 

+ terms with cuts through vertices 
This may also be written as 

There may be further cut vertices inside the boxes in the second term. 
Summation in the first term is only over pairs (F;, F;) of skeleton graphs 
such that the entire graph contains neither a selfenergy subgraph, n o r  

a proper subgraph with 3 external legs. Eq. (5.4 c) is an integral equation 
for the cut vertex. We note that it is solved by the unitarity relation (5.3) 
for the 3-point function: Upon inserting this Ansatz, the first term in 
(5.4c) reproduces those terms on the RHS of (5.3) which do not contain 
3-point subgraphs. This is not yet the whole of the RHS of (5.3) because 
only selfenergy subgraphs were forbidden there. The remaining con- 
tributions which contain cut 3-point subgraphs are reproduced by the 
terms in { } on the RHS of (5.4c). An example of such a graph is shown 
in Fig. 4. 

Fig. 4, The simplest graph on the RHS of (5.3) that is not included in the first term on RHS 
of (5.4c) 

Thus we can be sure that generalized unitarity (5.3) is satisfied for the 
3-point vertex if we know that the solution of integral equation (5.4c) 
for the cut vertex is unique. For this it is sufficient to assume that it can 
be solved by iteration. One can also verify directly that unitary relation 
(5.3) for the 3-point vertex is recovered by iteration of Eq. (5.4c). The 
iteration will converge if the contribution of certain N times 3-particle 
reducible graphs tend to zero as N ~  oo. In this respect the situation 
parallels that met in the proof of Ward identities. 

An example will suffice to illustrate the argument. The simplest 
graph on the RHS of (5.3) containing a subgraph with 3 legs is shown 
in Fig. 4. 
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The first few graphs on the RHS of (5.4c) are 

Iterating once we get 

We see how the graph of Fig. 4 has emerged through the iteration. 
With unitarity of the 3-point function established, we may now 

turn to the higher n-point functions, n > 4 .  Consider a process i~f, 
with all ingoing and outgoing "particles" having positive energy. 

Applying Veltman's general cutting formula with only y-type 
arguments to the skeleton graph expansion one obtains a formula 
analogous to (5.4 c) for the absorptive part of the amplitude. For the cut 
vertices in the term in { } (also those inside the boxes) one substitutes 
the already established unitarity relation for the 3-point functions. In 
this way one recovers just the RHS of Eq. (5.3). The first term in (5.4c) 
will again give those contributions without 3-point subgraph, and the 
second term all the rest. 

Lastly let us turn to unitarity of the 2-point function. We have 
already shown in Section 4 that Eqs. (2.11) and (3.19) are equivalent to 
the internal charge resp. momentum form of the propagator bootstrap 
(1.2). It suffices then to show that both Eq. (2.11) as well as (3.19) predict 
the same absorptive part for the (charged resp. arbitrary) propagator 
as the unitarity relation does. Equivalence then follows from the Lehmann 
representation, which predicts the real part uniquely. The algebra is 
exactly the same in both cases; thus we may treat Eq. (2.11) and (3.19) 
simultaneously. 

Unitarity of the 2-point function can be written as (disc... - - 2Re...) 

disc -1 =n~>2 ~ - t e r r n s w i t h s e l f e n e r g y  ( 5 . 5 )  graphs 

The box notation amounts here simply to waiving all one particle 
irreducibility requirements. Thus, by distributing x 's  in the familiar 
way (of Section 4) 

m ncut lines ~p 

d i s c ~  n-2 ~ 

n n 

+ ~ ~ ] @  ... 

with x notation as explained in Eq. (1.2a). 
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We now insert WTI (4.3) with (p(x) = x ~. This identity was proven in 
Section 4 from the vertex bootstrap and remains true when 1-particle 
irreducibility requirement is waived. One obtains 

, 21. 

rl n 

, 2 i  

1 ~ ' ~  _ t h o s e  t e r m s  with cut 
4- 2 ~ . . a . - - J  / self energy graphs 

n 

(5.6) 

On the other hand, we obtain by applying Veltman's cutting formula to 
Eq. (2.11) resp. (3.19) 

disc, x" = ½ ~  + ~ +½ @f (5.7) 

If we substitute the 3-point unitarity relation for any cut vertex that may 
occur inside the ovals, we recover the RHS of (5.6). The 2-particle 
irreducibility property of the BS-kernel assures that there are no con- 
tributions with cut selfenergy subgraphs. This completes the proof of 
unitarity. 

Finally, we will comment on the original renormalized propagator 
Eq. (4.22) of Ref. [16] 

(x~Y) 
(5.8) 

where the arrow is multiplication by xteft-  Xright ,  the coordinate space 
form of momentum differentiation. In the last term on the r.h.s, we write, 
in view of the skeleton expansion of the BS-kernel, 

Xleft - -  Xrlght = (Xleft  - -  Y l )  -~ (Yl  - -  322) " ~ " "  + (Y,- 1 -- Y~) + (Y, - -  Xright)  

where the differences multiply a vertex or a propagator. We now take 
the real part of both sides, using the Veltman's cutting formula. It is 
not difficult to see that what is obtained thereby is equivalent modulo 
vertex bootstrap to (5.5) multiplied by the external-coordinate difference. 
Thus, the propagator unitarity bootstrap is equivalent modulo vertex 
bootstrap to the bootstrap given by (5.8), and thus also equivalent to the 
bootstrap (2.11) and (3.19). 
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Appendix A 

Explanation of Graphical Notation 
Basically, the notation is the one used by one of us in earlier papers 

[15, 16, 27]. 
A round bubble with n short legs attached to it represents an n-point 

vertex function F (...), i.e. the one-"par ticle" irreducible part  of a connected, 
ful l-propagator-amputated Green function. An exception is the BS-kernel 
(Fig. 1.3) which may be one "particle" reducible in the crossed channels. 
A solid line represents a (dressed) propagator,  a solid line marked with 
- t an inverse propagator,  which is the negative of the 2-point vertex 
function. Coordinates occuring as arguments of internal vertices are 
always understood to be integrated over. Crosses on lines or in bubbles 
signify the operations on those functions as are described in each case 
in the text. 

One "particle" irreducibility means that no skeleton graphs are 
included which have one more disconnected component  after one 
suitable line is cut. The concept can also be defined without reference to 
skeleton graphs, cf. Ref. [151. 

The same is true, to a certain extent, of two- and three-"particle" 
irreducibility concepts which will be introduced presently. 

A broken line with prescription 2i and/or 3i may be drawn through a 
function with > 4 arguments (or, more generally, through a function that 
is defined by skeleton expansion). It means that those terms in the 
skeleton expansion are omitted which allow a two "particle" cut resp. 
three-"particle" cut that cuts only propagators  and separates the 
arguments of the function into the indicated two groups. One specifies 
in addition, that a 3-"particle" cut in this sense may go through up to 
one displayed or external line. 

We also use quadratic boxes. They stand for a sum of terms as 
follows 13 

The vertex function as described before, plus all amputated and one- 
particle reducible or even disconnected Green functions as far as they 
do not violate the overall connectedness and one-"particle'-irreducibility 
of the function being expressed in the equation the box is used in. A 
product of (inverse) propagators  only is excluded however. Irreducibility 
prescriptions then refer to the entire possibly composite graph, i.e. three- 
"particle" cuts to be excluded under 3i - prescription may cut through 
lines belonging to different connected pieces inside a box or also through 
one external and/or  one displayed line. 

13 The box notation is used only to shorten the formulae. The reader may find it 
instructive to compare our graphical formulae with those of Ref. [25] where boxes in our 
notation are written out in terms of vertex functions. 
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We give two examples: In Eq. (21.2) the quadratic box may be written 
out as follows 

partitions ~ partitions " ~  

To illustrate the 3i-prescription let us note that in the last term of (4.4) 
contributions 

2i, 3i 
3 red_.~~l 2i,3i -l- ~ -  3 red. 

are not included. But 

is included. It stems from a disconnected graph inside the box. 
The proof of equations like (4.4) or (4.7) rests on the observation that 

the same graphs occur on both sides of the equation, and with the same 
multiplicity, such that also the symmetry numbers [-23] are the same 
on both sides. The descriptions of the boxes in graphs with several of 
them, as in (4.5) and (4.8), follow from the box definition in the equations 
from which the former ones were obtained by insertion or iteration, in 
this case (4.3) and (4.4). 

The notation and description of allowed contributions in the 
generalized unitarity graphs of Section 5 was given in the text. 

Appendix B 

Remark on Eq. (4.6) 

In Section 4, the Ward Takahashi identity (4.6) for the 4-point vertex 
including a current was derived. From it one may conclude that 

Now the LHS of (B.1) is infinite since it contains a subgraph that is 
divergent by the criteria of Ref. I-5], irrespective of the value of dynamical 
dimension, as seen by applying the cross operation on Fig. 1 in Section 3. 
The individual skeleton graphs on the RHS of (B.t) are finite term by 
term, however. This is not a paradox; it only means that the series on the 
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RHS will not converge (or, if one prefers, converges to infinity). This is 
possible because the terms on the RHS of (4.6) are not individually con- 
formal covariant; they can, therefore, and will in fact, have a different 
x-dependence each. As a consequence, convergence (or, at least, meaning- 
fulness) of the expansion on the RHS of (4.6) does not imply the same for 
the RHS of (B.1). In fact, inspection of the derivation of (B.1) reveals that, 
in obtaining the RHS, the neglected remainder term given in Fig. 5 
is infinite. 

• ~ 2i, exactly N times 
1 ~ 3 r e d u c i N e  , 
g N ~ o  

Fig. 5. A class of nonnegligible (since divergent) graphs 

These remarks may have some practical importance, because our 
consideration implies that each of the inviduaI terms on the RHS of (4.6) 
have a lesser singularity as x 2 -  x3--*O ( x l -  x3 fixed) than their sum, 
which is given by the LHS. 

We add some fairly trivial remarks. In conformal field theory, unlike 
canonical perturbation theory, because of the bootstrap conditions one 
cannot make convergence assumptions wholly indiscriminately. To 
see this, recall that a series Z fN(...) can be convergent only if fN( . . . )~0 
as N--* oo. Consider now the vertex bootstrap (1.1). Iterating N times 
gives the equivalent equation 

2-N-, < iiii  (B.2) 

N*I kernels 

with N arbitrary > 0. Although the RHS involves only graphs of order 
9", n > 2N + 3, it is manifestly false to assume that it tends to zero as 
N ~ o o .  This fact, to be kept in mind, can be ascribed to the graphs on 
the RHS of (B.2) violating the skeleton condition. In this paper, no 
graphs violating the skeleton condition, except the defining bootstrap 
(1.1') itself, occurred. In particular, a crossed vertex inside a three-point 
subgraph as in (4.5") must not be construed to violate the skeleton con- 
dition - even if the crossed vertex is proportional to the uncrossed one 
as would be the case for the cross operation signifying infinitesimal 
normalization change. 

Appendix C 

Connection with the Finite-Mass Theory 

The conformal invariant theory allows to make statements possibly 
relevant to the real world if it is the Gell-Mann-Low (GL) limit [7] of a 
realistic finite-mass theory. For perturbation theoretically renormalizable 
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theories (or, more generally, for certain families of Lagrangian QFTs 
parametrizable by a finite set of parameters) the assumptions necessary 
for such a limit theory to exist and the ensuing precise relationship to 
the finite-mass theory were discussed in Ref. [8] at the example of the 
q54 theory. We briefly review these matters here, for brevity for the same 
model, referring to Ref. [83 as SD. The considerations are extensible 
(and in part have been extended by one of us) to the ps - ps theory and 
to the ~b 3 theory in six dimensions. 

To the (two-parameter) theory described by the F~ I  ...p2,;m 2, g), 
which satisfy partial differential equations (SD 1.12), an (effectively one- 
parameter) zero-mass "preasymptotic" theory described by functions 
F~(P l . . .  P2,; m2, g) is associated. The F~ are the asymptotic forms of the 
F if the momenta are nonexceptional (Section II of SD) and otherwise 
UR singular. They satisfy the homogeneous equations to (SD 1.12) and 
approximate (for nonexceptional moments) the F at large momenta. 

This parametrization of the F,~, though natural for asymptotic 
considerations, is inconvenient for e.g. their direct construction as zero- 
mass-theory functions. One has (SD B.2) 

Fa~(Pa... P2,, ; m2, g) = z(g)-n Fo (Pl . . .  P2,,; m2, V(g)) (C. 1) 

with a construction prescription for the F 0 in the spirit of Ref. [7], given 
in Appendix B of SD, in the notation of which the relation between g 
and V(g) is obtained by integrating V 2 R ( V ) d g = f i ( g ) d K  taking an 
integration constant there to from the O(g 2) graphs. 

The asymptotic form of the difference between F and Fa~ is obtained 
by integrating (SD 1.12) upon substituting for the inhomogeneous term 
its asymptotic form. The result is: 

F(2pl  ... 2p2n; m 2, g) - Fas(,~Pl ... 2p2,; m 2 , g) 
g 

= _ i22-  2~ m 2 a(g)" h(g(2)) a(g(2))-" +1 e -  ~0) S dg' 
0 

• f i (g,)- i  e~(O,)a(g,)-i h (g , ) - i  (o(g') F'as(Pl... P2,,; m2, g(.)O) 

g 

+ 2 z - Z " m 2 a ( g y h ( g ( 2 ) ) - l a ( g ( 2 ) ) - " - a  e-O(g) j" dg'fi(g') -1 (C.2) 
0 

~(g ) r,,~(OOp~ ...p~n;m ,g(;O) • e ~ ( ° ' )  Ek(g ' )  - k ( g ( ) o ) ) ]  a ( g ' ) -  t h ( g ' ) - I  , 2 

+ smaller terms as 2 ~ oe 

whereof the n=  1 form is (SD III.27) with (SD III.7) and (SD IV.9) 
substituted on the RHS. The Fa2 and /~a_~ functions are defined in an 
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analogous manner as the ones for n = 1 in Section III and Appendix B of 
SD. Next one requires the asymptotic (2 ~ oo) behaviour of the Fas (and 
F,s etc.) themselves, whereby 

Fas(,tPl... 2Pz,,; m 2, g) = 2 4-2" exp - 2n ~ dg'fl(g')- 17(g,) 

0 (C.3) 
• m 

This is till the present only possible on the basis of assumptions. One 
assumes that fl(g) has a (first, but this is inessential) zero at g~ for g > 0. 
Then lim g(2) = g(oo) - g~o. One further assumes that (for nonexeptional 

momenta) 
lim F,~(pl ... Pzn; m2, g) =- FGL(Pl "" P2n; m2) (C.4) 

O---'goo 

exists, and likewise the corresponding limit for the/"as and/~,~ in (C.2). 
The consistency of these assumptions is discussed in Section IV and 
Appendix B of SD. In the Fo-parametrization in (C.1), g~*--.V(g~o)- V~ 
is the bare coupling constant in a particular convention (in view of the 
nontrivial momenta dependence of the four-point FaL ). The etc. have 
definite scaling properties, in particular, 

FGL(£Pl... 2P2,; rnz) = 24-2"a f fGL(Pl . . .  PZ,; m2) (C.5)  

with 14 d = 1 + 2 2 ( g j  = 1 + 2V2R!V~)  > 1. 

Assuming that fl(g), 7(g) and also the F,s(... ; m 2, g) are continuously 
differentiable at g ~ g ~  from below, one obtains by an elementary 
calculation (similar to the one leading to (SD IV.10)) from (C.3) with (C.4) 
and from (C.2), respectively, the following two correction terms for the 
asymptotic difference between F and FcL at nonexceptional momenta: 

/7,/2 ~\ , ~ 4 - 2 n d r f  ",-2n/~, :_  F()cPl . . .  2 P z , ;  , Y) - tg) c.-iAPl... P2,,; m2) 

1 ,  8 = - 24-2"e+2~'(°~)c(g)[-2nfl'(goo) - 7 ( g ~ o ) + ~ l F ,  s(Pl • • .Pz,,'m2,g)]o=o= 

+ s(g) ( l n 2 )  ~ ) 2  - 2 n d + 2  Iq(O~)+2y(g~) I / G L ( P l  " "  P2,; m2) + ' "  (C.6)  

where f~L is expressible in terms of the GL limit functions/~a_~(... ; m2, goo) 
(cp. Appendix B of SD), r(g), s(g) and c(g) are g-dependent constants, 
and the dots stand for terms smaller at 2---, oe than the larger of the two 

14 Actually, one cannot  exclude that d = 1 and thus the GL theory being a free one 
[35]. We will disregard this possibility in the following. 
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terms. Finally, c~= i if r/(goo)+27(g~)=0 and c¢=0 otherwise. From 
their defining formulas, one shows that 

I~  ~ . . . .  ] F~(2pl -.. '~'P2,,; m2, g)]o=o~ 
(C.7a) 

= '~4- 2"d + 2 P ' ~  [~9-g . . . .  tr~(p~..p2,,. m 2 , g)l~= g~ 

and 

foL(2P~ -.. 2p2,; m2) = 22-2"d+21"{°~)+27~°~)t faY(P1"-P2,; mZ) (C.7b) 

which is consistent with (C.6) whichever is the larger correction term. 
(C.6) shows in which sense, and to what accuracy, the GL (Migdal) theory 
is the "asymptote" of the massive theory, and also of the preasymptotic 
Fa~ theory for which the second correction term in (C.6) would be 
absent. Thus, the vertex functions of all three theories have the same 
asymptotic behaviour. 

All of this discussion can be taken over to the ps-ps theory, and, 
in a certain formal way, to the q~3 theory in D dimensions as treated in 
this paper, with the conclusion that also in these theories there are two 
asymptotic correction terms, one, AF1 = (Fa,~- F~L)G L analogous to the 
first and  one, AF 2 = ( F - F ~ ) G L  analogous to the second term on the 
RHS of (C.6), scaling with a lower power of the momenta than the F~L 
themselves. 

Now in these theories, described by F, F,~ and FCL, the fundamental 
dynamical equations, such as the vertex bootstrap (1.1) and generalized 
unitarity of the two-point function (5.5), are exactly the same in all three 
theories. It is only the additional requirement of conformal invariance 
(which plays the role of boundary condition) that singles out the particular 
solution studied in the body of this paper, while the UV convergence 
arguments of Ref. [5] apply to all three solutions. E.G., the RHS of 
(1.t) will be overall convergent in momentum space, and thus a bare 
vertex in (1.1) will be absent in all cases since it would violate the analog 
of (C.6) with d > d~anoni~ 1. 

Furthermore, all algebraic manipulations of Sections 4 and 5 and 
their results (equivalence relations, Ward-like identities (4.6) etc.) apply 
to all three theories, to the extent that conformal invariance or the 
tracelessness of the stress tensor are not explicitly used. 

This suggests to define two cross operations: replacing a vertex func- 
tion of the conformal invariant theory by either A 1F or by A 2F as defined 
before, and replacing a propagator, the negative inverse of the two-point 
vertex function, correspondingly. We now start from the two-point 
unitarity Eq. (5.5) for the finite-mass or for the preasymptotic theory and 



Conformal Invariant Quantum Field Theory 279 

go through the steps of Sections 4 and 5 to recover 15 (2.11), where the 
BS kernel, and the uncrossed propagator in the relation b e t w e e n - - x - -  
and __~_ -1, are the conformal invariant Migdal ones 16. The UV 
convergence criteria of Ref. [5] and a simple UR estimate in configura- 
tion space yield that for noncoinciding arguments the RHS of (2.11) 
is finite, if for the negative inverse propagator in ¢3 theory in D dimensions, 

A 1 , 2 F ( 2 x  0 ) =2-2D+2ct+2~l,2A1,2F(xO) 
i.e. 

A 1,2 G(2xO) = 2-2d + 2~1,2 zl 1,2 G(xO) 
with 0 < e < ½D. 

The homogeneous dilatation covariant integral Eq. (2.11) has a 
nontrivial solution only if e is a root of an algebraic equation similar 
to those determining dynamical dimensions of the fields. Thus, two 
(not necessarily distinct) roots w el, z determine the powers of the 
correction terms to the propagators, and from these, the A 1,2 F for all 
other vertex functions can be computed from (4.6), with the box on the 
RHS provided by the conformal invariant theory. The correction terms 
will come out dilatation covariant, conforming with (C.7), but not con- 
formal invariant. 

For ¢3-theory, the scaling behavior of the mass correction term 
A2F(x0) to the inverse propagator can be determined explicitly. The 
result is e2 = ~-d. To see this we note that we can immediately write down 
two solutions of Eq. (2.1t) understood as an equation for AF(p , -p ) .  
They have ~ = ½(D-d)  and e =  l d  respectively. The second of these 
corresponds to e2 as defined above. These solutions are provided by the 
validity of the vertex bootstrap condition (1.1) as is seen by letting in 
(1.1) the left argument go to infinity appropriately or, alternatively, 
integrating over that argument. 

The point of this Appendix is that, in principle, starting from the 
conformal invariant theory, one can calculate quantities transcending 
this theory. 

Note Added in Proof. (1) In Migdal's formula for the 3-point function of a current and 
two Dirac fields, Eq. (2.8 b), only two of the three terms in the sum are actually independent. 
One should therefore put ar = 0 in Eq. (2.8b) and the following discussion. The authors 
are grateful to Drs. Dobrev, Stamenov and I. Todorov for this remark. 

The correct expression for the 3-point function involving arbitrary currents and tensor 
fields was exhibited by Nobili [Padova preprint IFPTH-1/72] and Ferrara, Gatto, Grillo 

is As usual, there is a convergence assumption involved here: Eq. (4.4), with crossed 
propagators and vertices as specified above, must allow iterative solution for the crossed 
vertex. Such assumption cannot, if the GL theory is involved, be verified by perturbation 
theory, and also the arguments given after (4.5") do not now apply. 

16 (2.11) is analogous to equations used by Baker and Johnson [36] in QED, cp. also 
Ref. [37]. - (2.11) would also hold in ~U theory, for which (C.6), (C.7) were derived. 

17 A double root would allow a single ln2 factor as appears in (C.6) for a = 1. 

19 Commun. math. Phys., Vol. 27 
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and Parisi [in: Springer Tracts, to appear]. Their result contains in particular also our 
Eq. (3.8) for the stress tensors 3-point Wightman function, and the remark of footnote 8. 

This last result also fits in with a general theorem of Ferrara, Gatto, Grillo and Parisi 
[-Phys. Letters 38 B, 333 (1972)], It says that a traceless s-rank tensor field B~.. . ,s(x ) with 
canonical dimension d = D + s -  2 is automatically conserved, assuming that its 2-point 
function (OIBuI... ,~(x)B ... . . . .  (0)10) is conformal invariant. (In the present approach, 
these 2-point functions would have to be computed from Eqs. analogous to (2.15) which 
are not manifestly conformal invariant because of the crosses, though.) 

(2) We have occasion to emphasize that the argument given after Eq. (4.5) for the 
nonexistence of a solution of the homogeneous equation associated with (4.4) depends on 
charge Q being conserved at every vertex. Expression (4.4) then involves only differences 
(o(xl)-~o(xi) which tend to zero when x i ~ x  j. This makes the subintegrations in (4.4) 
sufficiently well convergent for the stated holomorphy property of its RHS in d to hold. 

(3) In the equation preceding (4.9), subscript e on D e and in the sum should read 1. 
(Throughout the paper D 1 means the operation of attaching a cross to line 1, while D~ 
attaches a cross to vertex v. Summations are as explained after Eq. (1.4).) 

References 

1. Migdal, A. A. : Phys. Letters 37 B, 98 (1971). 
2. - -  Phys. Letters 37 B, 386 (1971). 
3. Polyakov, A. M.: Zh ETF Pis. Red. 12, 538 (t970); - -Trans l .  JETP Letters 12, 381 

(1970). 
4. Parisi, G., Peliti, L.: Lettere Nuovo Cimento 2, 627 (1971). 
5. Mack, G., Todorov, I. T. : IC/71/139, Trieste, Oct. 1971. 
6. Schroer, B.: Lettere Nuovo Cimento 2, 867 (1971). 
7. GelI-Mann, M., Low, F.E.: Phys. Rev. 95, 1300 ( 1 9 5 4 ) . -  Wilson, K.G.: Phys. Rev. 

D 3, 1818 (1971). 
8. Symanzik, K.: Commun. math. Phys. 23, 49 (1971). 
9. Wess,J.E.: Nuovo Cimento 18, 1086 (1960). - -  Kastrup, H.A.: Ann. Physik 7, 388 

(t962) and references cited in [11]. 
10. Mack, G.: NucI. Phys. B 5, 499 (1968). 
l l .  - -  Salam, A.: Ann. Phys. (N. Y.) 53, 174 (1969). 
12. Wilson, K.G.: Phys. Rev. 179, 1499 (1969). 
13. Schroer, B.: Fortschr. Physik 11, 1 (1963). 
14. Glaser, V., Lehmann, H., Zimmermann, W.: Nuovo Cimento 6, 1122 (1957). 
15. Symanzik, K.: J. Math. Phys. 1, 249 (•960). In: Lectures in Theoretical physics, 

VoL III, ed. W.E.Brittin etal. ,  p. 490. New York: Interscience PuN. 1961. In: 
Ramakrishnan, A., (Ed.): Symposia on Theoretical Physics, Vol. 3, p. t 2 t. New York: 
Plenum Press 1967. 

16. - -  In: Ja~i6, (Ed.): Lectures on High Energy Physics. Zagreb: 1961, New York: 
Gordon and Breach 1965. 

17. Schwinger, J.: Proc. Natl. Acad. Sci. US 44, 956 (1958). - -  Symanzik, K.: J. Math. 
Phys. 7, 510 (1966). 

18. Hortaesu, M., Seiler, R., Schroer, B. : NYO-3829-80, U. of Pittsburgh, Sept. 1971. 
19. Brandt, R.A.: Ann. Plays. 52, 122 (1969). 
20. Symanzik, K.: Lettere Nuovo Cimento 3, 734 (1972). 
2t. Epstein, H ,  Glaser, V.: CERN Th. 1156, Geneva, May 1970. - -  Steinmann, O.: 

Perturbation expansions in axiomatic field theory. Lecture Notes in Physics, Vot. t 1. 
Berlin-Heidelberg-New York: Springer 1971. 



Conformal Invariant Quantum Field Theory 281 

22. Polyakov, A. M.: Zh ETF 59, 542 (1970); --Transl.  JETP 32, 296 (1971). 
23. Wu, T.T.: Phys. Rev. 125, 1436 (1962). 
24. Taylor, J. G.: Suppl. al Nuovo Cimento 1,857 (1963). 
25. Johnson, R.W.: J. Math. Phys. 11, 2161 (1970). 
26. Symanzik, K.: Commun. math. Phys. 6, 228 (1967). 
27. - -  In: Bessis,J.D., (Ed.): Carg~se Lectures in Physics, Vol. 6. New York: Gordon 

and Breach 1971. 
28. D'Eramo, M., Peliti, L., Parisi, G.: Lettere Nuovo Cimento 2, 878 (1971). 
29. Gatto,R.: Riv. Nuovo Cimento 1, 514 (1969). 
30. Callan, C. G., Jr., Coleman, S., Jackiw, R. : Ann. Phys. 59, 42 (1970). 
31. Speer, E.R.: Generalized Feynman amplitudes. Princeton: Princeton University 

Press 1969. 
32. Mack, G.: Expansions around canonical dimensions in conformal invariant Quantum 

field theory II (in preparation). 
33. Bogolubov, N.N., Shirkov, D.V.: Introduction to the theory of quantized fields. 

§ t7.5. New York: Intersc. PuN. 1959. 
34. Veltman, M.: Physica 29, 186 (1963). 
35. Pohlmeyer, K.: Commun. math. Phys. 12, 204 (1969). 
36. Baker, M ,  Johnson, K.: Phys. Rev. 183, 1292 (1969); D 3, 2516 (t97t). 
37. Adler, S.L., Bardeen, W.A.: Phys. Rev. D 4, 3045 (197t). 

K. Symanzik 
DESY 
Notkestieg 1 
D-2000 Hamburg 52 
Federal Republic of Germany 

G. Mack 
UniversitatBern 
Institutffir Theoretische Physik 
Sidlerstr. 5 
CH-3000 Bern Switzerland 

19" 


