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Abstract. Perturbation analysis is applied to the theory of a General Relativistic 
perfectly elastic medium as developed by Carter and Quintana (1972). Formulae are 
derived for the Eulerian variations of the principal fields (density, pressure tensor, etc.) 
on which the description of such a medium is based, where the perturbations are induced 
both by infinitesimal displacements of the medium and by infinitesimal variations of the 
metric tensor. These formulae will be essential for problems such as the study of torsional 
vibration modes in a neutron star. 

As examples of their application, the variation formulae are used in the derivation 
firstly of a simple (dynamic) action principle for a perfectly elastic medium (this principle 
being a generalisation of the one given by Taub (1954) for a perfect fluid) and secondly 
in the derivation of a rather more sophisticated mass variation principle for a stationary 
rotating solid star (this principle being a generalisation of the one given by Hartle and Sharp 
(1967) for a perfect fluid star). 

i .  Introduction 

In  the general theory of perfectly elastic solids (as compared  with the 
special subcase of a perfectly elastic fluid) the linearised theory of  small 
deformations plays a d ispropor t ionate ly  impor tant  role, since in mos t  
solid materials the behaviour  will be on the point  of ceasing to be perfectly 
elastic (due to fracture or hysteresis effects) when the deformations are 
sufficiently large for deviations f rom linearity to be important .  

The pr imary  purpose of the present article is to show how to calculate 
the linearised per turbat ions  in the fundamental  tensor fields used to 
describe a perfectly elastic medium in the General  Relativistic theory  
recently developed by Carter  and Quin tana  (1972) [1]. In Newtonian  
elasticity theory  it is usual to consider all elastic per turbat ions as being 
due to displacements with respect to the (flat) background  space. In  
general relativity theory it is necessary also to take into account  the 
effect of geometr ic  changes due to absolute variations of  the space-time 
metric tensor. Indeed in a fully covariant  theory it is possible in principle 
to consider all variat ions as being due to changes in the geometry of 
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space-time, since continuous displacements can always be transformed 
away by co-ordinate transformations. However it is not always convenient 
to make such transformations since in particular applications there will 
often be reasons (due to the presence of symmetries for example) for 
preferring to use some special reference system which is not transported 
with the displacements of the medium. Therefore in the following 
discussion we shall consider deformations due both to space-time 
metric variations and to relative displacements. 

It is to be remarked that it was due essentially to its inability to deal 
with absolute strain variations (as is done here) as compared with time- 
rates of strain variations that the earlier approach to General Relativistic 
elasticity theory of Bennoun (1965) was not fully successful. 

In Section 2 of this paper we shall consider the general properties 
of perturbations in an elastic medium. This will enable us to give a list 
of Eulerian variation formulae for the principal fields, on which the 
description of such a medium is based, and in particular for the energy 
momentum tensor, in Section 3. Such formulae will be essential in the 
treatment of problems such as those arising in the theory of vibrations 
in the crust of a neutron star, where effects both of rigidity and of General 
Relativistic deviations from Newtonian gravitational theory are im- 
portant simultaneously. 

As a simple example of the we shall apply the perturbation for- 
mulae to stationary variations of a rotating star. After a preparatory 
discussion of integral variations in Section 4, we shall go on to apply the 
formulae of Section 3 in the derivation of two variational principles which 
are stated in Section 5. The first of these is a straightforward generalisation 
of the simple action principle given originally by Taub (1954) [3] for a 
perfect fluid. The second is a generalisation of the mass variation principle 
for a stationary axisymmetric solid star which was given originally for a 
rigidly rotating perfect fluid by Hartle and Sharp [4-1 (1967). (An alter- 
native generalisation of the Hartle-Sharp principle has been made by 
Bardeen (1970) [5] to cover the case of a differential rotation which 
can occur in a perfect fluid, although not of course in a solid.) The proof 
of this variation principle is given in Sections 6 and 7. As in the variation 
principles of Hartle and Sharp and Bardeen, it turns out to be necessary 
to invoke the causality requirement that the speed of sound in the solid 
(cf. Carter, 1972) [-6] should not be greater than the speed of light. 

In the variational principles given by Taub and by Hartle and Sharp 
it was necessary to impose the condition of baryon conservation explicitly. 
The variational principles which will be given here are formally simpler 
in that baryon conservation is not even mentioned, since it holds auto- 
matically in the more elaborate formalism which is necessary to describe 
a solid as compared with a fluid. Indeed for a solid star there is no 
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straightforward way to discuss the variation of baryon number even if 
one wished to do so. For rigidly rotating perfect fluid stars with a well 
defined (single parameter) equation of state the equilibrium states 
corresponding to a given angular momentum form a family which 
depends only on one parameter which may be taken to be total baryon 
number. However when the material of the star is solid there will be an 
infinitely richer range of possibilities characterized by differing surface 
topographies and internal stress structures. Whereas in the case of the 
fluid star it makes sense to ask how the total mass-energy and other 
quantities vary when the total baryon number is altered, on the other 
hand such a question can have no well defined answer in so far as a 
solid star is concerned since the outcome would depend, for example 
on whether the additional baryons were attached in the form of a moun- 
tain at the north or south pole or in the form of an equatorial ridge. 

What one can ask however, is how the equilibrium mass-energy etc. 
of a star with a given solid structure (and by implication a given baryon 
number) will vary when the angular momentum J is changed. For the 
mass-energy M itself, the variation principle which will be given here 
leads rigorously to the simple general formula d M  = g2 d J  where f2 
is the angular velocity, a result which would have been expected from 
general physical considerations, by the arguments given by Zeldovich 
and Thorne (cf. the discussion given by Hartle (1970) [7]; see also 
Zeldovich and Novikov (1971) [83). This is discussed in the final section. 

The notation and terminology used here will be exactly in accordance 
with those of Carter and Quintana (1972) [13. The sign conventions in the 
definition of the Ricci tensor etc. are those of Landau and Lifshitz 
(1962) [9]. Units are such that the speed of light c and Newtons constant 
G are equal to unity. 

2. Basic Principles and Lagrangian Variations 

We shall start by recapitulating the fundamental principles on which 
the elasticity theory of Carter and Quintana (1972) [1] is based. We 
consider a 4-dimensional space-time manifold J/l, with a pseudo- 
Riemannian metric tensor gab, and with a projection operator ~ : J//--,~ 
of d/l onto a 3-dimensional manifold X whose points represent idealised 
particles of the medium. The inverse image ~- I (X)CM/ of a point 
X ~ X is interpreted as the world-line of the particle represented by X. 
We denote the tangent vector field of the world lines by u a the magnitude 
of this vector being fixed by the normalisation condition 

u % =  - 1 .  (2.1) 
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The projection ~ determines a canonical one-one mapping N -  1 between 
the set of material tensors (i.e. tensors in Y) at any point x e £r and the 
corresponding set of orthogonal space-time tensors (i.e. tensors in Jd  all 
of whose contractions with u a vanish) at any point x e N-I(X).  This 
mapping enables us to define various orthogonal tensor fields on J// 
(notably the density scalar ~, the pressure tensor pab, and the elasticity 
tensor E "b~d) as functions of  state (or more precisely of the strain-state) 
in the sense that their images in 5f under N are well defined functions 
of the image in Y" under ~ of the projection tensor 

Tab = gab -~- l'laUb (2.2) 

(which of course is automatically orthogonal). 
We wish here to consider the (linearised) variations of such functions 

of state due to the effect both of displacements of the world lines in J~f 
due to position-coordinate displacements of the form x " ~  x ~ + A x a and 
of alterations gab'*gab "q-¢}gab of the metric tensor at fixed points in J¢/. 
Any such variation can be considered from two points of view: we can 
either consider the Lagrangian variation (i.e. the variation of the field 
in terms of a co-ordinate system which is itself dragged along by the 
displacement A x a) and which we shall denote by the symbol A, or we 
can consider the Eulerian variation (i.e. the variation of the field at a 
fixed point in J~) which we shall denote by 6. For any field quantity 
whatsoever the difference between these two kinds of variation is (by 
definition) the Lie derivative of the field with respect to the displacement, 
i.e. we have 

A - 6 = ~ (2.3) 
¢ 

where £,q is the operation of Lie differentiation with respect to the vector 

{a defined by 
A X a = ~a.  (2.4) 

In particular, if we denote the variation of gab at a fixed point in de by 

5gab = hab 

then using the standard formula 

gab = 2 ~(a;b) 

we obtain the Lagrangian variation of gab in the form 

(2.5) 

(2.6) 

Agab = hab + 2~(a;b) • (2.7) 
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The partial derivative a(Tablil)/Oycd of an orthogonal tensor function 
of strain Tab l i i in ~ is itself an orthogonal tensor function of strain in JC{ 
whose strict definition is given in terms of tensors on Y" by 

~(a(r2:::)) a~(gb:::) 
\ ay~a = ~¢(Y~,) (2.8) 

and hence the (Eulerian) variation in Y" of the projection of any orthogonal 
tensor function of strain is given by 

a~(Tob:::) =~(a(T2:::) aT'~a ) aY'(y~d). (2.9) 

The Lagrangian Variation 

In calculating the variation in J¢ of the image under ~ -  1 of a material 
tensor in Y" whose variation is known it is necessary to exercise some care, 
since the mapping ~ - 1  itself varies not only due to the displacement 
directly (an effect which must be taken into account in the analogous 
Newtonian theory) but also due to the fact (which has no Newtonian 
analogue) that in so far as general tensors are concerned the mapping ~ -  
is affected by the change in the metric. However in the special case of 
covariant tensors, it can be seen that the orthogonality condition and 
the projection mapping are defined independently of the metric tensor, 
and hence for such a tensor the simple relation 

a~(Vob...) = ¢ ( A  Tab...) (2.1o) 

will hold. In particular we shall have 

a~(Tc~) = ~(A ~a) (2.11) 

and hence by substituting in (2.9) and taking the inverse image under 
we obtain, for the Lagrangian variation of a covariant orthogonal 
tensor function of strain, the simple relation 

O(Tab...) 
A(T,b...) = - -  ATce. (2.12) 

0yc~ 

In order to obtain a convenient formula for the Lagrangian variation 
of a general orthogonal tensor, we proceed as follows. Using the identity 

~3 7ca = 7c ~ y£) (2.13) 
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we obtain 
a(rab...) a 

= - -  (~"bd ... Taa:: :) 
O'~eS aYef (2.14) 

a(T,'t: : :) 
+ ~,~" Ta:):'" 

where the summation includes one term for each of the contravariant 
indices of T, b li~. Using the identity 

A gbC = _ g b e  gCf Age f (2.15) 
we obtain 

A(T,,b:::) = A(g b~ ... Ta .... ) 
(2.16) 

.= abe... A (Ta . . . .  ) -- x~g be Taf: : : A g<f 

where again the summation includes one term for each of the contra- 
variant indices. Now from the definition of the projection tensor we have 

A gel = Age: -I- U e A Uf -t- U: A u e (2.17) 

and hence, using the orthogonality property of the partial derivative 
tensor in (2.12), and substituting into (2.16) we obtain 

A(Tab i : : )=(g  bc c~(Ta ) . . . .  S g b e T a : " : ) A g e : .  (2.18) 
" ' "  (~7ef " "  

Finally, substituting from (2.14) and again making use of the orthogonality 
property of the partial derivative function, we obtain the desired formula 
for the Lagrangian variation of a general orthogonal tensor function of 
strain in the form 

A(gab'::)=(e(Tab:::) + u e ~ u b g a f ' : : ) A g e f  
• (37~f " 

(2.19) 

where again the summation includes one term for each of the contra- 
variant indices of Ta b ~2~. We note that independently of the value of the 
partial derivative function, the Lagrangian variation has the ortho- 
gonality properties 

u a h (Tab:: :) = 0, (2.20) 

u b A(Tab:::)= - u e r a S : : : A g e s  . (2.21) 

Using the formula (2.13) we obtain as a trivial example of the applica- 
tion of (2.19) the expression 

A Y,b = 7~ Y~ A,qca . (2.22) 
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Similarly, using 

we obtain 

- 7~{cy a)b (2.23) 
gY~a 

A ¢,b = ( _ y~c yab + 2Uc U(. yb)a) A gcd . (2.24) 

Alternatively, this last expression could have been obtained directly 
from the definition of 7 "b, using the formula 

Avz a = l uauC ua A gca (2.25) 

[obtained from the normalization condition (2.1), using the fact that the 
Lagrangian variation does not change the direction of u "] together 
with (2.15). 

3. Eulerian Variation Formulae 

Once the Lagrangian variation formula has been derived we can 
obtain the corresponding Eulerian (fixed point) variation immediately 
by application of (2.3). Thus using (2.1) in conjunction with (2.19) we 
obtain the general formula for the Eulerian variation of a general 
orthogonal tensor function of strain Tahiti due to an Eulerian change 
cSg, b= h,b of the metric and a displacement Ax ~ = #a of the flow lines 
in the form 

~5(Tab:::)-----('O(~ :) +ueSubg~f:::)(her 

- ~ [ T f : [ : ]  

+ 2 {(e;:)) 
(3.1) 

where the summation includes one term for each contravariant index 
of Tahiti. The corresponding orthogonality conditions can be expressed 
by 

u ~ 6(T~b[: [) = (Tab:: :) [4, u] ~ (3.2) 
and 

(3.3) u b 6(Tab]: :) = ( T / [ :  :) ([~, u ] y -  u e hey ) 

where we have used the notation 

[3, u]" = ~ [ u  a ] = -~e [~  ° ] .  

for the commutator of u a and ~a. 

(3.4) 
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The formulae corresponding to (2.22), (2.24) and (2.25) are 

~7, °;b h~a - 2u(~ 7b)~ [~, U]~, (3.5) 

(~lab =(__~ac~db -l- 2blCbl(a~ b)d) hca - 2U(aTb)c[~, U]c,  (3.6) 

(~U a = l uaubUC hbc --  7ac[¢, U]c . (3.7) 

We remark that the general equation of motion of an orthogonal 
space-time tensor function of strain given by Carter and Quintana (1972) 
can be expressed in the form 

( g(T~b'." ) +u~VSubTa:::) 
0 = \  c3?~a (2u(~;a)) (3.8) 

- ~ E T . b : : : ] .  

By comparing this with the right hand side of the variation formula 
(3.1), it may be checked that for a variation with h~b=O and ~ a = a u a  
(for some scalar function a), i.e. for a variation due purely to a displacement 
along the world lines, the Eulerian variation of an orthogonal space time 
tensor function of strain must be zero, as could have been seen directly 
from first principles. 

We shall conclude this section by giving examples of the application 
of the preceding formulae to the Eulerian variations of some of the most 
important tensor fields in general relativistic elasticity theory. 

The partial derivatives of the baryon number density n, the mass 
density 0, the pressure tensor p,b, the Lagrangian strain tensor e~b and 
the constant volume shear tensor S~b with respect to Yea, are given 
(cf. Carter and Quintana, 1972) [1] by 

~ n  

0 7ca 

~%/ca 

c~p "b 
~Yca 

eab 

07~a 

~Sab 

~7~a 

- -  - -  ~ ' n y  , 

- -  = - } (p~" + e ~ ) ,  (3 .1o)  

- -  = -- ~ (E "bce+ pabTca), (3.tl) 

2 ~'a ~'b 

'"(~ "'~) - (~ ,7oh - ½ ~ab) 7 c~) (3.13) 
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respectively. Hence by application of (3.1) we obtain for the corresponding 
Eulerian variations, the formulae 

where 

a n  = - -  ½ n yCd h~a - -  (n{C);~ -- nu¢  u a {~;a , 

aQ= --½(p~d+~yCd)h~d--(Og); ¢ "~ -- T~d{~;e, 

opab = (2pC(aub)U a __ ½. pab ycd __ ½ E,,b¢d) (h¢d + 2~(¢;e)) 

- ~ e E p ~ ] ,  

(~Sa b ~ 1 c d 1 {7i, ~b -- (-X rlab -- ½ Za b) 7 c a} (h~d + 2 ~c;d)) 

- ~ [so~3, 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Tab -= ouaub q_ pab (3.19) 

is the energy momentum tensor. 
It is not possible to give the full variation of the elasticity tensor E abcd 

without going to third order in the partial derivatives of the energy 
density. However it may sometimes occur that the orthogonality property 
of the variation of the elasticity tensor is useful even in problems where 
only first and second derivatives are involved. From (3.3) we see that 
this orthogonality property can be expressed in the form 

u d f i E  '~b"~ = E " b c J ( [ ~ ,  u ] y  - u e h e f ) .  (3.20) 

In many practical applications the variation of the energy momentum 
tensor T "b itself will be of primary importance. Since the energy 
momentum tensor is not orthogonal its variation cannot be calculated 
directly from (3.1). However it can easily be obtained by using (3.15) 
and (3.16) in conjunction with (3.7). Thus we find 

(} T ~b = { - ½ o~ u ~ u b u ~ u '~ + 2 T ~ u b) u ~ - ½ u ~ u b T ~ 

1 TabTcd 1 .b~e (3.21) - - gE  } (h~b + 2((~;a) ) 

- -  5 ~ [  T " b J  . 
¢ 

In particular, for the study of perturbations of Einstein's equations, this 
last formula will be used in conjunction with the corresponding standard 
Eulerian variation formula 

1 c 
b R , ,  b = h(,[;b); c - -  ~ ( h  c;a;b + h,,b;¢ ;~) (3.22) 
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for the Ricci tensor. In the applications which follow it wilt only be 
necessary to consider the variation of the Ricci scalar which may be 
obtained from the full Ricci tensor variation (3.22) by contraction in the 
form 

fiR = - 2 h c [ c ; b l ; b  - -  R ~b h c b  . (3.23) 

We shall also have occasion to use the formula 

c5(]/--/~) = ½ 1 / ~  h,. c (3.24) 

for the Eulerian variation of the volume density factor ~ where g is the 
determinant of the covariant metric tensor g,b" 

4. Lagrangian and Eulerian Variations of Integrals 

In the following sections we shall consider variational integrals of 
two forms, namely action integrals of the form 

S = ~ L dz (4.1) 

taken over a volume z where L is a scalar Lagrangian function and d~: 
is the metric 4-volume measure, and flux integrals of the form 

I = ~ F" dX, (4.2) 

taken over a hypersurface 2;, where F ~ is a flux vector and dSa = G d~ 
where dX is the metric 3-volume measure on S and G is a unit normal 
to 22. We shall have frequent occasion to use Green's theorem and Stokes 
theorem in the forms 

I V";. dr = ~ V adZ,, (4.3) 

for any vector V ~, where Oz is the 3-surface bounding z, and 

I F"b;b dS,  = ~ F "b dSob (4.4) 

for any antisyrnmetric tensor F ab, with dS~b=n(1)t,n(2)badS where dS 
is the metric 2-surface measure on the boundary of S and where n(1), 
and n(2), are unit vectors orthogonal to 0S and to each other. 

Since the metric 4-volume element can be expressed by 

dz = 1//-  g a ¢4) x (4. 5) 

in terms of the co-ordinate 4-volume element d(4)x where g is the 
determinant of the metric tensor, we can write the comoving and fixed 
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point variations of the scalar action in the form 

dz 

dr 
a S =  j'~ a(L|/-Zg) V - g  

Hence by (2.3) 

(4.6) 

(4.7) 

d'c As-as-- ! {E /Tal 

Using the standard formulae 

Y [L] = L ~ ~ (4.9) 
¢ 

£° []/-/-~g] = ]//C- 9 ¢";, (4.10) 

we obtain 

(4.8) 

AS -aS  = .I (L~a)~ dz (4.11) 
r 

and hence, using the Green's theorem (2.3), 

AS-aS= ~ L{"dS,. (4.12) 
Or 

Thus we see that it is unnecessary to make any distinction between the 
Lagrangian and Eulerian variations of a scalar action integral S, provided 
either the action L or the displacement ~ vanishes on the boundary of the 
volume z in which variations take place. 

For  a flux integral of the form I the distinction between Lagrangian 
and Eulerian variations must be taken more seriously even when F a 
or ~" vanish on the boundary of £. Let us introduce a co-ordinate system 
of the form t, x 1, x 2, x 3 in such a way that 2; is determined by the condition 
t = 0 and let d(3)x denote the coordinate volume element on S. Then we 
can express the metric element dE, on E in the form 

Thus we can write 

dXa=]/---gt,~dC3)x. (4.13) 

dS, 
AI= ~ ~ A(Fa]/-~) ]/_g , (4.14) 

dE, 
6I = sS 6( Fa ~ g ) - ~  (4.15) 
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from which we obtain 

A [ - 6 I =  S £ a [ F ~ I / - ~ ]  dE, 
.~ ~ ] / / ~ "  

Using the standard formula, 

agO[F ~] = 2Ftab ~bl 

together with (4.10) we can re-write this as 

A 1 - 6 I  = j" {(2FL~ {bl); b + ~aVb;b} dZ~. 

Hence, using Stokes theorem (4.4), we obtain 

A I - 6 I =  ~rb;b¢~dZ~+ 2~F~bdSab . 
of 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

Thus the Lagrangian and Eulerian variations of I will be equivalent, 
subject to the condition that ~" or F ~ vanishes on the boundary of X, 
only when the divergence of F a is zero, i.e., when 

F";~ = 0. (4.20) 

This is, of course, the same condition that is necessary and sufficient for; 
the unvaried action integral I to be independent of the choice of Z. 

The application which follows will be entirely based on the considera- 
tion of Eulerian variations. As far as the action principle described at the 
beginning of the next section is concerned one could just as well use 
Lagrangian variations, but for the variation principle the logical distinc- 
tion is significant. It will be shown that the vanishing of the Eulerian 
variation of the mass integral defined in Section 5 is both necessary and 
sufficient for the appropriate field equations to hold. As is usually the 
case in such variation principles, the relevant flux vectors are chosen 
so that when these field equations hold (but not in general otherwise) 
they satisfy divergence conditions of the form (4.20) so that the integrals 
will be independent of Z. This implies that the vanishing of the Lagrangian 
variation is also necessary for the field equations to hold, but it does not 
imply that it is sufficient. 

5. Statement of the Variation Principle 

Before describing the mass variation principle for a stationary star, 
which will be the main topic of this section, we shall first present a 
simpler general purpose action variation principle which is a straight- 
forward generalisation of the variation principal for a perfect fluid given 
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by Taub (t954) [3] (a somewhat different version was given by Tauh 
(1969) [I0]). We consider an action integral of the form 

1 

this integral being formally identical to that of Taub (1954) [3], the only 
difference being that here the density Q is to be regarded as a general 
function of strain whereas in Taub's case it was regarded as a function of 
baryon number density only. Using (4.7) and the Greens theorem (4.3), 
together with the explicit variational expressions (3.15), (3.23), (3.24) 
we find that the Eulerian variation of this integral can be expressed in 
the form 

1 
5S= -16-~ ! { R ~ b - l  Rg~b-SrcT~b} hcbdr 

+ ~ TCb;b ~.c dz (5.2) 
1: 

From this equation we can immediately deduce the following action 
principle:/f the Einstein equations 

Nab -- ½ Rgab = 87C Tab (5.3) 

and hence also the conservation equations 

TCb. b = 0 (5.4) 

are satisfied, then it follows that for any displacement ~" and metric 
perturbation hab which vanish on the boundary, &c, the consequent Euterian 
variation ~5S (and hence also, by the results of the previous section, the 
Lagrangian variation AS) wilt be zero; conversely/f 6S (or equivalently 
AS) vanishes for any displacement ~ which is zero on ~r then the con- 
servation Eq. (5.4) must be satisfied, and / f  5S (or equivalently AS) also 
vanishes for any metric perturbation h,b which vanishes on Or then the 
Einstein Eqs. (5.3) must be satisfied. 

The main purpose of this section is to describe a related but more 
sophisticated variation principle (whose proof will take up the two 
subsequent sections) which is a generalisation of the one given by Hartle 
and Sharp (1957) [4]. This principle applies in the special case, to which 
we shall henceforth restrict our attention, of a spacetime which is station- 
ary, axisymmetric, topologically Euclidean, and assymptoticatly flat, 
in the sense of Papapetrou (1949) [11]. We shall denote the Killing vector 
generator of the stationary action by k ~, this vector being specified 
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uniquely by the normalisation condition that /d  k, ~ 1 in the assymptotic 
limit at spacial infinity. We shall denote the Killing vector generator 
of the axisymmetric action by m a, this vector, whose trajectories are 
circles, being uniquely specified by the normalisation condition 

d~0=2~ where q~ is any scalar defined (modulo 2re) by ~O, ama= 1, 
and where the integral is taken around any one of the circular trajectories. 
By their definition as Killing vectors,/ca and m a satisfy 

ka;b = kt.;bj (5.5) / 

ma: b : m[a;b I • J 

Moreover there is no loss of generality (cf. Carter, 1970) [ 121 in supposing 
that they satisfy the commutation conditions 

[k, rn] a = 0 (5.6) 

(using the bracket notation defined by (3.4)). We suppose that the system 
consists of an isolated star with assymptotically defined (Lenz-Thirring) 
mass M® and angular momentum J~. The Papapetrou assymptotic 
flatness conditions consist of the requirement that in a standard 
assymptotically Cartesian co-ordinate system, x °, x 1, x z, x 3 with k a = 6~ 
the metric tensor components gab should be well behaved functions of 
1/r, where 

r 2 = ~Si jX iX  j , (5.7) 

such that 

goo = - 1 +  2M~r + 0  (-~-) 

goi = - - f i -mi  + O  

go=(1 + 2M~) 6ij+ 0 (7) 

(5.8) 

and where the indices i, j run from 1 to 3; it is evident that in terms of 
the same co-ordinate system, the metric perturbation hab must satisfy 

h , b = 2  6M~ 6 a b + O ( 1  ) 
r 7 '  

(5.9) 

The definitions of the assymptotic mass and angular momentum may 
be cast into co-ordinate independent form as integrals over a space-like 
2-sphere S surrounding the star in the limit as S goes to an assymptotically 
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large distance. Thus it follows directly from the assymptotic boundary 
conditions that we shall have 

47cM~o = - d ~ t  ~ k ~;b dSab, (5.10) 
s 

8z:Joo = dPt ~ m ~;b dSub. (5.11) 
s 

For future reference, we note that in consequent of the boundary con- 
ditions satisfied by hab w e  shall also have the co-ordinate independent 
identity 

2rcSM~ = ~ t  ~ kahc [c;bl dSab.  (5.12) 
s 

Taking advantage of the Killing antisymmetry conditions (5.5) we 
can use the Stokes theorem (4.4) to cast the definitions (5.10), (5.11) into 
the alternative forms 

1 
M~ = ~ kb;a;b dZ~ (5.13) 

4re Z 

1 ! mb;a;b d S  a (5.14) 
J ~ -  8re 

which were first given by Komar (1959) [13J where S is any well behaved 
space-like hypersurface extending to infinity. Using the identitites 

kb;a --  RU kb I 
;b-- b ~ (5.15) 

mb;a __ R a ; b -- b FFlb 

(which follow from the Killing Eqs. (5.5)) together with the integral 
identity 

R m  ~ dE, = 0 (5.16) 

which follows from the fact that the flux Rm" is invariant under the 
axisymmetry action and from the fact that the integral curves of rn u are 
circles, which must therefore cross Z an equal number of times in the 
positive and negative senses) we can at once deduce that when the Ein- 
stein field Eqs. (5.3) are satisfied (but not in general otherwise) we shall 
have 

M~ = M ,  (5.17) 

J ~ = J  (5.18) 
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where the variational mass M and the variational angular momentum J 
are defined by 

M =  ! T"bkb + - i ~ - ( R k a - -  2ka;b;b) dZ , ,  (5.19) 

J = - S Tab mb dZo.  (5.20) 

These expressions for the variational mass and angular momentum 
are the obvious generalisations of the corresponding expressions given 
by Hartle and Sharp (1967) [4] and Bardeen (1970) [5] in the perfect 
fluid case. The expression (5.19) for M differs at first sight from the form 
given by these authors in that they used a term of the form k" Wb;b in 
place of the Komar term - 1/8n ka;b;b. I n  fact however this difference is 
illusory since both terms are functions of the metric and its derivatives 
only, chosen to give the same contribution ½ M® when integrated over S. 
The vector W" can be specially contrived so that the terms containing 
second derivatives of the metric tensor cancel out of the integrand, but 
unfortunately it cannot conveniently be given an explicit co-ordinate 
independent definition. For the purposes of the present discussion the 
more straightforwardly defined (but ultimately equivalent) Komar-type 
term is perfectly adequate. 

From this point onwards we shall suppose that the flow is non- 
convective, in the sense that 

UEakbm cl = 0 (5.21) 

which means that there exist scalar functions U, Q defined within the 
star such that 

u a = U(k a + Om a) (5.22) 

where O is the angular velocity. We shall also suppose that the flow is 
rigid in the sense that (2 is constant throughout the star, i.e. 

f2, = 0. (5.23) 

(The significance of these assumptions will be discussed in the final 
section.) 

We are now in a position to state the following mass variation 
principle: the Einstein equations (5.3) [and hence also the conservation 
equations (5.4)] will be satisfied in a stationary axisymmetric assymp- 
toticaIly flat system subject to (5.22) and (5.23) if  and only if the Euterian 
variation of  M (as defined by 5.19) is zero for any displacement ~a and any 
metric perturbation h.b which preserve the group invariance under the 
action of k a and m a, as well as the assymptotic flatness conditions and the 
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conditions (5.22) and (5.23), subject to the restriction that the EuIerian 
variation of J [as defined by (5.20)] should be zero. 

We shall conclude this section by specifying explicit restrictions which 
it will be convenient to impose on h~b and 4" during the following proof, 
which will be sufficient to ensure that the group invariance under k" and 
m" is preserved. As far as the metric 9ab is concerned, it is clearly both 
necessary and sufficient that 

~ [ h , b ]  = 0,  (5.24) 
k 

~[h.b] = 0. (5.25) 

To preserve the group invariance of a Lagrangian variation of an 
orthogonal tensor function of strain it is clear from (2.7) and (2.t9) that 
it is sufficient to have 

[~o; J = o,  (5.26) 

[¢(,;b)] = 0 (5.27) 

also. In fact this is also sufficient for the Eulerian variation to preserve 
the symmetry as can be seen from the following considerations. By (3.1) 
the Eulerian variation will preserve the stationary axisymmetry group 
if and only if in addition to (5.24) and (5.25), the Lie derivative with 
respect to 4" of the function of strain under consideration is itself in- 
variant under the actions generated by k a and m a. Now using the standard 
operator commutator  identity 

~o • = y 2,P + 5(' (5.28) 
k ~ ~ k [k,~ 

(see e.g. Yano (1955) [14]) and noting that the first operator on the right 
hand side gives zero when acting on the (unperturbed) functions of 
strain under consideration (in consequence of the original symmetry 
generated by k a) we see that the Lie derivatives with respect to ¢" of 
general orthogonal functions of strain will be invariant under the action 
generated by k a provided [k, ~]a is itself a killing vector, i.e. provided 

~ [ ~ a ]  = Cl I [ca + cl2ma (5.29) 
k 

where c1~ and c12 are scalar constants. Similarly we require 

~[~_~]  = c2~ J~a + c22 m ~ (5.30) 

where c2~ and c22 are two more scalar constants. However since ¢(.;b) is 
itself the Lie derivative with respect to 4" of the (unperturbed) metric 
tensor it is clear (by the same argument) that the conditions (5.26) and 
(5.27) are completely equivalent to (5.29) and (5.30). 
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The restriction that the variation of angular momentum be zero can 
be expressed in terms of a Lagrange multiplier, A say. In what follows we 
shall show rigourously that the condition that 

6(M - AJ) = 0 (5.31) 

for all metric variations preserving the asymptotic flatness conditions 
and satisfying (5.24) and (5.25) and for all displacements satisfying (5.26) 
and (5.27) [or equivalently (5.29) and (5.30)] is necessary and sufficient to 
ensure that the field Eqs. (5.3) must hold. 

6. The Variation of Angular Velocity 

The conditions (5.24)-(5.27) on the variations were required simply 
in order to ensure that the variations preserve the stationary-axi- 
symmetry conditions. However they also automatically preserve both the 
no-convection condition (5.22) and the rigididity condition .(5.23), 
although the angular momentum f2 itself can have a constant variation 
8 f2. In so far as a variation due to a metric change hab without displacement 
is concerned, this is obvious, and in this case f2 itself is invariant, i.e. c5 f2 
is zero. In order to see the effect of a displacement ¢" we use the fact that 
the general solution of Eqs. (5.29) and (5.30) can be expressed in the 
form ~ = ~/a + g m  ~ + ~k ~ where r/a satisfies 

[k, q]~ = 0, (6.1) 

Ira, r/] a = 0 (6.2) 

and where ~ and/~ are scalars whose Lie derivatives with respect to m a 
and k a are scalar constants; and where moreover (in order that the solution 
be globally well defined) the constant values of the Lie derivatives with 
respect to m" must actually be zero since the trajectories of m a are circles. 
We have remarked in Section 3 that a displacement parallel to the flow 
vector u a gives zero Eulerian displacement for orthogonal tensor func- 
tions of strain (and also, afort iori ,  for the metric gab and the flow u ~ 
itself) so that it is therefore possible to arrange without effective loss of 
generality (by the addition of such a displacement) that/~ is zero. Hence 
the solution to the Eqs. (5.29), (5.30) can be taken to have the simple 
form 

4" = r/~ + ~m" (6.3) 

where 
5q[~] = c12 (6.4) 
k 

~ [ ~ ] = 0  (6.5) 
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(the constants c11, c21, c22 being all zero). Since these conditions are 
unaltered if e is changed by the addition of a scalar whose Lie derivative 
with respect to k a is zero, we can choose ~/a so as to arrange without loss 
of generality that e is zero on Z. Now it is clear that the displacement ~/a 
leaves the value of f2 unchanged, since by (6.1), (6.2), and (5.23) it commutes 
with the flow vector u ~ i.e. 

It/, u] ~ = 0. (6.6) 

Therefore the only possible source of a variation in g2 is the displacement 
, m  ~ and it can easily be checked that a displacement of this form will 
indeed produce a variation bf2 which will be given by 

3~-2 = ~, a/ca. (6.7) 

On comparison with (5.4) we see that in the present case this variation 
must be constant, i.e. we have 

3 0  = q 2  (6.8) 

which confirms that a displacement Ca satisfying (5.26) and (5.27) will 
preserve the rigidity condition (5.23). 

[-If we wished to derive a Bardeen~ype variational principle for a star 
with differential rotation, it would be necessary to consider displacements 
of the form (6.3) subject to (6.4) are (6.5) but with non-constant 30. This 
would violate Eqs. (5.26) and hence would not preserve the stationarity 
condition for 9eneral functions of strain. However it is compatible with 
stationarity in the special case of a perfect fluid for which ~ and pab are 
isotropic functions of baryon number density only.] 

In the remainder of this section we shatl consider the effect on the 
variational integral M -  AJ  of a pure angular velocity changing dis- 
placement of the form 

~a = ~m ~ (6.9) 

(i.e. we shall temporarily take r/~ and h~b to be zero) where 7 is defined 
in terms of the (constant) variation 3f2 by the Eqs. (6.5) and (6.7) and by 
the condition that it vanish on the hypersurface S over which the integrals 
are to be taken, i.e. 

a(S) = 0. (6.10) 

Now since m ~ is a Killing vector, (6.9) implies 

~a, b) = ~, (a rob) (6.11) 

and since the Lie derivative of the energy momentum tensor T "b with 
respect to m ~ is zero we shall also have 

~ [  T a b ]  = - -  2 TC(amb)  o; c " (6.12) 
¢ 
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Therefore using Eq. (3.21) we find that the Eulerian variation in T ~b 
due to the displacement (6.9) is given by 

6T~b= { -- ½0u"ubu~ua + 2TC("ub)ua _ ½ T¢eu"u b 

1 ,T'ab,~cd 1_ 17abcd~ 2c~ ~ma) 
- - 2 "  g - - 2  ~ ) , 

+ 2TC("mb)o~,c. 

(6.13) 

Now since we are keeping h~b zero for the time being, (so that raising and 
lowering of tensor suffices commutes with Eulerian variation) the 
corresponding variation in M -  A J  will be given simply by 

6 (M - A J) = + ~ (k b + Amb) (~(T "b) dS,, .  (6.14) 

Now in consequence of (6.10) we can replace dS,, by ao:,+dX where dS is 
the scalar metric measure in S and ~r is a positive scalar (whose explicit 
value is given by a 2= -c~,cd~). Hence using (5.23) we can recast (6.14) 
in the form 

6 ( M - A J ) =  y {U-tu.+(A-Q)moI~,~6(T°q¢dS. (6.15) 

Now, on substituting from (6.13) we obtain 

~,~ F) T "~ = {ubua(e¢'¢ + paC) __ Aabccl} O~ bcz, amc (6.16) 

where A "b~ is the relativistic Hadarmard elasticity tensor, which was 
introduced by Carter (1972) [6] in a discussion of sound wave propaga- 
tion, and which is defined by 

A abca = E abed - 7aCp ba . (6.17) 

Using the orthogonaliff properties of the various functions of strain 
involved we immediately deduce that 

o~ 5(T"C)u¢ = O. (6.18) 

This is a valuable result which will be useful in more general contexts: 
in effect we have shown that the variation of  angular velocity 9ires no 
contribution to the f lux  of  u c 6 T  "c across S. In consequence (6.15) 
reduces to 

6(M - A J) = ~ (0  - A)cqc 3 (T  "C) rn~ o d S .  (6.19) 

By expressing c+, c in the form 

c~c = 2u c + ~cv c (6.20) 



Gene ra l  Relat ivist ic  Elasticity 281 

where v~ satisfies the orthonormatity conditions 

32 c U c = 0 (6.21) 

v c v~ = 1 (6.22) 

and where the scalars 2 and ~: must be such that 

22 > t& (6.23) 

since S is spacelike, we obtain 

cz, c 6 (T  '~) m~ = {}~2(0~)ac "-~ p a C )  __  t&A,bCaVbVd }mcma " (6.24) 

Now it was shown by Carter (1972) [-6] that the squared speeds v z of 
sound propagation in a direction v ~ orthogonal to the flow u" are the 
eigenvalues of the eigenvector equation 

{ V2(OTac q_ paC) __ Aab~aVb V d} tb = 0 (6.25) 

where the eigenvectors tb are the possible directions of polarization. 
Since local causality requires that the eigenvalues v 2 be not greater than 
unity, it follows that {v2(~o7 "~ +pa~)--A~b~dVbVa} m, mc must be strictly 
positive for any spacelike vector ma whenever v 2 is greater than unity. 
Thus by (6.23) and (6.24) local causality also implies 

~, ~ 6 ( T~)  m~ > 0  (6.26) 
everywhere. 

Hence, by (6.19), we arrive at the important conclusion that the 
variation in M -  A J  induced by the variation 6 0  in the angular velocity 
due to the displacement (6.9) can be zero only if  

f2 = A.  (6.27) 

This result could have been expected from general thermodynamic con- 
siderations since the angular velocity and angular momentum are 
dynamically conjugate. However the author would be interested to 
know of a general physical reason why it should apparently be necessary 
(as it was also in the more specialised derivation given by Hartle and 
Sharp for a perfect fluid) to invoke causality in order to establish it 
rigorously. 

7. The Angular Velocity Conserving Variation 

In this section we consider the variations in the integral M - A J  due 
to a metric variation h~b satisfying (5.24) and (5,25) and a displacement ~ 
of the form 

~°=~° (7.1) 
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where t/a satisfies (6.1) and (6.2). As has already been remarked variations 
of this form will leave the angular velocity f2 invariant. We shall suppose 
that the variations take place with respect to an unperturbed flow which 
has been restricted to satisfy the necessary condition f2 = A. Thus in 
consequence of (7.1) the perturbed flow will continue to satisfy this 
condition, and hence the variational integral will reduce to the form 

both before and after variation, so that as far as the present section is 
concerned we can treat this expression as a definition of the variational 
integral. We can use the identity 

am o dZo = 0 (7.3) 
12 

(which holds for the same reason as (5.16)) to replace (7.2) by the even 
simpler expression 

M -  A J  1 R  ~--~ka;b;b} dZ  a . (7.4) 

This form being closely analogous to the Taub-type action integral 
given by Eq. (5.1). 

Now by substituting the expressions (3.23) and (3.24) from section 3 
into the general formula (4.15) we obtain 

5 ~ Rk" d X  a = - ~ ( R  bc - ½ R g  bc) hb~k" d S  a 

12 12 (7.5) 
- 2 ~ hcic;bl;bka dS,, .  

v 

Since in the present case we are requiring that hab satisfy (5.24) we also 
have the identity 

hctC; b] b ka = - -  { ka  hc [b;c] _ k b hc[~;c]}; b (7.6) 

SO that Stokes Theorem (4.4) can be applied in conjunction with (5.11)to 
give 

S hc[c;bl;bka dZ  = 4re 6 M ~ .  (7.7) 

Also it follows directly from (5.12) that 

(5 ~ k";b;b dZ" = --47z 5Moo. (7.8) 

Thus we obtain the important identity 

~ ( R k  a - -  a.b ½ R g b C ) h b c k a  d Z a .  (7.9) 2k '  ;b) as,, = - ~ (R b~ - 
'2 12 
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Substituting the expressions (3.15), (3.24) from Section 3 into the general 
expression (4.15), we obtain 

(3 f ~k~ dS,~= - ~ (½ TCbhcb-- Tcb~btL)ka dZ ~ 
(7.10) 

Now since the Lie derivatives with respect to k a o f f f  b, o~, o/b and G are all 
zero, we have the identity 

{(pCb q-o~ Sb)rlc};bka= 2{(pc[b q- Qpc[b)~cka]}; b (7.tl) 

and hence Stokes Theorem (4.4) gives 

{(Pcbq-o3;cb)tlc};bkadZa-=~t ~(pcbq-QTcb)rlckadSab (7.12) 
s 

= 0  
since the star is bounded. 

Thus we finally obtain 

1 
6 ( M - A J ) -  16rc ! (Rbc-½Rgbc-87zTbc)hbckadSa 

(7.13) 

- .[ T~b;b rLk ~ dZ, .  
z 

Since R b~, gb~, Tb~ satisfy the same restrictions of invariance under Lie 
transport by the fields k ~ and n~ as have been imposed on tf  and hb¢ 
it follows that the condition that 6 ( M -  AJ) be zero for a general dis- 
placement t/~ subject to (6.1) and (6.2) is sufficient, as well as obviously 
being necessary for the conservation Eqs. (5.4) to hold, and similarly 
the condition that g ) ( M - A  J) be zero for a general metric variation 
satisfying the assymptotic flatness conditions and subject to (5.24) and 
(5.25) is sufficient as well as necessary for the full Einstein field Eqs. (5.3) 
to hold. 

This completes our demonstration of the variation principle as it is 
stated at the end of Section 5. 

8. Discussion 

The conclusion of the preceeding sections may be summed up 
briefly as follows: if all possible metric variations h,b subject to (5.24) 
and (5.25), and satisfying the assymptotic flatness conditions as well as 
all possible displacement fields ~a subject to (5.26) and (5.27) are taken 
into account then we have 

A = f 2  
( ~ M - A 6 J = O ~  Rab-- ½Rgab=87zTa b (8.1) 
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and conversely 

8 7~ ~ [ 6M - f26J -- 0 (8.2) 
Rab-- ½Rgab= 7Z ab ~ A M - ( 2 A J = O .  

(The last conclusion, expressed in terms of the Lagrangian variation, 
follows from the fact that when the Einstein field equations are satisfied 
the integrands in M and J automatically satisfy divergence conditions of 
the form (4.20) so that Eulerian and Lagrangian variations coincide.) 
tt is to be remarked that in this mass variation principle (unlike the action 
principle described at the beginning of Section 5) it is essential to take 
displacements (not merely metric perturbations) into account in order to 
introduce the variation of angular velocity on which (8.1) depends. 

It is intuitively evident (although the author does not have a rigorous 
proof) that the assumption (5.1) that there is no convection does not 
involve any loss of generality so long as one is considering a simply 
connected star (or a simply connected part of a star such as a neutron 
star crust) which is strictly solid in the sense of having non zero rigidity. 
(In a multiply connected body e.g. an annulus, it is possible to conceive 
of convective motions consistent with stationary axisymmetry even in a 
solid.) This contrasts with the situation in the discussion of the perfect 
fluid case by Bardeen (1972) [5], where the assumption of purely circular 
motion clearly does imply a significant loss of generality. The further 
restriction to the case of rigid flow, which was made in the earlier discus- 
sion of the perfect fluid case by Hartle and Sharp (1967) [4], also involves 
no loss of generality in the case of simply connected medium which is 
strictly solid. 

Under the perfect fluid conditions which apply in the variational 
principles of Hartle and Sharp (1967) [4] and Bardeen (1970) [5], the 
assumption of the circular flow condition (5.21) automatically implies 
that the space-time must be invariant under a discrete isometry mapping 
which simultaneously inverts the direction of the stationary and axi- 
symmetry killing vector fields. This follows from a generalisation (Kundt 
and Trumper, 1966) [t5], Carter (1969) [16] of the theorem of Papa- 
petrou (1966) [17] which applied originally only to the pure vacuum 
exterior of the star. However although Papapetrou's theorem can also 
be generalised to the case when an electromagnetic field is present 
(Carter, 1969) [16] it certainly cannot be extended to apply to a solid, 
not even a perfect solid in the sense defined by Carter and Quintana 
(1972) [1]. One might of course impose the existence of the simultaneous 
time and rotation angle inversion isometry as a simplifying assumption 
in a study of stationary axisymmetric solid bodies, but it is to be em- 
phasized that none of the results of the present work depend on such a 
condition. 



General Relativistic Elasticity 285 

An additional discrete symmetry condition which can be expected 
to hold automatically (although the author does not know of a rigorous 
proof) in a stationary axisymmetric star composed of a non-convective 
perfect fluid, provided it satisfies the same one-parameter equation of 
state throughout, but which need not hold more generally, is invariance 
under reflection in an equatorial hypersurface. Such a condition has not 
been assumed here, and therefore the variation principle which has just 
been derived applies not only to cigar shaped and doughnut shaped stars, 
but also, for example, to pear shaped stars. 

We conclude by pointing out (as has previously been remarked by 
Hartle (1970) in a discussion of the special case of a rigidly rotating 
perfect fluid star) that the conclusion of (8.2) applies, in particular, for 
variations through neighbouring equilibrium states. It therefore follows 
rigourously that if a perfectly elastic star undergoes (adiabatic) variations 
through a one-parameter family of stationary axisymmetric equilibrium 
states, characterised by varying angular velocity, then the differential 
relation 

dM 
- 0 ( 8 . 3 )  

dJ 

will be satisfied. [-This result could have been predicted by the heuristic 
physical argument of Thorne and Zeldovich (see Hartle (1970), Zeldovich 
and Novikov (1971)) which can be applied to any material body which 
undergoes thermodynamically reversible variations between stationary 
axisymmetric equilibrium states.] 

For many purposes it will be useful to expand the mass which must 
clearly be an even function of f2, as a power series in the form 

(2n)! 
M = (2"n !)2 E, f2z" (8.4) 

n = O  

where n runs over integer values, and where the coefficients En are 
constants. This leads, by (8.3), to the expression 

(2n) ! E O2n+1 (8.5) 
J = , = o  (2"n!)2 n+l~ 

in terms of the same coefficients E,. The zeroth coefficient Eo, is the 
energy of the star in the zero angular velocity state. The first coefficient E~ 
is the moment of inertia in the zero angular velocity state. The higher 
coefficients E2, E3 etc. characterise the way in which the star undergoes 
elastic deformations under the influence of centrifugal force as the 
angular velocity is increased. 
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