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Abstract. The limits of a one-parameter family of spacetimes are defined, and 
the properties of such limits discussed. The definition is applied to an investigation 
of the Sehwarzsehild solution as a limit of the Reissner-NordstrSm solution as the 
charge parameter goes to zero. Two new techniques -- rigidity of a geometrical 
structure and Killing transport -- are introduced. Several applications of these two 
subjects, both to limits and to certain other questions in differential geometry, are 
discussed. 

1. Introduction 

One frequently hears statements concerning the limit of a family of 
solutions of EINsT~.r~'s equations as some free parameter approaches a 
certain value. There is, however, a serious ambiguity in such statements, 
for they normally refer to a particular system of coordinates : by  changing 
coordinates, one can usually obtain some quite different spaeetime in the 
limit. The concept of a limit applied to spacetimes is, nonthcless, a 
useful one, and so we are led to formulate some unambiguous definition 
of this notion. In  this paper we shall define the limits of a family of 
spacetimes and display a simple characterization of these limits. 

In  Section 2 we give the definition of a limit. The main theorem of 
that section asserts tha t  a knowledge of the limit "locally" determines, 
completely and uniquely, a corresponding global limit. As an example, 
our definition is applied to clarify the way in which the Reissner-Nord- 
str6m solution reduces to the Schwarzsehild solution as the charge para- 
meter approaches zero. 

I n  Section 3 we discuss those properties of spacetimes which are 
heriditary, i.e., which pass from a given family of spacetimes to their 
limits. 

The two topics treated in the appendices are useful in many contexts 
in differential geometry other than merely questions involving limits. 
The appendices can be read independently of the rest of the paper. In  
Appendix A we define rigidity of a geometrical structure and prove that  
nonsingular metrics are rigid. That metrics are rigid while, for example, 
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symplectic structures are not is reflected in the fact tha t  groups of iso- 
metrics are "small" (i.e., Lie groups) while groups of canonical trans- 
formations are "large". The notion of a limit, as defined here, is applicable 
quite generally to any rigid geometrical structure. Closely related to 
rigidity is Killing transport,  wlfich is discussed in Appendix B. Killing 
t ransport  is used in Section 3 to establish the heriditaxy properties of 
isometry groups. A number  of further applications of this type of trans- 
port. are given in the appendix. 

2.  L i m i t s  

By a spacetime we understand a (connected, Hausdorff) 4-dimensional 
manifold with a (C °°) metric gas of signature (÷, , , _)1. Consider 
a one-parameter family of such spacetimes. (Our results are easily genera- 
lized ~ m a n y  parameter  families of spacetimes and, possibly, to families 
which depend on arbi t rary functions.) That  is to say, for each value of 
a parameter  2 (> 0) we have a 4-manifold M~ and a metric gab (%) on M~. 
We are interested in finding the limits of this family as ~ -+ 0. I t  might 
be asked at  this point why we do not simply take the g~b(~) as a 1- 
parameter  family of metrics on a given fixed manifold M. Such a formu- 
lation would certainly simplify the problem: it  amounts to a specification 
of when two points p~, ~ M r  and Pr  C Mx (% ~# ~') are to be considered 
as representing "the same point" of M. I t  is not appropriate, however, 
to provide this additional information, for it always involves singling 
out a particular limit, while we are interested in the general problem of 
finding all limits and studying their properties. 

We illustrate this point with the example of the Schwarzschild solu- 
tion. Consider the family of metrics 

ds 2= ( 1 -  22-~r)dt ~ -  ( 1 -  ~ ) - 1  dr 2 - r~( dO2 -t-sin~0d~ 2) (1) 

which depend on the single parameter  %(= m-1/a). In  the form (1) the 
metric clearly does not approach a limit as %-~ 0. Suppose, however, 
we apply the coordinate transformation 

i: = Xr, ~" = )~-~t, ~ = ).-10. 
Then (1) becomes 

2 2 - 1  

1 I t  will be more convenient in the present discussion to introduce the contra- 
v~riant rather than the covariant metric as the basic object. All our considerations 
~re easily generalized to include any further tensor fields on the mainfold, e.g., 
an electromagnetic field, the velocity, pressure, and density fields of a perfect 
fluid, etc. However, it is essential that among the basic fields on the manifold there 
is at least one -- such as a metric -- which is rigid in the sense of Appendix A. 
13" 
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The limit as 2 -> 0 now exists and gives the metric 

ds ~ = _ ~ d ~  ~ + y d ~  2 - ~(d52 + ~ d ~  ~) . 

This is a nonflat solution of En~s~v~n~'s equations discovered originally 
by KAS~ER [1] and obtained by Ro~I~SO~ as a limit of the Schwarz- 
schild solution. On the other hand, the coordinate transformation 
x = r + A -a, ~ = 2-a0 applied to (1) yields flat space in the limit 2 -> 0. 
Thus, one cannot speak simply of "the limit of the Schwarzsehild solution 
as 2-+ 0", for the spacetime one obtains in the limit depends on the 
choice of coordinates. The essential difference between the various limits 
above consists in different identifications of the M~. 

How then can we express the idea that  the (M~, gab(2)) depend 
smoothly on 2 (which. we shall certainly need in order to define limits) 
without at the same time prejudicing the particular limit we are to ob- 
tain ? Let us assume that  the manifolds M~ may be put together to make 
a smooth (Hausdorff) 5-dimensional manifold ~gt. Each M~ is to be a 
4-dimensional submanifold of J [ .  The parameter 2 now represents a 
scalar field on dr', while the metric tensors gab(2) on the M~ define a 
single tensor field g~Z on ~gt, which we assume to be smooth S. The signa- 
ture of g ~  is (0, +,  , , - )  : in fact, the singular direction is precisely 
the gradient of 2, i.e., we have g~V~2 -- O. (Consequently, the tensor 
field g ~  on already completely defines the surfaces M~.) The 5-manifold 

contains all the information of our original collection ( ~ ,  g~b(2)), 
but does not define a preferred correspondence between different M~*. 

The problem of finding limits of the family (Ma, gab (2)) amounts to 
that  of placing a suitable boundary on ~ .  We define a limit space of 
as a 5-manifold ~7' with boundary a J / ' ,  equipped with a tensor field 
g' ~,  a scalar field ~', and a smooth, one-to-one mapping T of J 7  onto 
the interior of d [ '  such that  the following ~hree conditions are satisfied: 

1. k~ is an isometry, i.e., }/1 takes g~P into g' ~ and 2 into 2'. 
2. 0 all' is the region given by 2' = 0. We require, furthermore, that  

0 rid' be connected, Itausdorff, and nonempty. 

3. g ' ~  has signature (0, + ,  , , - )  on 0 J [ ' .  
The first condition ensures that  ~ '  really represents J7  with a 

boundary attached; the second condition ensures that  the boundary 
represents a limit as ~ -> 0; and the third condition ensures that  the 

Latin and Greek indices represent tensor fields on 4-dimensional and 5-dimen- 
sional manifolds, respectively. 

* Such a correspondence could be defined by giving a vector field on ~ ,  
nowhere vanishing and nowhere tangent ~o the M~:p~ ~ M~ and Px, ~ Mx, are in 
correspondence if a trajectory of this vector field joins p~ and p~,. However, no such 
vector field is in the structure of ,~. 
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metric on the boundary is nonsingular 3. We shall often simply iden- 
t ify Jr" with the interior of ~ff('. 

The above definition certainly corresponds to our intuitive idea of 
a limit of a collection of spaeetimes. I t  is not, however, very useful for 
actually writing down limits. We next show how the limit spaces may 
be characterized in terms of certain structures on d[.  

By a ]araily o] ]tame8 in ~ we mean an orthonormal tetrad w(2) 
of vectors tangent to M~ and attached to a single point p~ C M~, for each 
2. > 0, such that  the w (A) vary smoothly along the smooth curve in dg 
defined by the points p~. If  d / '  is any limit space of ~ ,  we may ask 
whether or not a given family of frames assumes a limit, i.e., approaches 
a frame w (0) at some point P0 ~ ~ ~¢' as 2 -+ 0. In  general, of course, 
the answer will be no. However, it is clearly always possible, given a 
limit space ~ ' ,  to find some family of frames which does have a limit 
i n d / ' .  

Let ~¢' be a limit space of rid, and let w (2) be a family of frames which 
assumes a limit as 2 -> 0. Let us represent points in M~ in a neighborhood 
of p~. in terms of the system of normal coordinates based on w (2). In  terms 
of these coordinates, the components of the metric tensor in the M~ 
approach a limit as 2 -+ 0, and the limiting components are precisely the 
components of ga~(O) in 0 ~ '  in a neighborhood of P0. Thus, the family 
of frames w (2) uniquely defines the limit space ~ ' ,  at least in a suffi- 
ciently small neighborhood of ~0. We now have a computational tech- 
nique to find all limit spaces: each ~ '  is characterized by some family 
of frames for which the components of the metric in the corresponding 
normal neighborhoods approach a limit as 2 -> 0. 

All we have done so far is to cast the usual definition of a ~ t  (in 
~erms of coordinates) into a slightly different language. To obtain useful 
information about spaeetimes, however, it is necessary to consider also 
the global properties of limits, and it is here that  our formalism will 
simplify matters considerably. 

Let dr" 1 and ~¢~ be two limit spaces of ~¢. We say that  d/1 is an 
extension of d/~ if there exists a smooth mapping of ~ x  into ~ which 
preserves the metric g ~  and leaves invariant each point of ~¢. The above 
discussion implies that, when ~¢~ is an extension of ~g~, there exists a 
family of flames in ~¢ which has a limit in both d/~ and ~/~. I t  now 
follows from theorem A I (Appendix A) that, if J/~ is an extension of 
d/~ and ~ an extension of dt'~, then Jr '  1 = ~¢~. 

8 There is a complication here with regard to Hausdorffness. The spacetimes 
Mx are Hausdorff, and so is ~¢. However, we cannot take the limit spaces ~ '  to 
be Hausdorff if we are to be able to deal with pathological cases. In fact, Theorem 1 
is false unless we admit non-Hausdorff limit spaces. 
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Now let J r '  be any limit space of d / ,  and let ~4 f denote the disjoint 
union of all extensions of ~ / '  where, in this union, we identify corres- 
ponding points of ~ / .  We now define an equivalence relation in ~ .  I f  
Pl C 0Jr ' l ,  P2 E a dt'~, where Jg¢l and ~/&. are extensions of rid', write 
Pl ~ P~. if there exists a family of frames in J which, in ,-£1, has a limit 
at Pl and, in ~/2, has a limit at p~. From the above discussion of normal 
neighborhoods, we see that,  whenever Pl ~ P~, there exist neighborhoods 
of Pl and pe which are also identified. Thus, the set of equivalence classes 
form, in a natural  way, a limit space ,¢i. By  construction, ~ is an 
extension of every extension of ~ ' .  But  two hmit  spaces, each of which 
is an extension of the other, are equal, and so ~ is unique and has no 
proper extension. We have outlined the proof of: 

Theorem 1. Every limit space ~ / '  has a unique extension Jff such that 
(1) JE has no proper extension, and (2) ~ is an extension o/every exten- 
sion o] rid'. In  particular, every ]amily o/[rames either defines no limit 
space, or else defines a limit space which is "maximal" in the sense of 
Theorem 1. 

A simple example will serve to show the way in which useful infor- 
mation can be extracted from our characterization of limits. Consider 
the Riessner-NordstrSm solutions for a fixed value m 0 of the "mass",  
but  with a variable value of the "charge" ~ (Fig. 1). When )~ -+ 0, in the 
usual coordinates, we obtain the Schwarzschild solution with mass 
value m o (Fig. 2). I t  is obvious from Figs. 1 and 2 tha~ something drastic 
is happening in the limit: the region inside the " th roa t"  of the Reissner- 
Nordstr6m solution appears to become swallowed up in the singularity 
in the limit, so tha t  i t  does not appear in the Schwarzsehild picture. 
Let  us t ry  to formulate (and answer) the question: Do the points between 
r = r_ and r = 0 (shaded in Fig. 1) disappear or not in the limit ~ -> 0 ? 

We are here dealing with a particular limit, and so we must  ~ s t  
choose an appropriate family of frames. In  each Reissner-NordstrSm 
solution, let us choose a frame which is centered at the point p of Fig. 1, 
and such tha t  two of the spacelike vectors of the te t rad  point along the 
2-spheres of spherical symmetry.  (The frame is not, of course, uniquely 
determined by  these conditions, but  any  two such frames are related by 
a symmetry  of the spacetime.) Now consider a collection of points q~ E M~ 
such that ,  for each ~, qx lies in the shaded region in Fig. 1. I t  is a well- 
defined question to ask whether or not the curve in . ~  defined by  the q~ 
approaches a limit in the maximal limit space defined by  our frame at  p. 
To calculate the answer, we refer each q~ to our frame by  means of a 
broken geodesic (c.f., Appendix A), take the limit of the numbers which 
define this geodesic, and ask whether the limiting numbers exist and 
define a broken geodesic in the Schwarzschild solution. The answer is no: 
the corresponding geodesic in the Schwarzschild solution always runs 
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into  the  "singularity" at r = 0. Thus, in a well-defiued sense, the  throat  
of the  Reissner-NordstrSm solut ion "squeezes up" as 2 - >  0 and even- 
tual ly  swal lows all points  to the future of the  horizon r = r_. 

/ / \ 
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Fig. 1. The l%eissner-NordstrSm solution. Each point in the figure represents a 
2-sphere of spherical symmetry in the 4-dimensional spacetime. The radii of these 
2-spheres define a scalar field r on the diagram. The horizons occur at the r-values 

[=0 

\" \ \ \ \  / ~  

r=o 
Fig. 2. The Schwarzsehild solution. Each point in the figure represents a 2-sphere 

of spherical symmetry in the 4-dimensional spacetime 
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What  is the fate of points below r = r_ ~. Now, however, the answer 
depends on the detailed behavior of the point q~ as 2 -+ 0. I f  the point 
wanders too near r -- r_, it will not appear in the Sehwarzschild solution, 
while if i t  remains well below r = r_ it will appear in the limit. The 
precise s tatement  of how a point must  behave in the family of Reissner- 
Nordstr6m solutions in order to remain in the limit is somewhat compli- 
cated, but  completely well-defined. 

Note that ,  among all possible frames in the Reissner-Nordstr6m 
solution, the one we have used above is preferred in tha t  it admits a 
simple descript, ion in terms of the Killing vectors. Thus, the Sehwarz- 
sehild solution is, in a certain sense, the "canonical" limit of the Reissner- 
Nordstr6m solution as the charge parameter  goes to zero. 

Finally, we ask whether it  is possible ~o choose a family of frames 
which remain in the shaded region in Fig. 1 and which define a limit as 

-+ 0. Such a limit would not, by  what we have already shown, include 
the asymptotically flat regions of the spaeetime. However, it is easily 
verified that ,  no mat ter  what family of frames is erected in this region, 
no corresponding limit space exists. 

3. Hereditary Properties 

A property of spaeetimes will be called heriditary if, whenever a 
family (M~, ga ~ (~)) of spacetimes have tha t  property, all the limits of 
this family also have the property. In  this section we shall classify a 
number of properties of spacetimes according to whether or not they are 
heriditary. While the answer is obvious is many  cases, there are, however, 
a few surprises. 

Suppose tha t  there exists some tensor field, constructed from the 
Riemann tensor and its derivatives, which vanishes in each of the 
(M~, gab(.~)). Then, since g~# is to be smooth on each limit space, our 
tensor field must  also vanish on the boundary of each limit space. 
Einstein's source-free equations (R a b = 0) and the condition of eonformal 
flatness (Ca~, ~ = 0) are of this type, and so are heriditary properties 
of spacetimes. 

Consider next the type of the Weyl tensor. I t  is known [2, 3] tha t  
associated with each of the six types there is an algebraic expression in 
the Weyl tensor which vanishes whenever the Weyl tensor is of the 
corresponding type. Conversely, if one of these expressions vanishes, 
then the Weyl tensor is necessarily of tha t  type or of one of its speciali- 
zations. Thus, although the type of the Weyl tensor is not heriditary, 
properties such as "a t  least as specialized as type . . . "  are. 

Practically no topological properties of the underlying manifold are 
heriditary. (In fact, quite generally, no property of spacetimes is heri- 
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ditary if it  can be violated by merely removing some region from the 
manifold.) For example, neither the homology nor homotopy groups are 
heriditary: such groups can be either enlarged or diminished in the limit. 
However, the existence of spinet structure is heriditary. This fact follows 
immediately from the characterization of spinor structure in terms of 
neighborhoods of certain 2-spheres immersed in the spacetimo [4]. 
Although the existence of spinor structure is heriditary, its absence is 
not, for this property can be destroyed by  removing a suitable region 
(for example, all of the manifold except a small Euclidean neighborhood) 
from the spacetime. 

Absence of closed timelike curves is heriditary. (If ~ rig' has a dosed 
timelike curve, then we may find a closed timelike curve in each M~ for 
small 4.) The presence of closed timehke curves is not. Neither the presence 
of closed timelike curves is not. Neither the presence nor the absence of 
a Cauehy surface [5, 6], of asymptotic simplicity [7], or of a singularity 
(i.e., geodesic incompleteness [8]) is heriditary. 

The situation with regard to Killing vectors is somewhat more compli- 
cated. Suppose we have a family (Mx, gab (4)) of spacetimes each of which 
has two Killing vectors. I t  might be thought that  limits of this family 
need not have two Killing vectors, for, as 2 -+ 0, the Killing vectors in 
the (Mx, g~b (2)) could conceivably approach each other and thus define 
only a single Killing vector in the limit. However, this circumstance 
cannot arise. 

Consider a family of frames in ~ .  For  each point p~ E M~ of this 
curve, let V;. denote the 10-dimensional vector space consisting of all 
pairs (~ ,  $,~b) of tensors at  p~ and in M~, where F ab is skew. Given a 
Killing vector field on M~, its value and derivative at  px defines a point 
of V~, and so the set of Kilting fields defines a vector subspace K~ of V~. 
The dimension of Kx is n, where n is the number of independent Killing 
fields in the (M~, g~ b (2)). But  the collection of all n-dimensional subspaces 
of a 10-dimensional vector space 4 is compact. Hence, if V0 denotes the 
corresponding vector space at P0, there must be some n-dimensional 
subspaee K o of V 0 which is an accumulation space ~ of the Kx. We will 
show that  each element (~% F~)o  of K o defines a Killing field on 0 ~ ' .  
Choose any dosed curve ? in 0 ~ ' ,  beginning and ending at  Po. We have 
only to prove that,  under Killing transport (see Appendix B) around 
~o, (~% F~b)0 remains unchanged. Let  y~ be a curve in M~, beginning 
and ending a~ p~, and such that  y~ approaches Yo in the limit, and let 
(~%Fab)~ CK~ accumulate at  (~%Fab)o. But  now Y:~->~o, (~a, Fab)~ 

This space is called a Grassmann mani/old, G (n, 10). 
5 Even though the metric approaches its limit smoothly, the K~ will not in 

general approach K0 as a limit. Note, therefore, that we only require the existence 
of an accumulation point. 
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_~ (~a, Fab)0 ' and the change, A ($~, Fabh, in (~a, F~b)~ on Killing trans- 
port about Y4 is 0. Therefore, A (~a, Fab)0 = 0, and so (~a, Fab)o defines 
a Killing vector in a ~ ' .  We conclude tha t  if the (Mx, g~(A)) have an 
n-parameter  group of motions, then each limit has at  least an n-parameter  
group of motions. 

By  similar arguments we see that ,  for example, if each (3f~, gab (A)) 
has a hypersurface orthogonaI Killing vector, so does each limit; if one 
Killing vector in each (Mz, g~ ~ (A)) commutes with all the others in an 
n-parameter  family, then there exists a Killing vector in each limit which 
commutes with an n-parameter  family of Killing vectors. 

Similar remarks apply to conformal Killing vectors, where we must  
now use eonformal Killing transport  (Appendix B). 

As an example of the above properties, let us consider limits of the 
Wcyl solutions [9]. Each limit must  be a soureefree solution of EI~STEr~'s 
equations with spinor structure, no dosed t imdike  curves, and at least 
two Killing vectors, one of which is hypersurfaee orthogonal and commu- 
tes with the other. Note tha t  a spacetime with these properties need not, 
a priori, be a Weyl solution. Thus, the possibility exists tha t  one can 
find wide classes of new solutions of ErNsT~r~'s equations as limits of 
known solutions. In  particular, we may  call a family of solutions of 
Er~sww~c's equations closed if it contains all its limits. For example, 
the plane wave solutions are closed, while the Weyl solutions are, 
presumably, not dosed. 

Appendix A. Rigidity 

Let  M and M '  be two spacetimes, and suppose tha t  M is isometric 
to a subset of M' .  There may,  of course, exist m a n y  d~e ren t  isometrics. 
The assertion tha t  Lorentz metrics are rigid (of order one) states that ,  
once we specify how the tangent space of a particular point p of M is to 
be mapped into the tangent space of a particular point p '  of M' ,  the 
isometry ~ ,  if there exists one at  all, is uniquely determined. Thus, 
given the action of ~ "to first order" at p, the requirement tha t  ~ be 
an isometry determines its behavior everywhere. 

Theorem A 1. Let M and M'  be connected spacetimes, and let w be an 
orthonormal tetrad at a point 19 E M and w' at p' E M'.  Then there is at 
most one isometry o] M into M'  which takes w into w'. 

Proof. Let (~7~, ~ . . . . .  Un a) be any collection of n nonzero vectors 
at  p. We construct a broken geodesic as follows. Let  Yl be the geodesic 
which passes through p and whose tangent vector at p is ~ .  Choose an 
affine parameter  ~ on Yl such tha t  ~ = 0, ~[Vav = 1 at  p, and let Pl 
denote the point on 71 unit  affine distance from p. Parallel t ransport  
the n - 1 vectors ( ~ ,  U,~. - ", ~ )  along 71 to Pl. Now repeat this con- 
struction with these n -  1 vectors at  px, and thus define a point pz; 
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with n - 2 vectors at p~, and thus define a point P3; etc. After the n ~h 
step, we obtain a point Pn. (We restrict ourselves to n-tuples of vectors 
at p for which, at  each step in the construction, the appropriate geodesic 
can be extended unit affiue length.) Since any point q E M may  be joined 
to p by  a broken geodesic, we may  always choose n and (U~, US . . . . .  U~) 
so tha t  p~ = q. 

Let  T and ~P be two isometrics from M into M '  each of which takes 
w into w'. Then }/1 and ~ have the same action on any  ( ~ ,  ~ , . . . ,  ~na), 
and so T(q) and ~(q)  are defined by  broken geodesics in M '  with the 
same set of n initial vectors. Therefore, T(q) = ~(q)  for each point q E M. 

Theorem A I, by  referring points of any connected spaeetime to the 
tangent  space of a point, allows us to compare spacetimes by  worldug 
to first order at  a single point. I t  is this comparison property which was 
necessary to obtain Theorem 1. In  contrast to Theorem A 1, manifolds 
without any further structure are completely non-rigid. In  fact, it is 
well-known that ,  given any (connected, Itausdorff) manifold M and 2m 
points Pl, P~ . . . . .  P~, ql, q~ . . . . .  q~ of M, all distinct, then there exists 
a diffeomorphism of M onto itself which takes Pl to ql, P2 to q~, etc. 

We now briefly summarize the general situation. By a geometrical 
structure we mean a general s tatement  of the types of fields under con- 
sideration, tha t  is, the number of connections, the numbers and valences 
of tensor fields (and, more generally, the types of geometrical objects [10]). 
For example, "a Lorentz metric",  "a  Lorentz metric and skew covariant 
tensor",  and "three linear]y independent vectors and a connection" are 
geometrical structures. By  a realization of a geometrical structure we 
mean a (connected, IIausdorff) manifold equipped with fields of the 
type  described by  the geometrical stl-aeture. This distinction between a 
geometrical structure and its realizations is important :  the notion of 
rigidity will apply only to the former. (That is, we say "Lorentz metrics 
are rigid", not "This Lorentz metric is rigid and tha t  one is not".)  Let  
M and M '  be manifolds with realizations q~ and q~', respectively, of a 
given geometrical structure. By  an isometry of (M, q~) into (M', ¢b') we 
mean a diffeomorphism of M onto a subset of M '  which takes q) into q~'. 

We are now in a position to define rigidity. A geometrical structure 
is said to be rigid o/order n (n = 0, 1, 2 , . . . )  if, given any  two isometrics 
T and ~ of a realization (M, q)) into a realization (M', qS') of this geo- 
metrical structure such tha t  the value and first n derivatives of }Y 
coincide with those of ~P at some point of M, then T = ~ * .  We illustrate 
this definition with the following list of rigidities. 

* It  follows immediately that the group of isometries of any realization of a 
rigid geometrical structure into itself form a Lie group. Is the converse true ? 
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Order zero: m linearly independent vector fields on an m-manifold. 
Order one: a nonsingular metric; a symmetric connection. 
Order two: a conformal structure. 
Not  rigid to any order : m vector fields; sympleetie structure. 
On 5-manifolds, in particular, although "a  metric g ~  of signature 

(0, + ,  , , - ) "  is not rigid, "a metric of this signature along with a 
family of frames" is rigid. I t  was for this reason tha t  we introduced 
families of frames, and were thereby able to obtain unique limits of 
spacetimes. 

Appendix B. Killing Transport 

Let M be a connected spacetime with metric gab" Let ~a be a Killing 
vector field on M, and set 

.Fab = Va~ b : .F[ab] • 

We then have 

V[~Fa] b = R ~ a b ~  ~.  (B.1) 

Rearranging the indices in (B.1), and using the fact tha t  Fab is skew, 
we obtain 

VaFbc = .Rbcad~ c~ . 

Let ~a be the tangent vector to some curve ~ beginning at the point p. 
The above equations, contracted with ~a, yield 

~f  Va~b = Fab~ a, (B.2) 

~]a VaFb c = Rbcad~d~la. 

Eqs. (B.2) give the values of (~a, Fab) along ~ in terms of their values 
a t p .  

More generally, given any pair (~a, Fab) (not necessarily corresponding 
to some Killing vector) at  p, we may  always define such a pair at each 
point of y via (B.2). We call this operation Ki l l ing  transport.  In  general, 
if we apply Killing t ransport  to some pair (~a, F:b) along a closed curve 
beginning and ending at p, then, on returning to p, the new pair , a ' 
will not coincide with our original pair. Suppose, however, tha t  there 
exists a Killing vector on M whose value and derivative at p is (~a, Fa~). 
Then, evidently, for every closed curve, we shall have (C '~, F~b)=  (C a, 
Fab ). Conversely, f f  (C a, Fab ) is given at p and if, for every closed curve 
we have (C'a ,F~b)= (~:,Fa~), then there exists a Killing vector on M 
whose value and derivative at  p is precisely (C a, F~b ). 

Let  V denote the 10-dimensional vector space of all pairs (C ~, Fab ) 
at  p. Each closed curve, beginning and ending at  p, defines a linear 



Limits of Spacetimes 191 

transformation on V. That  is, we have a "Killing holonomy group" at p. 
The fixed points under this group correspond precisely to the Killing 
fields on M. In particular, this group permits us to make the useful 
distinction between global Killing vectors, which are well-defined over 
the entire manifold, and local Killing vectors, which are defined in a 
neighborhood and which, when extended over the entire manifold, 
become many-valued. Local Killing vectors may  be defined as the fixed 
point~ of the subgroup of the "Killing holonomy group" ob ta~ed  by 
permitting only closed curves through p which may be contracted to a 
point. 

We mention the following corollaries of the above discussion. 
Corollary B 1. I] a Killing vector and its derivative both vanish at a 

single point, then the Killing vector vanishes everywhere. (This corollary 
may be regarded as the infinitesimal statement of Theorem A 1.) 

Corollary B 2. Let M be a spaeetime, and suppose that there is a Kil~ing 
vector ~a defined on some open subset U o] M.  Then ~a and all its deriva- 
tives approach finite values on a U*. 

Corollary B 2 provides a useful test for the extendability of a space- 
time. One way to establish the nonexistence of an extension of a given 
spacetime is to find some scalar invariant which becomes infinite in the 
region across which we plan to carry out the extension. Corollary B 2 
asserts that,  in the construction of such invariants, it is Mso permissible 
to use scalars construc¢ed from Kil]iug vect~)rs and their derivatives. 

Since KiIling transport  is essentially tied up with the rigidity of the 
metric, and since conformal metrics are also rigid, we might expect to 
be able to define conformal Kilting transport.  Let  ~a be a conformal 
Killing vector, and set 

1 
Va~b = Fab + - ~ g a b  , 

lea = VaqJ, 

where Fab is skew. Commuting derivatives as before, we find that,  for 
any curve 7 with ~angen~ vector ~a, 

~a Va ~b ~a (F  a b 1 ~ , = -Jy -~  gab~ 9/ 

V aVa~0 = V aka, (B.3) 

~a~TaF bc = ~a(R  beaded + k[bgc]a) , 

~a Vakb = ~a(~alTaL~b + ~oLab ÷ 2 Ra(aFb) a), 

* Of course, $~ witl not in general be extendable to a Killing vector over allof M, 
e.g., the timelike Killing vector in the exterior region of the oscillating fluid bah 
solutions [11]. 
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R 1 where La~ = a s -  ~-gab R. These equations define con/ormal Killing 

transport of the 4-tuple (~a, Fa~, q~, lea)" The same remarks concerning a 
holonomy group (now acting on a 15-dimensional vector space) and its 
fixed points apply here, too. The fact tha t  we need specify two derivatives 
of ~a at a point in the conformal case is a reflection of the fact that  con- 
formal metrics are rigid of order two. 

We mention two applications of conformal Killing transport.  From 
Eqs. (B.3) it is immediately clear how to write down the general conformal 
Killing vector in fiat space. Introducing l~inkowskian coordinates x5 
then, when R~b~  = 0, we may  successively integrate equations (B.3) 
beginning with the last: 

~ = ~ ,  

F ~  = ~bx~ 1 + F ~ ,  

= ~ x ~  + ~ ,  

i- b 1 - ~ I _ 
~a = y k a ( X  x~) -- E (x~°)  Xa + Y~ax ~ ~ E ~ x a  + ~, 

where ~a, F-'~,b, ~, and ~a are constant tensors (fifteen numbers to define 
a conformal Killing vector). 

Conformal t ransport  also provides an elementary proof of the well- 
known [12] fact tha t  a spacetime whose Weyl tensor vanishes is, locally, 
conformally equivalent to flat space. When Cab ~ ~ = O, Eqs. (B.3) imply 
tha t  the spacetime has, locally, fifteen eonformal Killing vectors. Select 
one of these Killing vectors corresponding to a 4-tupIe (~a 0, 0, 0) at  p, 
and then choose the conformal factor so t, hat  the norm of the corres- 
ponding conformal Killing vector is constant. 

Finally, we remark tha t  there exists an analogous projective Killing 
transport.  The basic equations are identical with (B.2), except ~hat Fab 
need no longer be skew. 
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