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Abstract. We present here an infinite-dimensional Lie algebra, semi-direct product 
of the Poincar6 Lie algebra ~ by an infinite-dimensional abelian Lie algebra. It gives rise 
to Schur-irreducible subgroups of the unitary group of the (separable) Hilbert space, with 
a discrete mass-spectrum (real positive isolated mass-eigenvalues). Some related mathe- 
matical problems are also examined. 

I. Introduction 

In [1] an example was given of a Poincar~ partially-integrable local 
representation of a fifteen-dimensional Lie algebra, giving rise to a discrete 
mass-spectrum. Though this example is physical, we cannot get a unitary 
representation of a Lie group (a thing which would have been of technical 
commodity)  out of it, due to the lack of common analytic vectors [2]. 
In particular, due to the generator q, we are forced in [1] to introduce 
two domains So and S~, the former as a dense domain on which all 
the commutat ion  relations of the 15-dimensional Lie algebra are verified, 
the latter being the mass-spectrum domain - on which a 14-dimensional 
subalgebra is integrable, the trouble being caused by q which even does 
not leave this domain S~ invariant. 

As was already hinted in [1], and because of the results of [3], this 
example is an optimal  one (and of physical interest) within the frame- 
work of finite-dimensional Lie algebras containing the Poincar6 Lie 
algebra. Of course the necessity of introducing S o besides S~, as well 
as the fact that we have only partial integrability of the representation 
are caused by the fact that q is not a periodic function. The last suggests 1 
to replace multiplication by q by multiplication by sin q and cos q 
(supposing for simplicity a = 2~ in the notations of [1]). Doing so we get 
an infinite-dimensional Lie algebra with a common dense set of analytic 
vectors, namely this Lie algebra is integrable to a group representation. 
This last fact shows us that we have essentially only two types of possi- 
bilities of overcoming the negative results of [3] : either we have mass- 

I This suggestion was made to us by E. P. Wigner in Trieste in June 1968, and was 
at the origin of this work. 
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spectrum in a finite-dimensional Lie algebra with only partial integrability 
to (e.g.) Poincar6, or else we have mass-spectrum in an integrabIe re- 
presentation of a Lie algebra containing Poincar6, in which case the Lie 
algebra must be infinite-dimensional. 

Indeed in what follows we shall study mathematically an "infinite- 
dimensional version" of [1]. We shall see that in this case the translational 
ideal of N is even not nilpotent in the entire infinite-dimensional Lie 
algebra (its nilpotency was a basic point in the proofs of the negative 
results of [3]). Before we pass to the example itself, we shall say a few 
words about its possible physical interpretation. Our example will con- 
tain a k ind  of tensor product of polynomials (or other nicely behaved 
functions) in the energy-momentum generators, which will play the role 
of external observables of the system of particles, by a representation of 
the two-dimensional Euclidean group, generated by sinq, cosq, and Oq. 

In this hypothetical model the two-dimensional Euclidean group 
plays the role of an internal symmetry: we have rotations around a third 
axis in isotopic-space, as well as real translations in the (1-2) plane. 
sinq, cosq and ~?q are internal observables of the theory. 

Of course one understands immediately that such an example is 
generalizable with any (more realistic) internal symmetry, and that the 
utilization of (e.g.) S U(3) in such a context can give quite richier applica- 
tions. But now let us pass to the example itself. 

II. The Infinite-Dimensional Lie Algebra 

As in [1], we shall start with the infinitesimal skew-adjoint generators 
(M~, P~) of (in order to fix ideas and keep in view physical applications) 
an irreducible unitary representation Dr(too) of the Poincar6 group 
on a separable Hilbert space H 1, On the (complete) Hilbert tensor 
product H=LZ(O, 2~)@H1 we shall then consider the skew-adjoint 
operators Mu~ = I Q M~, Pu = I (~ P~ (where i stands for the identity 
operator on Lz(O, 2~z) and the bar for closure), and Pu(i Oq) which together 
with M.~ generate a Lie algebra D(~) representing the Poincar6 Lie 
algebra on H - here also, i0q is taken self-adjoint on the domain of 
absolutely continuous functions in q s (0, 2n) with the periodic boundary 
condition in q. All operators are essentially skew-adjoint on a common 
domain S. consisting of C ® functions periodic in q (with rapid decrease 
in the momentum-variables p if H 1 is realized, as usual, as a Hilbert 
space of functions on a hyperboloid), and D(~) gives rise to a unitary 
representation D(/~) of the (universal covering P of the) Poincar6 group, 

decomposable (cir. [1])into ~ D+(nmo)@Dj(O)@ ~, Df(nmo). 
n = l  n = i  
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Now (following Wigner's suggestion) we add to D(~) the four- 
dimensional abelian algebra D(A1) generated by the (skew-adjoint) 
operators P. sin q. The latter is invariant by commutation with the M~ 
and gives the ten-dimensional abelian algebra D(A2), generated by the 
P~,P~icosq, by commutation with the P~(i~q). On D(A2), the M,~ act 
through the tensor product of two representations D(1/2, 1/2) of the 
Lorentz Lie algebra 5¢. 

Continuing this process we shalt get the (n 3 3) abelian algebra 

D(An) generated by the n-products of the Pu's multiplied by sinq or 
i cos q, according to the parity (odd or even) of n, which are all essentially 
skew-adjoint on the domain S~. The ~¢i,~ act on D(An) through the nth 
tensorial power of D(1/2, 1/2) and leave it invariant, while the P~,(iOq) 
transform it into D(An+I) - which shows they are not nilpotent (for the 
adjoint representation). 

The commutation relations thus defined give us the infinite-dimen- 
sional Lie algebra G, semi-direct product N. Ao of 0~ by the infinite- 

dimensional abelian Lie algebra A 0 = ~, An, the sum being considered 
n = l  

for the moment as an algebraic direct sum of Lie algebras. Moreover 
all operators in D(G) are essentially skew-adjoint on a dense subspace 
of H, contained in S. and invariant under D(G). Thus we can define not 
only the unitary group D(/~) representing P but also abelian unitary 
groups D(B,) corresponding to D(A,) and representing the vector- 

gr°up °f translati°ns in (n + 3) "dimensiOnal space' and therefOre alsO 3 

an abelian group D(Bo) corresponding to D(Ao) - and even a group of 
unitary operators in H, algebraically generated by D(/~) and D(Bo). 

Now if f l  (P) [resp. f2 (P)] is any odd [resp. even] entire function of 
exponential type in p we can define on a subspace of S~ of functions 
sufficiently rapidly decreasing (in p) the (essentially skew-adjoint) 
operator fl(P)sinq + if2(P)cosq. Such operators will still have in 
common with the formerly defined operators in D(G) a dense set of 
analytic vectors (for instance entire functions in p decreasing on the real 
3-space like exp(-explpf2), times trigonometric polynomials in q). 
This remark will be useful in the next paragraph. 

Moreover, here also, the Lie algebra D'(G) is a Schur-irreducible 
set of operators in H [any bounded operator commuting to i t -  on a dense 
subspace e.g. (cf. [1]) -- is a multiple of identity], since the Lie algebra 
generated by (~?q, sinq, cosq) is Schur-irreducible in L2(0,2r0. The 
latter gives even rise to a (Schur, and topologically) irreducible (non- 
unitary) representation of the Euclidean group of a two-dimensional 
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space (e.g. by exponentiating the generators restricted to a dense domain 
of common analytic vectors, and then by taking the closure of the ob- 
tained bounded operators). 

HI. Completions of the Lie Algebra, and Semi-Direct Product Structure 
of Corresponding Groups 

1. Let L be the free Lie algebra generated over two elements x andy [4]. 
Its enveloping algebra is the tensor algebra T over the linear space 
generated by x and y. Denote by T* the completion of T with respect 
to its natural graduation, i.e. the associative algebra of formal (non- 
commutative) power series in x and y, and by L* the closure of L in T*. 

It is known that Log(Exp(x)Exp(y)Exp(-x))sL* and is equal 
to Ad(Exp(x)).y, which in turn is equal to Exp(adx)-y. This can be 
easily seen: ad x- y = Ix, y] = xy  - y x = (Lx - Rx) y in T (and T*) and 
Lx and R~ (left and right multiplication by x) commute; thus 

0o 1 / ° 0  1 \ / ~ o  1 \ 
Exp(adx) = ~--;(L~-o n! R~)"= ~j~0 ~.T L~)~k~O ~'(-- R~)k)= Ad(Expx); 

and evidently 

Exp(Ad(gxpx)y) = gxp(Exp(x)y Exp(-x))  = gxp(x) Exp(y) g x p ( - x ) .  

2. We shall now apply these remarks to our case. We have 

Ad(exp (t. Pu (i Oq))) sin q = 
z 

and similarly 

Ad (exp(tu Pu(i c~q))) i cos q 

exp(ad(t. Pu(i ~q))) sin q 

cosh (tu Pu) sin q + i sin h(t u P.) cos q 

= sinh(tu Pu) sinq + i cosh(tu P.) cosq. 

Now let F 1 (resp. Fz) be the linear space of odd (resp. even) entire 
functions of exponential type in the four' variables p. which are linear 
combinations of products of a polynomial in the Pu by finite products 
of sinh(tupu) and cosh(t~p,), where t=(tu), t'=(t'~)~R 4 and may be 
different from one term to another. Then it is easy to check that 
Ad(exp(t,v Mu0), with (tuv) e R 6 and summation for p < v, and therefore 
also Ad(D(/3)), leave invariant the abelian Lie algebra D(/lo) generated 
by the operators fl(P) sinq + if2(P) cosq when f l  e F~, f2 • F2, and 
p = (P,). 

From what we have seen, there is an abelian unitary group D(/~o) cor- 
responding to D(Ao), and which can be defined by exponentiation from 
it on a dense set of common (to D(t ~) also) analytic vectors. Denote by 
D(G) the semi-direct product D(~). D(Ao), where D(~) acts as usual on 
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D(A0)by adPu(iOq) and adM,  v. To this Lie algebra we are now in position 
to associate the group (51, = D(P). D(/~0), since D(/~0) is invariant under 
the automorphisms AdD(P) of the unitary group of the Banach algebra 
2,a(H) of bounded operators on H [remember that any element of /~  
is a (finite) product of exponentials]. 

3. The group 15o has a semi-direct product structure [which was 
not the case of the group algebraically generated by D(P) and the D(B,)]. 
Moreover, it is a topological semi-direct product, in the sense that the 
representa t ion/~Ad(D(/~))  of P into the group of automorphisms of 
D(/~o) is continuous with respect to the "strong-strong" topology defined 
by the following semi-norms: a ~  Ha(b) q'tl (norm in H, with any beD(Bo) 
and q, e H). Indeed one sees easily that, for any f l  (P) sinq + if2(P) cosq 
in O(Ao) and (o e H, the function 

(t.) ~ exp [(fl  (P) cosh (t u P.) + f2 (P) sinh (t u P.)) sin q 

+ i ( f  1 (P) sinh (t. Pu) + f2 (P)cosh (t. P.)) cos q] q) 

is a continuous function R4--,H; and similarly for the Lorentz part, 
which is generated by the exp(t,~ M,,), since we have 

Ad exp(tu, MuJ" exp( f  i (P) sin q + if2 (P) cos q) 

= exp[f i ( tu , ;  P) sinq + if2(tu,; P) cosq] 

where f~ belongs to F~ (~ = 1, 2) with respect to P, is a polynomial whenever 
f ,  is a polynomial (the degree of J~ being not greater than that of f , )  
and is an entire function of exponential type in (t, v)e R 6 (bounded with 
respect to the parameters associated with a compact subgroup). The D(B,) 
are invariant under the Lorentz part (but not under the translations). 

4. The group D(/~o) is a normed group, but not a Banach Lie group 
(respectively to this norm) since it is not complete in the norm topology 
of ~(H).  We shall thus consider also the unitary group D(/~o) of the 
commutative C*-algebra generated by the D(B,). It contains obviously 
D(/~o), is a Banach Lie group, and we can define in a similar way the 
topological semi-direct product Ig D = D(I~). D(/~0), which is a kind of 
completion of t5o. The (unitary abelian) normal subgroups D(/~0) 
and D(Bo) of (respectively) 15o and Ig o can be interpreted as abelian 
gauges, related to Poincar6 by a semi-direct structure. 

IV. Concluding Remarks 

1. An interesting question raised by our treatment is to get an 
intrinsic definition of a Banach (or normed) Lie group corresponding to 
some completion of the abelian Lie algebra A o. The definition we gave 
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of D(/~o) and ~ o  depends a priori on the considered representation. 
Abstract definitions of C*-algebras do exist, which suggests that at least 
for some classes of representations of P (from which we start) abstract 
definitions of D(/~o) and of ~ o  will be possible. But in any case D(/~0) 
is very big, though it can be made even bigger by completion to the unitary 
group D(B~) of the abelian von Neumann algebra it generates, and it 
would be of interest to define abstractly "analytic" (in the sense of D(/~o)) 
subgroups of it. 

Concerning ~D and D(/~o), an intrinsic definition of abstract groups 
t5 = P .  Bo and B 0 (respectively), of which the former are representations, 
can be easily given by means of the construction of formal Lie groups. 
Indeed B o is the abelian group defined as exponentials of elements of 
the abelian Lie algebra .4 o, the elements of which are of the form 
Sfl(T) + iCf2(T), with f~ E F~ (~ = I, 2), T being a generic element of 
the translational ideal J ,  of an abstract Poincar6 algebra [so that f~(T) 
belongs to the completion q/(5"a)* of the enveloping algebra of J , ] ,  
and where S and C are tWo additional generator s commuting between 
themselves and with J-,. We thus define, exactly as before, the abstract 
Lie algebra G as the semi-direct product ~ .  A0, and the abstract (uniquely 
defined) corresponding group (5 as the semi-direct product P.B o. 

The insertion of D(/~0) between D(Bo) and D(Bo)(CD(B*)) reminds 
us of the insertion of the henselization [5] ~ (algebraic functions) of the 
local ring ~ of (e.g.) an affine space between ~ (polynomials) and its 
"analytic closure" ~ (analytic functions), contained in its completion 

(formal power series). D(/~o) is a kind of "exponential closure" of 
D(Bo) in its topological completion D(/~o). This suggests that algebraic 
methods could be of use in the interesting problem of well defining 
intermediate ("analytic") subalgebras s~C'between a C*-algebra f f  and a 
(sufficiently "small") subalgebra ~¢ generating s¢, so that in our case 
D(/~o) would be the unitary group of such an intermediate subalgebra. 

2. The method of construction of 15o gives us all representations 
of the group 15 that can be obtained from representations of/~ by "tensor- 
product" of the translation generators with the Lie algebra {~?q; sinq, 
cos q}. It remains an open question whether other integrable skew-adjoint 
representations of the Lie algebra G can be found. [Notice that in all 
our representations we have the relation S 2 + C 2 = 1]. 

3. We know that ~ is "almost maximal" in the ~u(2, 2) Lie algebra. 
More exactly, the inhomogeneous Lorentz Lie algebra, plus dilatations 
of space-time (the latter being a one-dimensional algebra) is maximal 
in the conformal Lie algebra. Moreover, the Euclidean Lie algebra 
(of a 2-dimensional space) is a maximal parabolic subalgebra of ~ I(2, C). 
Both maximalities can be easily seen with graduations and filtrations: 
if we add to the generators rn.v and Pu of ~ the five generators c u, d 
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with {muv, cu} ,,~ ~a, [d, cu] = - c  u, [d, Pu] = Pu, [Pu, cv] = 2(gu~d + m~,,), 
we get the graduation ~ u ( 2 , 2 ) = L - l q - L ° 4 - L 1 ,  where L- l={cu} ,  
L°={m~,~,d}  and Ll={pu}.  We can also write ~ = L _ I D L o D L 1 ,  
where L a is (e.g.) the abelian subalgebra with nilpotent elements 
{m12 + too2 , m13 + too3 } and L 0 is generated by L, and the Cartan sub- 
algebra {m23 , tool }. The subalgebra generated by L1 and m23 of the 
(maximal parabolic) subalgebra Lo is isomorphic to the real Lie algebra 
{aq; sinq, cos q}. 

Our Lie algebra G can be considered in many ways as a filtered 
Lie algebra. It seems that the most reasonable one, in view of the preceding 
decompositions, is the following: 

D(G) = L'o = { M~,~; L'I} D L'I = { P u ( i ~ q ) ,  P~, sinq; L'z} D L' 2 

= { i e u e  ~ cosq; L'a} D " ' .  

The natural question is then how to "complete" our filtered Lie 
algebra G so that to obtain one of the "simple" algebras classified by 
Cartan (for a bibliography on primitive filtered Lie algebras and de- 
finitions concerned with this subject, we refer to [6]) - here we must, 
at least in the beginning, forget the operator origin of D(G) to concentrate 
on its structure. G being some kind of "tensor product" of ~ (more 
precisely, of L ~) by {L 1 , m23 }, it is possible that the completion of these 
to primitive algebras will give a hint at the structure of the wanted in- 
finite-dimensional primitive-Lie algebra. Conversely, once the latter 
is found, the representations of G we constructed here will give a hint 
at the way how to get some of the linear representations of this primitive 
algebra (a thing which has not been done yet in the mathematical literature, 
and of great interest). 

4. Most of what has been said here for P can be generalized to semi- 
direct products of a semi-simple Lie group by an abelian normal sub- 
group defined by an irreducible representation (what we call "special 
affine groups"). The unitarity of the representations can also be dropped 
without major difficulties, and other examples of filtered (or graded) 
infinite-dimensional Lie algebras of operators can be constructed 
along similar lines. 
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