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Abstract. The connection between the ideas of "contraction" and "analytic 
continuation" of Lie algebras and their representations is discussed, with particular 
emphasis on the contraction of the Poincar~ to the Galilean group. 

1. Introduction 

We continue the study of the relation between analytic continuation 
of Lie algebras, theh- representations and Lie algebra cohomology. The 
first topic we will t reat  will be a further development of the formalism 
when a Lie algebra structure is fixed, and an irreducible representation 
of it  is analytically continued. In [4] we showed that ,  if the relevant first 
cohomology group vanishes, then the Casimir operators of the Lie algebra 
are constants of the deformation parameter. Here, we will s tudy the 
formalism for the case where the first eohomology group does not vanish. 
We will obtain some insight into one of the main problems, namely, 
discovering when the first cohomology group is finite dimensional. 

Our next  topic will be to continue both the Lie algebra structure and 
the representation. This will provide a tie-up between Lie algebra 
cohomology theory and the Gell-Mann formula for the representations 
of Lie algebras. Again, we will find that  the beautiful ideas of the Kodaira- 
Spencer theory of deformation of structure provide us with a deep in- 
sight into the already known situation, and should be an invaluable 
guide to extending the existing theory to new situations. The case of the 
contraction of the Poincar6 to the Galilean group will be treated in some 
detail. 

I would like to thank R. KAL~AN for his hospitality at Stanford University 
while this paper was written. 

2. The effect of continuation of representations on the universal enveloping 
algebra 

Let  G be a Lie algebra, with X, Y , . . .  denoting its typical elements, 
IX, Y] its bracket. Recall tha t  U (G), the universal associative enveloping 
algebra of G is defined in the following way [3, 5] : 
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Construct the algebra of formal products X 1 . . .  X~ of elements of G. 
(Technically, this is the tensor algebra of the underlying vector space of 
G and is denoted by T (G).) I t  is an associative algebra: the product is 
defined in the obvious way by juxtaposition: 

( G . . . Z , ) ( r l . . . r ~ ) = ( G . . . X ~  r l . . . r s ) .  

Introduce the relations: 

X Y - -  Y X - -  [X, Y] = O. 

The quotient (associative) algebra is defined as U (G). (Technically, one 
considers the two-sided ideal of T(G) generated by  all elements of the 
form X Y - - Y X - - [ X ,  Y], for X,  Y C G ,  and defines U(G) as the 
quotient of T (G) by  this ideal.) 

U(G) can be made into a Lie algebra by defining the bracket as 
commutator:  

[A1, A~] = A1A~- -  A~A, . 

Thus, G can be considered as a Lie subalgebra of U (G). 
I f  9 : G --> L is a Lie algebra homomorphism, it  extends in an obvious 

way to an associative algebra homomorphism: U (G) -+ U (L). Explicitly, if 

A = X 1 . . . .  X,  E V (G) 

9(A) = 9 ( x l )  . . . 9(x,) E U(L).  

An element A of U (G) is a Casimir operator of (~ if it  belongs to the 
center of U (G) : i t  is readily seen that  this is equivalent to the condition 

[A,~]  = 0 .  

Often in the applications to physics one must consider an "extended" 
or "complete" universal enveloping algebra, which should, roughly, 
consist of all "functions" of the elements of G, rather than simply all 
polynomials. One way of making this precise might be to extend U (G) 
by adding all formal power series in the elements of G. Very little is 
known about such objects: The reader might keep in mind, however, 
tha t  such an extension is desirable, and that  much of what we say of a 
purely formal nature about U (G) can be extended with very little effort 
to such an extended algebra. 

Now, suppose that  94 : G --> L is a one parameter family of homo- 
morphisms of a Lie algebra G into a Lie algebra L. As in [4] we define the 
map o~ : G -+ L by the formula: 

d 
~o(x) = - d T  9 ~ ( X ) l ~  = 0 .  

Then, as we know, ro is a 1-cocyele of G with coefficients in the re- 
presentation 9', where 9'  assigns to each X E G the inner derivation 

Z-~[9(X),Z] of L. 
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The cohomology class in H~(¥)  determined by  co then "obstructs" the 
possibility of obtaining ~ from ~v 0 by  applying to it an inner auto. 
morphism of L. 

Suppose that  A is an element of U (G). Consider the element of U (L) 
given by  the following formula: 

d 

Can it  be computed in terms of o) ? 

Suppose, for example, that  

A --- X Y ,  with X,  Y G fi . 

el 
d~ d~ = " 

This formula suggests tha t  we define the right hand side as a new opera- 
tion between the 1.cocycles and elements of U(G): 

,o (xl . . . . .  x , )  = , ,  (x:) q ~ ( G . . ,  x~) + 

+ ~(x:) ~ (G) ~(x~) . . .  ~ (G) + " "  + ~ ( G . . . x ~ _ 3  o,(x~). 

To show that  it is well defined on U (G), we must verify that :  

¢ o ( X Y ) - - o o ( Y X ) - - o o ( [ X ,  r ]  = O. (2.1) 
But, 

o,(rx)--~(x r)  = ~ ( r )  ~ ( x )  + ~ ( r )  ~ ( x ) -  

- o,(x) ~ ( r )  - ~ ( x )  ~ ( r )  

= [o)(r), ~ ( x ) ] -  [~ (x ) ,  ~ ( r ) ]  

=--d,o(X, r ) - - o ~ ( [ x ,  r ] ) ,  
whence (2.1), since dro = 0. 

Let  us now compute 

co(A:A2), for A : , A ~ E U ( G ) .  
In  fact, 

( x : . . .  x~ r : . . .  rs) = ~ (x:) ~ ( x , . . .  rs) + 

"-~ ~o('X1 " • • ~ s - 1 )  ( - o ( Y s )  

--: ~ ( x : . . . x , )  ~ ( r l . . .  rs) + 

+ ~ ( G . . .  x,) o ( r l . . ,  r , ) .  
Thus we have: 

co(A:A2) = o~(A1) q~(A~) + 7~(A1) ~o(A~) 

for A1, A2 G U((]). 
6* 

(2.2) 
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Suppose now that ¢o = d W, for W ( L. 

~ ( r z )  = o~(r) ~(z) + ~(r)  o~(z) 

= (dW) (Y) ~(Z) + (~(r) dW(Z)) 

= [w, ~(r)]  ~(z) + ~(r )  [w, ~(z)] 

= [w, ~ ( r z ) ] .  

The general formula is obviously: 

( g w ) ( A ) = [ W , ~ ( A ) ]  for W ( L ,  A E U ( G ) .  (2.3) 

Suppose X C G: let us compute 

[~ (x), ~ (A)]. 

Suppose, for example, A - YZ.  Then, 

[~(x), ~ ( r z ) ]  = [~(x), ~ ( r )  ~(z) + ~(r)  ~(z) 
= [~(x), ~ (r ) ]  ~(z) + ~ (y )  [~(x), ~(z)] + 

+ [~(x), ~(r)]  ~(z) + ~(r)  [~(x), ~(z)] 
= [~(x), ~( r ) ]  ~(z) + ~ ( r )  ~([x,z])  + 

+ ~([x, r ]  ~(z) + ~(r)  [~(z), o~(z)]. 
Also, 

~([x, r z ] ) =  ~([x, r ] z +  f i x ,  z]) 

= ~([x, r ]  q~(z) + ~([x, r ]  ~(z) + 

+ ~( r )  ~([x, z]) + ~(r)  ~([x, z]).  
Hence, 

E~(X, ~ ( r z ) ] -  ~([x, Yz) = ([~(x), ~ ( r ) ] -  ~([x, r])) ~(z) + 

+ ~(r)  ([~(x), ~(z)] - ~([x,  z])) 

= x (o~) ( r z ) .  

This computation obviously generalizes to higher degree elements of 
U(G), giving the formula: 

[q~(X), oo(z])] = X (co) (zJ) + ~([X ,  A]) for X E O, A ( U (G) . (2.4) 

Thus, if A is a Casimir operator of U(G), 

[~(x), ~(A)] = x(~) (A) 
= d ( X  ~ co) (A) (2.5) 
= [~(x),  ~(A)]. 

Thus we have proved: 
Theorem 2.1. Suppo8e that the homomorphism satisfies the ]ollowing 

condition: q~ maps every Casimir operator o / U  (G) into a Casimir opsrator 
o] U(L). Then /1 -> ¢o(zJ) also maps a Ca.slmir operator o/ U (G) into a 
Casimir operator o / U  (L). 
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Suppose, in particular, that L is a Lie algebra of operators on a vector 
space that is irreducible in the sense that the only operators commuting with 
every element of L are the mu,~tiples of the identity operator I.  

Then, 
o)(A) = a(A, o))I (2.6) 

/or each Casimir operator A o/ U(G), where a(A, o)) is a bilinear, scalar. 
valued/unction defined/or Casimir operators zJ and/or 1.cocycles o). I f  
co cobounds, it is zero, so a (,) is really a bilinear /unction defined on Casimir 
operators A and cohomology classes in H 1 (of'). 

Suppose now that  G is semisimple. Suppose zJ 1 . . . . .  A~ are the basic 
Casimir operators of G, i.e., all other Casimir operators are polynomials 
in these (1 = rank, G = dimension of a Caftan subalgebra of G. Of course, 
it is a theorem about semisimple Lie algebras that  such a basic set 
exists). Then, if (2.6) holds, the mapping 

o)-> (a (o), 3 1 ) , . . . ,  a(o), A~)) (2.7) 

defines a linear mapping of H1(qJ) into C ~ if, for example, C (the complex 
numbers) is the field of scalars for the operators L. One conjectures that  
in certain circumstances this is one-one, hence, that  the finite dimen- 
sionality of HI(~ ') can be proved in this explicit way. One also can re- 
mark tha t  the standard methods of defining unitary representations via 
induced representation theory do indeed provide representations de- 
pending on l parameters. 

3. Cohomology modulo subgroups 

Suppose G, L, ~0, and ~' are as in Section 2. In  addition, let K be a 
subalgebra of G. Consider a deformation 2 -> ~ of ~ with 

d 
= - ~  ~ 1 ~  ~ o 

the corresponding 1-coeycle. Now, if 

~0~(X)=X for X E K ,  
we obviously have 

o)(X) = X J o) = 0 .  

Since do) = 0, we also have 
X _l d o) = O . 

Now, in general, suppose we consider the subspace of those eocycles 
o~ C Cr(~ ') such tha t  

O= X j o ) =  X jdo)  , 

which we denote by C~(~ ', K). Note that  

d C r ( q J ,  K ) <  C~+1(~ ', K ) .  
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Thus, we can define the r-th cohomology group of 9'  modulo K as the 
quotient 

Z~(9', I~)] dC~-1(9',  K ) .  

Summing up, we may say that  H 1 (9', K) measures the possible deforma- 
tions 2-+ 9~ of the homomorphism 9 such that  the representation 9~ 
restricted to K is fixed. There is obviously a homomorphism H r (9  ', K) -~ 
-~//'(9'). 

This is a standard construction in cohomology theory. Let  9g  be the 
homomorphism ~p restricted to K. Let  9K be the corresponding homo- 
morphism K -~ linear transformations on L. 

Every eochain in C~(9 ') defines by restriction to K a eoehain in 
-> H (gx). In  certain dimensions, Cr(gK), hence also a linear map Hr (9  ') r ' 

this is an exact sequence of the form: 

r t H~(9 ') ~ H (gK) -+ Hr+l (9 ' ,  K) -+ H r + l ( 9 '  ) -->" • • . (3.1) 

("Exact  sequence" means that  the image of each of these homomorphisms 
is equal to the kernel of the succeeding one.) In  practice, this is often 
used to compu~ Hr (9  ') in terms of H~(9 ', K) and H~(9~). 

These constructions are of great interest for our program of computing 
Ha(9') for homomorphisms of (~ arising from unitary representations 
since, as we will see, H1(9 ', K) is more readily computable. 

For example, suppose that  

G = K ~ P ,  with [K, P] c P, [P, P] c K , 

i.e., K is a symmetric subalgebra of G. 
Then, we have, for m E Z a ( 9  ' , K ) ,  X E K ,  X ( c g ) = 0 = X ] d ~ 9 +  

+ d ( X  ] co) = 0 hence 

[ 9 ( X ) , o ~ ) ( Y ) ] = e o ( [ X , Y ] )  for X E K ,  Y E P .  (3.2) 

Thus, the set of operators ~o(P) transforms under 9(K) like the representa- 
tion of AdK in P. The cocyele condition is now 

eo([X, Y]) = [9(X), ~o(Y)]-- [9(Y), o~(X)] = 0, for X, YE P .  (3.3) 

As we shall see, at least for G = S L  (2, R),  (3.2) and (3.3) seem to deter- 
mine H 1(9, K) by purely algebraic means. 

As we have seen, an o~ E Za(9 ') induces a mapping of U(G) --> U(L). 
Suppose that  L is a Lie algebra of skew-IIermitian operators on a Hilbert 
space H, and that  9 (G) is an irreducible family of operators on H. We 
constructed a homomorphism H a (9') -+ Rt by choosing a basis A 1 . . . . .  •t 
of Casimir operators for G, proving that  for o~ E Zi (9'), co (A1) , . . . ,  co (A z) 
are multiples ib 1 . . . . .  ibt  of the identity operator in H, and mapping 
the cohomology class determined by o) into (b 1 . . . . .  b~) E B ~. We would 
like to get some idea of how to compute the image in R z of H a (9', K). 



Analytic Continuabion of Group Representations. HI  81 

Suppose tha t  H 0 is a subspaee of H invariant and irreducible under 
the action of ~ (K), such tha t  all of H can be built up by  applying to 
H 0 polynomials in the operators ~ (P). We may ask: when do two Caslmir 
opera tors / !  1 and/13 of G give the same multiple of the identi ty in H ? 
Obviously, this is so if and only if ~(A1) and ~(/12) have the same value 
in H o. Let  us look at  the simplest case, namely we suppose that  

~ ( K ) H  o = 0 .  (3.4) 

(If I~ is a maximal compact subalgebra of a semisimple G, these are what 
H~LGASON [2] calls representations o/class 1. They are also sometimes 
known as spherical representations, since they are the representations 
whose matrix elements are the "spherical functions" in the sense of C)mTA~ 
and G]~LF~I).) Then, clearly, ~(/11) and ~(/1~) will be the same if 
/11-/19. belongs to the left ideal U(G)K generated by K. Notice, how- 
ever, tha t  if a Casimir operator /1  in U(G) belongs to U(G)K, and if 
o E Z 1 (~0', K) then 

o(A) = o .  

For, we know tha t  o(/1) is a multiple of the identity on H. To prove it  is 
zero, it suffices to show that  it is zero in H 0. However, if 

/1 =/1~/1~,  ~ t h  /1; E V(~) , / 1 ;  E V(~) ,  
then 

o, = a,(/1~) ~( /19  + ~(/1~) o,(A~) = ~(/1')  ~(A~) sinee o,,(A~) = O. 

Then, 
o0(/1) (H0) = O, since qo(A~)Ho = O. 

This suggests tha t  we choose (if possible) our basic Casimir operators 
/11 . . . .  ,/1z so that  A~+~ . . . . .  /1z is a basis for the Casimir operators in 
U (G)K. Then, we might conjecture tha t  the mapping H 1 (~', K) -~ R~ 
that  assigns (bl . . . .  , b~) E R ~ to o E Z~(~ ', K) is one-one. (At least for 
certain symmetrie spaces, one can prove that  m = rank of She symmetric 
space G/K = dimension of maximal Abelian subalgebra of P.) 

4. Computation for S L  (2, R) 

Now suppose that  G is the Lie algebra of S L  (2, R), i.e., O is generated 
by  elements X, Y, Z with: 

[Z ,X]  = Y; [Z, Y] = - - X  

IX, r ]  = - - Z .  

Suppose that  ~0 is anirreducible representation of G by skew-Hermitian 
operators on a tIi lbert space H, and tha t  L is the Lie algebra of skew- 
Hermitian operators on H. Define 

X + = X - - i Y ;  X - = - - ( X + i Y ) .  
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Then 
[z, x+]  = ~x+; [z, x - ]  = - i x - .  (4.1) 

Let  K be spanned by  Z, P by X and Y. Notice that  ~0 (X+) and ~0 (X-) 
are Hermitian adjoints of each other. 

Suppose that  co ff Z 1 (~0', If). We will compute co (X) and co (Y) using 
(3.2) and (3.3). Notice that  it suffices to compute co(X +) and co (X-), 
which are Hermitian adjoints of each other. 

We will proceed, as customary, by  diagonalizing the operator ~ (Z). 
(Since Z generates a compact subgroup of S L ( 2 ,  R),  q~(Z) has discrete 
eigenvalues. I t  can be proved that  these eigenvalues are simple and, with 
proper normalization, are integers.) There are two cases: either the 
eigenvalues of ~0(Z) from go - - ~  to 0% or they are bounded in one 
direction. We will work with the first case for the moment. Suppose then 

that  H is written as a direct sum 2 Hr of one.dimensional subspaces, 
T~--¢O 

each H ~ generated by  a single element ~r of norm one, with 

qD(Z)y 4 = i r ~  . 

(4.1) shows that  ~0(X+) and ~(X-)  are creation and annihilation opera- 
tors, sending H ~ into H r+l and H ~-1, respectively. Suppose, say, that :  

~ ( X + ) ~  = a ~ + l  

~ ( X - ) ~  = ~ * _ ~ _ ~ .  

(a* denotes the complex conjugate of 6.) Similarly, 

co(x-)v,~ = ~ * _ ~ _ ~ .  

The cocycle condition is: 

[~ (x+) ,  co ( x - ) ]  = [q~x-) ,  co ( x + ) ] ,  
or 

Now 

(4.2) 

X + X  - = - - X  ~ -  Y~ + i Y X - - i X Y  = - - A  + i Z  + Z 2, 

where A = X 2 + Y~- -Z  ~ is the Casimir operator of G. Then, 

--co(A) = co(X+i - )  = co(X+) of(X-) + of(x+) co(X-) .  

We want to show that  co (A) determines the cohomology class in H 1 (~', K) 
to which co belongs. Suppose then that  co (A) = 0. Then 

0 = fir--15~--1 -~ gr--1 ~ - - 1 "  (4.3) 

We want to show that  
so=  d A  , 
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where A is a skew-Hermitian operator on H. The condition o~ (Z) = 0 
forces 

[~(Z), A] = 0 

hence A maps H * into H r. Say, tha t  A ? r  = ia~p~. 

~(x+) = [~(x+), A] 

~o(X-) = [~(X-) ,  A ] .  

Since the second of these relations follows from the first on taking 
adjoints, we can solve the first, which takes the forth: 

fir = Jar a~ - -  iar  +l o:r (4.4) 

which can be looked on now as a set of equations for  a, .  Notice first tha t  
(4.4) implies (4.3): 

a* 8 ,  ----- [a,] 2 ( ia ,  - -  Jar_l)  (4.5) 

which implies (4.3). Conversely, (4.5) can be solved for a,  by recurrence. 
(4.3) then guarantees tha t  the a r are real numbers. 

Clearly, the same argument applies in case the spectrum of ~0(Z) is 
hounded below. We have an additional fact here however: oJ (A) is 
always zero. For, there is then an element ~ of H which is annihilated by  

(X-) and ~o (X-). Thus, 
(A) (~) = 0 .  

Since ~ (A) is a scalar operator, i t  is zero. This is the cohomologieal version 
of the fact tha t  the representations of this form are par t  of the "discrete 
series", and cannot be deformed continuously. This should give us a way 
of making precise what  is meant  by  "discrete series" in the case of more 
complicated groups. 

5. Analytically continuing Lie algebra structures and representations 
together 

So far, we have been considering continuation of representations and 
Lie algebra structures separately. An understanding of the combination 
of the two ideas is essential for an understanding of the Gell-Marm 
formula, which is just a particular case. Le t  us show this in the case of 
S L ( 2 ,  R), based on the t rea tment  in [4]. 

Let  us s tar t  off with the Lie algebra of the group of rigid motions in 
the plane, generated b y  elements Z, X' ,  Y' satisfying: 

[Z, X ' ]  = Y';  [Z, Y'] = - - X '  
(5.1) 

IX' ,  y ' ] - -  0 .  

Suppose an irreducible representation of this algebra by  skew-Hermitian 
operators on a Hflber~ space H is given. The operator X ' ~ +  Y'2 is 
a Casimer operator of this algebra: let us normalize so tha t  X '  2 + y,~ = I .  
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Form operators 
X~ = 1/2i[Z ~, X'] + I X '  

Y~ = l / 2 i [ z , ,  y+]  + i Y  

z ~ = z .  

Then, as was shown in [4], 
[x~, Yd = - z  

[z, x~] = Y~ 

[z, Yd = - x ~  

these operators (X~, Y~, Z) form a representation of the Lie algebra of 
SL(2, R). 

We now want to investigate more precisely what happens as 1-+ oo. 
Let  us set 8 = 1/y. Define 

~(x') = ] 1 2 e i [ Z ~ ,  x'] + x '  = ~ x ~  

~ ( r ' )  = e r~ (5.2) 

~o(z') = z. 
Then, 

[~(X'), ¢,(Y')] =--~*z 

[z, ~(X')] = er, = ~,(z') 

[z, ¢~(r')] =--~,(x'). 

These formulas can be interpreted as follows: 
Let  G be the vector space spanned by  the elements X', Y', Z. For each 

e, define a Lie algebra structure as [, ]~ on G by the following formulas: 

[X', Y']~ =--~Z 
(5.3) 

[z, x']~ = r', [z, r']~ = x'. 

Define ~ as above. Then, for each ~, the above formulas define ~ as a 
linear representation of the [, ]~ Lie algebra. There is no longer any 
singularity at  e = 0 or i = oo. Thus, passing from the "Inonu-Wigner" 
picture with which we began (where the Lie algebra structure remains 
fixed, and the representation is continued and the basis of the algebra 
is changed simultaneously) to the "Kodaira.Spencer" picture (where the 
Lie algebra and representation are continued simultaneously) is an 
enormous aid to a proper mathematical understanding of the situation. 

Thus, we can look at the Gell-Mann formula (5.1) in the following 
way: start  off with the Lie algebra defined by (5.1), which is the Lie 
algebra of the group of rigid motions of the plane. Define an analytic 
continuation of the Lie algebra structure by the formulas (5.3). This 
continuation is nonrigid in the Kodaira.Spencer sense, since for e > 0 
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the algebra is not isomorphic to the one with which we started at e = 0. 
The Gell-Marm formula itself, i.e., (5.2), now provides an analytic con- 
tinuation of the representation of the [, ]0 structure tha t  is given, each 
representation for e being a representation of the [, ]~ structure. 

Let  us now look for the interpretation of this in terms oI eohomology. 
Let  us change notations to conform with our earlier work. Suppose G and 
L are Lie algebras, with the bracket in G given by [X, Y], and suppose 

is a homomorphism G--> L. Again, let ~' be the homomorphism for G 
into the linear transformations on L given by: 

~0'(X)(Z)= [~o(X),Z] for X E G ,  Z E L .  

Suppose a one-parameter family 

(x, :Y) -~  [x, r]~ 

of Lie algebra structures is given on G, reducing to the given one for 
----- 0. Let  y : G -+ (linear maps on G) be the adjoint representation of the 
= 0 Lie algebra on G, i.e., 

y(X)(Y)= [X, Y] for X, r E G .  

Then, we know that  the formula: 

~(x, y)=~-~[x,  Y]A=o 

defines ¢o as a two-cocycle relative to y, i.e., on element in Z2(y), whose 
cohomology class in H*(y) measures the "nonisomorphism" of the 
structure at  y = 0 and tha t  for small, but  nonzero y. 

Suppose further that ,  for each 2, ~ is a linear mapping of G-+ L 
reducing to ~0 for 2 = 0, such that :  

~z([X, lr]~) = [~ (X) ,  ~ ( Y ) ]  for X, I r E G.  (5.4) 

Define ~ : G --> L by  the formula 
g 

O(x) = ~ ~(x)t~= o 

0 is a one-cochain in C1(~'). However, it  is not a cocyele. In  fact, let us 
differentiate (5.4) and set 2 = 0: 

O([X, r ] )  + ~(o~(X, Y)) = [0(X), ~(Y)] + [~(X), 0(Y)] .  

This gives the formula: 
(~) = d 0 (5.5) 

where ~0(o~) is the two-chain in C*(~0 ') given by 

(~) (x, r) = ~ @ (x, r)).  
Thus, ~o considered as a eoeyete in C~(y) is not necessarily a eoboundary, 
but  its image under ~0, ~ Co)), is a eoboundary, and the element ~ in 
CI(F ) is the first term in the analytic continuation of ~. 
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Now, this does not quite reflect the situation in the case developed 
above; o9 defined as the first derivative is zero, since the parameter )~ 
occurs to different order in the continuation of the representation and the 
Lie algebra structure. Suppose then that  

d [X,Y]x]~=o O for X, Y E G  d~ = " 

Define now 
d* 

~2(X,  Y) = 72-¢ IX, Y]~[~ = 0 for X, Y ~ G.  

Since the first derivations are zero, it is readily seen that  co 2 so defined 
also satisfies the coeycle condition. Then, 

dO=O,  
i.e., 0 itself is a cocycle. Let  

d ~ 
02(X) = ~ - ~  ~(X)I~  = 0. 

Differentiating (5.4) twice gives now: 

o2([x, Y]) + ~ ( x ,  y )  

~_ [ 0 2 ( X )  ' (p(]x)] + [q~(X), 02(Y)] + 2 [ 0 1 ( X ) ,  01(~7)]. 

This can be rewritten as 

--dO2(X, Y) + q~o~(Z, Y) = 2[01(X ), 01(Y)]. 

Now, the right-hand side obviously is a two-eoeycle in C2(q~ ') since the 
left-hand side is such a cocycle. Let  us denote this eocycle by 

[01, 01]" 
(This operation is discussed in the review article by  N I a ~ u I s  and 
RIC~ARDSO~¢ [6]. I t  turns out to depend only on the eohomology class 
determined by 01 in HI(~')). Then, we can write the relation as: 

q)e~ = dO2 + 2 [01, 01] 

i.e., the cohomology class determined by ~oo) in H~(~o ') can be written as 
a "square" of an element of H 1(~o'). 

In  summary, we have shown that  t.here are interesting relations 
between the deformation theory and the analytic continuation problems 
that  are of importance for the application of group-theoretical ideas to 
elementary particle physics. Before proceeding further with the general 
theory (in a later paper) it is appropriate to work out a further example 
that  is of the greatest importance for physics. 

6. Contraction o4 the Poincar6 group into the Galilean group 

Let  T be a vector space over the real numbers, considered as an 
Abelian Lie algebra. (One might think of T as the Lie algebra of the 
~ o u p  of space-time translations.) Denote elements of T by such letters 
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as X, Y, etc. Suppose a (X, Y) -+ Q (X, Y) is a nondegenerate, symmetric 
bflineax form in T. Let  K(Q) be the Lie algebra (under commutator) of 
all linear transformations A : T -> T that  satisfy: 

Q(AX, Y) + Q(X, A Y) = O. 

Thus, each such A is the infinitesimal generator of a one-parameter group 
of linear transformations on T that  preserve the form Q (,). Form the 
Lie algebra G (Q) as the semidirect sum of K (Q) and T, i.e., as a vector 
space G (Q) is the direct sum of K (Q) and T with the bracket defined as 
follows : 

IX, Y ] = 0  for X , Y ~ T  

[A1, As] = A1A ~ -  A~A 1 for A1, As E K(Q) 

[ A , X ] = A ( X )  for A E K ( Q ) , X C T .  

Now suppose Q~ is a one-parameter family of such bilinear forms, 
reducing to the given one at ~ --- 0. We can, of course, form G (Qx) for 
every value of 2. In  what sense can this be considered an analytic con- 
tinuation of G(Q), and how can we investigate the limit as ~ --> oo ? 

Since Qx is nondegenerate, for each ~ there is a linear transformation 
Bx : T -+ T with nonzero determinant such that  

Qx(X, Y)= Q(B~X, Y) for X , Y ~ T .  
Thus, 

Q~(X, Y)=Q~(Y,X)  forces Q(BX, Y)---Q(B~Y,X)--Q(Y,B~X) 

i.e., B~ -- B~, where B~ denotes the adjoint of B~ with respect to the 
form Q. 

Suppose A E K (Qa) : 

Q~ (A X, Y) + Qz (X, A Y) ---- O, 
o r  

0 = Q(B~AX, Y) + Q(B~X, A Y) = Q(BzAX, Y) + Q(X, B~A Y) 

Hence, 
BzA E K (Q). 

Thus, there is a map A ~ B~A = ¢¢~(A) from K(Q~) to K(Q) tha t  is not 
a Lie algebra isomorphism. Thus, we can define a one-parameter family 
[, ]a of Lie algebra structures on G (Q) by  carrying over the Lie algebra 
structure on G (Q~) via this isomorphism: 

IX, Y ] ~ = 0  for X, Y E T  

[A, Y]x=q~- lA,  Y = B F 1 A Y  for A E K ( Q ) , X E T  
[A1, A2] ~ = a~ [~-1A1, a~-lA~] (6.1) 

= Bx(BfIAtB~'IA2-- B~'IA~B;'~A~) 
= A~ B'Z'~A~-- As B~XA~. 
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Now, we can pass to the limit as 2 -~ c~: If  

B =  l i m B i  -1 , 

the limiting algebra has the structure 

[A, T L  = 0 

[ A , Y ] ~ = B A Y  for AEK(Q) ,  Y C T  (6.2) 

[_.41, A2] ~ = A 1 B A 2 - - A 2 B A  1 for As, A~E K(Q) . 

Further,  if B~ -1 is analytic Yx in the neighborhood of infinite, then the 
formulas (6.1) show that  the algebra for large 2 is a perfectly smooth 
deformation in the Kodaira-Spencer sense of the oo-algebra, which we 
denote by  6oo. 

The structure of Goo can be exhibited quite nicely if B is a projection 
operator B ~ = B as it  is for the case where G (Q) is the Poinear~ group, 
and Goo is the Galilean group. (There, B~ is the diagonal matr ix 

,~ = e2; e -- velocity of light) and B is the matrix 

0,, 1) 
Then 

T =  .BTe (X--B/r, 

Q(BT, ( I - -  B)T) = Q(T, B ( I - -  B)T) = 0 

(since B 2 =  B, and B = B*). 
Let  

A = I - - 2 B .  

Then, s ~ = I + 4 B  ~ -  4B  = I .  

Q (sX, s Y) = Q (X, s 3 Y) = Q (X, Y).  

Thus, s is an automorphism of T whose square is the identity which 
preserves the form Q: s defines a symmetric automorphism of K (Q) by 
the formula: 

8 ( A ) = s A 8  for A E K ( Q ) .  

Let  L be the set of all A 6 K (Q) such that  

s ( A ) = A .  

Let  P be the set of all A E K (Q) such tha t  

8(A) = A .  
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Then 
K ( Q ) = L ~ P ,  [ L , L ] c L ,  [ L , P ] c P ,  [ P , P ] c L .  

i.e., L is a symmetric subalgebra of K (Q). 
Now, s ( A ) = A  if ( I ~ 2 B ) A = A ( I - - 2 B ) ,  i.e., B A = A B .  s(A) 

= - - A  if ( I - - 2 B ) A = A ( 2 B - - I ) ,  or A - - 2 B A = 2 A B - - A ,  or 
B A  + A B  = A. Suppose, now that, as for the case where G(Q) is the 
Poinear6 group, 

dJmT = dimBT + 1. 

Then, if Y spans ( I - - B )  T, AEL,  A Y = a Y ,  and Q(AY, Y ) = 0 ,  
forcing a = 0 .  (Otherwise, Q(Y,  Y ) = 0 ,  and, since Q(Y, B T ) = O ,  
Q (Y, T) = 0 forcing Y = 0 since the form Q is nondegenerate.) 

Thus, BA = A = A B for A E L. Hence 

[A, Y ] ~ =  A Y =  [A, Y] for A E L, Y E T  

[A1, As]o~ = A 1 B A s - -  A 2 B A  1 = A1A s -  A~A 1 

=[A1, As] for A1EL,  A s E K ( Q  ) . 

Thus the adjoint action of L on the [, ]oo algebra is precisely the same as 
the adjoint action of L on G(Q). 

Let us continue to work out the rest of the structure of the [, ]oo 
algebra: 

[ A , Y ] c ~ = B A Y E B T  if A E L ,  Y E T .  

For A1, A s E P, 

[A1, As]oo = A I B A  s -  A s B A  , 

= AI(O A~B + As) - -  A2(--A1B A- A1) 

= - -A1AsB  + A1A~ + A ~ A I B - - A s A ~  

= [A I, As] ( I - -  B) = 0,  
since [A, As] E L. 

We can sum this up as follows: 
Theorem 6.1. The Lie algebra [, ]=¢ has the/ollowing structure: it is the 

semidirect sum o] the semisimple subalgebra L and the solvable ideal P + T. 
P -k T in turn is the semidirect sum o/the Abelian ideal T and the Abelian 
subalgebra P. Its commutator algebra, [P + T, P + T] is just BT.  

All this applies to the case where G(Q) is the Lie algebra of the 
Poinear~ group; and where the [, ]~ algebra is that of the Galilean group. 
Then, L is just SO (3, R). As L. MICHV.r, has pointed out, the fact that the 
complement of L in the Galilean algebra is an ideal, while it is not in the 
Poinear~ algebra, is the group theoretical fact responsible for making 
the S U  (6) theory of Gu~sEY, RADICATI and SAKITA, Galilean invariant 
while making the explanation, if any, of its relativistic invarianee more 
complicated and, up to the present, unsolved. 
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7. Analytic continuation oI the representations of the Poincar6 group into 
those of the Galilean group 

We have just seen tha t  the Lie algebra structure of the Poincar6 group 
can be deformed smoothly (in the Kodaira-Spencer sense) into the Lie 
algebra of the Galilean group. The next  step on the program should be 
to see if the unitary representations can be so deformed. This involves an 
interesting new point, since, as is well known [1], the physically inter- 
esting representations of the Galilean group are only representations u p  to  

a / a c t o r ,  i.e., are true representations of a central extension of the Galilean 
group. To understand this well, before we consider more general situa- 
tions, let us consider the simplest possible case, namely, of the Poincar6 
group in one-space dimension, x, and one-time dimension, t. The homo- 
generous par t  of the group, i.e., the Lorentz subgroup, is then tha t  which 
leaves invariant  the form 

c~t  2 - -  x 2 . (7.1) 

The Lorentz subgroup is then parameterized by  a coordinate 0, with 
transformations given by  

x -+ x cosh 0 + ct sinh 0 
(7.2) x 

t -+ - -  sinh 0 + t cosh 0 .  
6 

Thus, we have, for each value of c,  a group of transformations G ¢ acting 
on (x, t) space. In  this picture, the Galilean group is defined as the 
"l imit" (as explained in [3]) of these groups as c -> ~ .  

Let  us t ry  to construct linear representations of each of these groups. 
This can be done most  readily by  letting all these homogeneous groups 
act on the "velocity space ' u  corresponding to the space-time space 

(z, 0. 
X 

Let v = - / - .  Then, by  the transformations (7.2) v is transformed 

according to the rule. 
x eosh0 + ct sinh0 v eosh0 + e sinh0 

v--> --  (7.3) 
x sinh 0 + t cosh 0 v sinh 0 + cosh 0 
C 

Let us deduce the infinitesimal transformation X on v-space obtained by  
differentiating (7.3) with respect to 0 at 0 = O: 

v ~ X ( v )  = c T , 

o r  

= - - 7 1 ~  " 

t From a more general point of view, the "velocity space" is the projective 
space associated with the vector space (x, t). 
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By  passing ~o this v quotient space, the translation part of the Poincar6 
group has been lost. I t  can be regained by constructing functions on 
v-space that  transform under the one-parameter group (7.3) by  a linear 
representation of the Lorentz group; as is well-known, the relativistic 
expressions for momentum and energy do precisely this: 

m c  ~ mc$ 

(v) - V1 - ~1~ = V ~ -  ~ (7,4) 

m y  m v c  v E 

p(v)  - VI - v~l~ V ~ - ~  ~ = ~ -  
~OW, 

x ( ~ )  = ~ ( ( X ( v )  E + vX(E))) 

= c-r E +  } / ~ I  

~ s V s  
= l:r~ mcS(eS--v9 + c : - -  v: 

- -  V2 

Let H be now the space of square-integrable complex-valued 
functions v-~ v/(v ) on v.space, define X, E and p as skew-Hermitian 
operators on H as follows: 

1 d iv 
X (~) = -/(c ~ -- v9 -~ ~ -- 7- 

T(Y~) = ipy~ 

Thus, the commutation relations for these operators are 

[ X ,  E ]  : c p  

i x ,  p] = Z E 
C 

[E, p] = O. 
Then 

- - I  E 

[E, p] = 0 .  

We recognize that  (7.5) gives us a one-parameter family of Lie algebras 
1 

tha t  depends analytically o n - - .  The limiting algebra at  c = o o  is just 
c 

7 Commun. math.  Phys., Vol. 3 
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X in 1_ and converges to the tha t  of the Galilean group. --g- is analytic c ' 

d 
operator-fib-, which is just the operator of constant acceleration with 

respect to the Galilean group. However, the operator E is not analytic in 
1 

- - .  The physical interpretation suggests a way to proceed. Let  us "re- 

normalize" E by  subtracting off a constant tha t  "becomes infinite" at  
c = ~ .  We interpret this in the following group-theoretic way: enlarge 
the Lie algebra defined by  (7.5) by adding an element 1 tha t  commutes 
with all the other operators, i.e., the enlarged algebra is the direct sum 
with a one-dimensional Abelian subalgebra. Define: 

E' = E - - m c 2 1 .  

E '  is now analytic in 1 a t  ~ = c~. In  terms of the basis (X/c, E', p, 1) this 

algebra becomes: 

P = 1 2 E  = 7 -  (E + rod) = -~- + m (7.6) 

The limiting algebra as c -> ~ now exists, and is by  its construction, the 
1 

representation depending on c is analytic in ~- at  c = 0. However, the 

limiting algebra a t  c = 0 is not tha t  of the Galflean group, but  a central 
extension of it. This explains why the "interesting" physical representa- 
tions of the Galilean group are not true representations but  representa- 
tions only up to a factor. 

8. The flcll.Mann formula for contraction of the Poincarfi to the Galilean 
group 

Now, let us ask whether there is a formula, representing the Lie 
algebra of the Poincar6 group as functions of the generators of the Lie 
algebra of the central extension of the Galilean group constructed in the 
last section. (For simplicity, we continue to work with the groups 
corresponding to one-space dimension.) We suppose then tha t  X " ,  E",  
p "  and I are the generators of a Lie algebra, with the structure relations. 

[X", E " ]  = p" ,  [X",  p" ]  = 1 

[1, X"] = 0 = [E", p" ]  = [1, E " ]  = [1, p " ] .  (S.1) 

(For simplicity, we also suppose m = 1). Define 

X = c X "  
C 3 

E V~-2~"  (s.2) 
c ptt  

P= V ~ ' "  
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Suppose we are given an irreducible representation of the algebra 
elements defined by  the (X",  E",  p", 1) satisfying (8.1). Looking at  the 
computations in Section 7, we see that  the operators defined by (8.2) will 
satisfy the structure relations of the Poincar~ algebra providing that  

E " =  1/2p ''~ . 

However, IX",  E " - -  1/2p ''2] = p " - - p "  • 1, and 1 is in the center of 
the algebra defined by (8.1); if the representations is irreducible, it  is a 
multiple of the identity, which we can normalize to be the identi ty 
operator. Thus, E " - - 1 / 2 p  ''~ is a multiple of the identity, since i t  
commutes with all generators of the algebra. Notice that  a scalar multiple 
of the identi ty can be added to E "  without affecting the structure 
relations (8.1). Thus, we can normalize so that  

E "  1 ,, - - ~ p  - = 0 ,  

at  which point we see that  (8.2) is a "Gell-l~Iann formula" which "ex- 
pands" a representation of this central extension of the Galilean group 
to a representation of a central extension of the Poincar6 algebra which, 
however, is isomorphic to a direct sum of the " t rue"  Poincar6 algebra 
and a one-dimensional center, since the Poincar6 algebra has no other 
kind of central extensions. (This property of the Poincard algebra is 
well known to the experts, although it  is hard to find a direct, simple 
proof in the literature. Since we have developed in [4] Lie algebra 
eohomology theory independently of the much more complicated and 
general literature on homologieal algebra, we will now, for the reader's 
convenience, give an exposition of the cohomology theory of Abelian 
extensions of Lie algebras.) 

9. The connection between Lie algebra cohomology and extensions by an 
Abelian ideal 

Let  ~ be a homomorphism of a Lie algebra G onto a Lie algebra P, 
with kernel K, which is, of course, an ideal of G. In  addition, we suppose 
that  K is Abelian. Let. ~ be any linear map P -+ G such tha t  

T z ( X ) = X  for X E P ,  i.e., F 7 ~ = 1 ,  (9.1) 

where 1 is interpreted as the identi ty map. 
For  X, Y E P, define 

e%(X, Y) = ~r [X, Y ] - -  [~rX, ~ Y] .  (9.2) 

Thus, c% is identically zero if and only if ~r is a homomorphism. If  this is 
the case, then G is the semidireet product of K and the subalgebra 
~(P). The aim of the eohomology theory is to show when a new ~' can 
be chosen so that  c%, = 0 by  modifying z in a certain way. Note first 
7* 
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that  
~w~(X, Y) = 0 ,  i.e., a)~,(P, P)cK.  (9.3) 

Using the Jaeobi identity gives: 

~,(X, [Y, z]) = ~ IX, [Y, z ] ] - -  [~x, ~ [y ,  z]] 
= ~[ [x ,  y ] , z ]  + ~ [ r ,  [x,  z ] ] - -  [~x ,  ~ [ r , z ] ]  

(9.4) 
= o M [ x ,  y ] , z ] ) +  [~[x ,  y], ~z ]  

+ ~ , ( r ,  IX, Z] + [~Y, ~[x ,  z]] - [~x, ~ [ r , z ] ] .  
Further, 

[~[X, Y], ~Z] = [[~X, n Y], ~Z] + [~(X,  Y), ~g] .  
Hence 

~ . ( x ,  [y, z]) - ~=([x, r ] ,  z )  - -  ~ . ( y ,  [ x ,  z]) 
---- [~[X, Y] , zZ]  + [7~Y,z[X,Z]]--[gX, a[Y,Z]] (9.5) 

= [ ~ ( x ,  r), ~ z ] -  [~Ax,  z), ~Y] + [ ~ ( r ,  z), ~ x ] .  

We would like to interpret this as a condition do), -- 0, where con is taken 
as a two-cochain of P defined by some representation of ~0' of P by linear 
transformations on K. (9.5) suggests that  we t ry  to do this by defining 

~ ' ( X ) ( W ) = [ a ( X ) , W ]  for W E K ,  X E P .  

Let us see under what conditions this is successful. 

~'([X, Y] )=  [~([X, r)] ,  W] 

= [ o M X ,  Y) + [~X, ~ Y], w] 
= [~=(X, Y)W] + [~X, [~, (Y)], W] 

--  [~ r,  [=x,  W]]. 

Thus, ~'([X, Y]) will equal [~0'(X), ~'(Y)] if and only if 

[ ~ ( x ,  r),  K] = o.  

ince eel(X, Y) E K, the simplest hypothesis tha t  assures this is that  
[K, K] = 0 .  (9.6) 

Let us then assume (9.6). Further, we see that  as our notation indicates, 
q~' : P ~ (linear transformations on K) is independent of ~. 

(Proof: if ~' is another map P ~ G with ~ '  = 1, then 

~0(7c--~ ' )=0,  i.e., ( x c - - ~ ' ) ( P ) c K ,  
hence 

~'(x) (w) = Ix (x), w] = [~' (x), w] for W E K, X E P). 

Having interpreted w. as an element of Z~(~'), i.e., as a two-coeycle 
relative to the representation ~', let us look at the condition that  it be a 
eoboundary. Suppose that  

m . = d O  w h e r e O i s a m a p : P - + K .  
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Then, 
~ ( x ,  y) = ~'(x) ~ ( ~ ) -  ~'(Y) ~ ( x ) -  ~([x, r ] ,  

~[x, Y ] -  [~x, ~Y] = [x(x), ~(Y)] -  [~(y), ~(x)]-o([x, r]) ,  
o r  

( ~ +  0) ([X, Y ] ) =  [ ~ +  ~) (X), ( ~ +  ~)(Y)]  for X, Y E P ,  

i.e., ~ + q is a homomorphism P --> G. Reversing the steps proves tha t  
Theorem 9.1. I / K  is a~elian, the algebra G is a semidirect product o/the 

ideal K and a subalgebra isomorphic to P i /and  only i / the cohomology class 
determined by oa:~ in H 2 (qY) is zero. 

Suppose now tha t  conversely we are given a Lie algebra P a represen- 
tat ion ~' of P by linear transformations on an Abelian Lie algebra K and 
an element o> E Z2(~')- We construct an extension of G whose kernel is 
K in the following way. 

As a vector space G is isomorphic to the direct sum 

K ~ P :  
The bracket within K is given by  their given Lie algebra structure 

[X, Y] -- ~' (X) ( Y) for X E P ,  Y E K  

[X, Y] as computed in G 

= [X, Y] as computed in P + co (X, Y) .  

In  this way one proves the well-known result tha t  the extensions of P 
with kernel K are in one-one correspondence with H ~ (~'). 

Suppose now that  we consider extensions for which [K, 6] = 0, i.e., 
K is in the center of G. They are called central extensions. Clearly, then, 
the representation ~' is the representation which assigns the zero 
operator to each element of 1 ). Let  us now compute several of these 
cohomology groups in the case where K is one-dimensional, i.e., let us 
classify in certain cases of P the possible central extensions with a one- 
dimensional center. (This is the case of most importance for applications 
to quantum mechanics for there one is interested in projective unitary 
representations of the Lie groups P whose Lie algebra is P, i.e., assign- 
ments of uni tary operators to elements of P tha t  are not true representa- 
tions, but  such tha t  the actions of P on the "probabiliVies" (which are 
the absolute value squared of the "amplitudes") is a true representation). 

Suppose first that  P is, as for the Poincar6 group, a scmidirect sum 
L $ T of an Abelian ideal T and a semisimple subalgebra L such that  the 
action of L on T is irreducible. Let  ~ be the trivial representation of 1 ) 
on the vector space of the real numbers R. For  r = 1, 2 . . . . .  there is 
then a subspace W(~) E Z(~) such tha t  

Zr(q)) = Wr(q)) ~ dCr+l(q~) (9.7) 

X(W*(q~))C W~(q~) for all X E L .  
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Suppose r -- 2, and co E W2(10), X C L. Then 

o = x(o~) = d (X  / ~), 
hence: 

X J o.~ = Ox + dO'x 

where Ox E WI(~), and 10~ E C°(10). 
But,  d(C°(10)) -- 0, since 10 is the trivial representation of P. Thus for 

X,  Y E L ,  
x ( Y j ~ ) =  IX, r ] j ~ ,  

o r  

hence 

o r  

0 = X ( O y )  = 0 [ X , y  ] 

O[~,,T,] = OL = O ,  

X J o ) = O  for X E L .  

Thus, ~ is determined by  its restriction to T. But, eo (T, T) is then a real- 
valued skew-s3unmetrie form on T tha t  is invarlant  under the action of L. 
If, for example, P is the Poincar~ algebra, there is no such nonzero form. 
Hence, H 2 (f0) = 0 ~nd we have proved: The Poineard Lie algebra has no 
nontrivial central extensions. 

Now, let us turn  to the situation tha t  includes the Galilean group. 
Suppose again tha t  P = L (~ T, with 

[T, T] = 0, [L, T ] c T .  
However, suppose tha t  

L = L' $ L", T = T' $ T" ,  
with 

[L', L ']  CL',  [L', L" ]  CL",  [L', T ']  = 0 

[L', T"]  C T", dim T' ÷ 1 

[L", L"]  = 0 

[L", ~'] C~" 

[L", ~"] CT" 
L' is semisimple. 

Since L' is semisimple, subspaees W~(10) exist satisfying (9.7) such 
tha t  

X(o~) = 0 for o~ E W~(10), X E L ' .  

Jus t  as for the Poincar6 group, one then proves tha t  

X J o ) = O  for X ~ L ' .  

Suppose/urther that AdL'  acting on L"  and T"  is irreducible and the 
representations are equivalent, i.e., there i8 a vector space isomorphism 
o~ : L"  --> T" such that 

[ X , ~ ( Y ) J = ¢ ( [ X , Y ] )  for X ~ L ' , Y ~ L " .  
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Further,  suppose tha t  L" and T" admit  no nonzero real-valued skew- 
symmetric bilinear forms tha t  are invariant  under AdL' ,  but  tha t  they 
do admit  an invariant  symmetric b ~ e a r  form B ( ,  ). Then, we have 

(L",  L")  = 0 = ~ (T", T" )  
(9.8) 

0 = ~ (T' ,  P )  = 0 .  

Then ~o must  satisfy 

a ) ( X , Y ) = a B ( ~ ( X ) ,  Y) for X E L " ,  Y C T "  (9.9) 

where a is a real constant. 
This shows tha t  dimH2(~) ~ 1. Conversely, we must  show tha t  (9.8) 

and (9.9) define a nonzero element of H2(~). This can be done by  a 
straightforward calculation tha t  we leave to the reader. The result is 
then:  

Up to a normalization, there is but one nontrivial central extension o/the 
Galilean algebra. 
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