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Abstract. We consider the fbllowing statistical problem: suppose we have a light beam 
and a collection of semi-transparent windows which can be placed in the way of the beam. 
Assume that we are colour blind and we do not possess any colour sensitive detector. 
The question is, whether by only measurements of the decrease in the beam intensity in 
various sequences of windows we can recognize which among our windows are light beam 
filters absorbing photons according to certain definite rules? 

To answer this question a definition of physical systems is formulated independent 
of "quantum logic" and lattice theory, and a new idea of quantization is proposed. An 
operational definition of filters is given: in the framework of this definition certain non- 
orthodox classes of filters are admissible with a geometry incompatible to that assumed in 
orthodox quantum mechanics. This leads to an extension of the existing quantum me- 
chanical structure generalizing the schemes proposed by Ludwig [10] and the present 
author [13]. In the resulting theory, the quantum world of orthodox quantum mechanics 
is not the only possible but is a special member of a vast family of "°quantum worlds" 
mathematically admissible. An approximate classification of these worlds is given, and 
their possible relation to the quantization of non-linear fields is discussed. It turns out to 
be obvious that the convex set theory has a similar significance for quantum physics as the 
Riemannian geometry for space-time physics. 

i .  Introduction 

One of aims of axiomatic  q u a n t u m  mechanics  is to provide a most  
general descript ion of q u a n t u m  theories. This descript ion usually 
involves ideal objects called "yes-no measur ing devices" or "filters" 
which are considered elements of an abstract  set called " q u a n t u m  logic". 
In  most  papers on the foundat ions  of q u a n t u m  mechanics the class of 
measur ing  devices (filters) is assumed to be given a priori. The properties 
of this class are described by certain t radi t ional  axioms derived from 
mathemat ica l  logic and  lattice theory (see [2, 4, 14, t5, 22]). As a result, 
a certain s t andard  s tructure is obtained,  with filters corresponding to 
projectors in a Hilbert  space and  with pure ensembles of quan ta  being 
represented by points  upon  a uni t  sphere, 

This scheme, a l though useful, is somewhat  restricted. There exists 
a remarkable  contras t  between the variety of physical p h e n o m e n a  and  
the homogenei ty  of a uni t  sphere. It  seems strange that  all physical 
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situations could be represented by points of such a symmetric structure. 
A question thus arises whether quantum mechanics should not be 
generalized by introducing some more general spaces. Certains steps 
in this direction were taken in [7, 10, 13], where a generalized axiomatics 
of filters was introduced. However, the axiomatic approach is not the 
most appropriate here: instead of fixing a priori the structure of filters 
we should rather look for some physical determinants of that structure. 
This brings us to a basic question: what, precisely, are filters? How do we 
distinguish them from other particle absorbents? 

Some authors say, that a filter is any object with the two following 
properties: (1) it divides a beam of particles into two parts, of which 
one is absorbed and the other passes through the filter; (2) any particle 
passing through the filter with certainty (i.e. with probability I) must 
pass through it with all properties unaffected. This description, although 
plausible, is not operational. In order to check whether a device does or 
does not change the properties of certain particles we must first be able 
to measure these properties. But in order to do this we must first have 
measuring devices (filters)! To avoid the "vicious circle", we need an 
operational definition of filters which would not assume any a priori 
ability of analyzing the beam. Such a definition is proposed in § 5: it 
consists in a generalization of constructions due to Ludwig [10] and 
D~ihn [3]. In the next sections we show that the solution of this basic 
problem leads to certain practical conclusions: we do not need to assume 
that filters form an orthocomptemented lattice, but we can say, when it 
will be so. We can also explain a possible role of non-Hilbertian structures 
in quantum physics, and we can propose a quantization procedure which 
does not affect the natural structure of non-linear theories. 

2. Information Systems 

All our ideas can be presented by considering a simplified world 
containing three types of objects: (1) sources of certain particle beams, 
(2) detectors measuring the "intensities" of these beams, and (3) macro- 
scopic objects which may be located between the source of a beam and a 
detector; these objects will be called "obstacles" or "transmitters". We 
assume, that our world is stationary: for any fixed arrangement of objects 
between the source of any beam and any of the detectors the average 
intensity measured by the detector is time independent; moreover, 
this intensity depends only on the sequence of obstacles between the 
source and the detector but not on the distances between them. These 
assumptions mean that, in fact, we are describing a small section of an 
optical bench; however, all abstract concepts introduced by the use of 
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this model posses a more general significance. Our purpose is now to 
give a mathematical  description of the phenomenology which can be de- 
veloped in our simplified world. 

With this aim, we introduce three abstract sets: 
(1) a set B of abstract objects x, y . . . .  called "beams";  
(2) a set T of objects a, b, . . .  called "obstacles" or "transmitters"; 
(3) a set D of objects a, f ,  9 . . . .  called "detectors". 
We shall interpret the abstract objects (beams, obstacles, detectors) 

as not corresponding to concrete physical objects but rather to whole 
classes of equivalent physical objects: two objects are equivalent if 
they behave identically in all experiments which can be performed on 
our optical bench. The physics of our simplified world can now be 
described in terms of adequate algebraic operations in the triple (D, T, B). 

First of all, we assume, that there exists a mapping D x B---,R which 
assigns to any pair of elements d E D, x ~ B a real number dx. This 
number is interpreted as the average intensity of the beam x measured 
by the detector d. With this assumption, beams and detectors become 
dual: each detector d ~ D determines a functional d(...) on beams (a 
detection functional) and each beam x E B determines a functional 
( . . . )x on detectors (a beam functional). Since our abstract objects re- 
present equivalence classes, each abstract beam (detector) is completely 
determined by the corresponding beam (detection) functional. From 
now on we shall not distinguish between the abstract beam (or detector) 
and the corresponding functional. We assume that B contains precisely 
one element 0 with all intensities vanishing, i.e. dO = 0 ("no beam"), 
and D contains precisely one "blind" detector 0 which determines the 
vanishing detection functional 0x = 0. 

The algebraic structure of B will be so defined as to reflect the physics 
of mixed beams (mixed statistical ensembles). Following Gunson [6] 
we assume, that there exists an operation + in B assigning to any pair 
of elements x, y E B a new element, denoted x + y, called a mixture of 
x and y. The physical meaning of x + y can be associated, for example, 
with the following prescription. We locate the sources of beams x and y 
so that the resulting beams both hit the same detector d: 

Fig. 1 
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When the angle c~ in Fig. 1 tends to zero, and provided that the beams 
x and y are of such a low intensity that their mutual scattering can be 
neglected, the detector measures the properties of the beam x + y [i.e., 
it reads numbers d(x + y)]. The operation + will be assumed to obey the 
following laws: 

x + y = y + x ,  (2.1) 

x + 0 '  + z) = (x + y) + z ,  (2.2) 

x + 0 = x ,  (2.3) 

x + y + z  = x ~ y =  z = 0. (2.4) 

The last property means that the formation of mixtures is, in a 
sense, a unidirectional process: once we produced x + y we cannot 
return to x by adding some new mixture components.  

The algebraic operations in T will be so defined as to describe the 
composition of transmission processes. When a beam x passes through 
an obstacle a we obtain a new beam which will be denoted ax: 

CI× ~ × 

CI 
Fig. 2 

Hence, each obstacle a e T acts as an operator in B. This suggests 
that the obstacles can be multiplied: for two elements a, b e T the  product 
ab will have the meaning of an operator product and it will be inter- 
preted as an obstacle composed of two successive transmitters b and a: 

obx 

ab ^ 

b 
Fig. 3 

The above multiplication is, in general, non commutative. This can 
be illustrated by considering a light beam and two Nicol prisms No and 
N~ with their planes of polarization forming an angle c~: if 0 < c~ < ~/2 
these two prisms do not commute since their products NoN ~ and N~N o 
produce light beams with different linear polarizations. Hence, T is, in 
general, a non-abelian semigroup of operators in B. The elements of T 
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can be alternatively represented as operators in D. For any d e D and 
a~  T the product da will be defined by: (da)x =d(ax), and it will be 
interpreted as a detector which is obtained by covering the window of d 
by means of the obstacle a: 

da 

d a 

Fig. 4 

With the above definition T is isomorphically represented by a 
semigroup of operators in D (which multiply the detectors from the right). 
We shall assume that the semigroup T contains two special elements 0 
and 1 :0  is an obstacle absorbing everything, i.e., 0x = 0 and dO = 0 
for any x s B, d e D, and I stands for the identity operator ("no obstacle"). 
Obviously, a 0 = 0 a  = 0  and al  = l a = a  for each a~  T. The triple 
(D, T, B) along with all the operations listed above will be called a 
9eneral information system. 

The existence of the operation + in B leads to an important classifica- 
tion of transmitters and detectors. A transmitter a e T will be called 
linear if a(x+ y )=  ax + a y  for every x, y e B; otherwise, it will be called 
non-linear. Similarly, a detector d e D will be called linear if d(x + y) 
= dx + dy for every x, y e B; otherwise d will be called a non-linear 
detector. Although most of the detectors and transmitter which appear 
in nature exhibit a linear behaviour, non-linear transmitters (detectors) 
can also exist. An example is represented in Fig. 5. 

Exj 1 
, Red Light beam 

i ~V io [e t  

Fig. 5 

A light beam falls onto a device a where it is analyzed: the red compo- 
nent is directed towards the exit window (Ex) while the violet one hits 
the photocell (Ph). The window is open if the photocell registers a 
sufficient intensity of the violet light. The device a is obviously non- 
linear: if x is a strong enough beam of violet light and y is a beam of red 
light, then ax = ay = 0 but a(x + y) = y 4= O. 
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As this example indicates non-linear transmitters can be interpreted 
as channels with memory (or with anticipation) in the sense of coding 
theory: they are sensitive not only  to the properties of single particles 
but also to the sequence of particles within the beam. On the contrary, 
linear obstacles have neither the ability of anticipation nor memory; 
by acting on a mixture of two beams they transform each mixture 
component independently, which means that they react only to the 
properties of single beam quanta. 

Definition. An information system (D, T, B) containing only linear 
transmitters and detectors will be called linear; otherwise (D, T, B) 
will be called a non-linear information system. 

Although it would be interesting to analyze non-linear systems 
and describe the information coded in sequences of beam particles, we 
devote this paper to a narrower domain: our programme is to reconstruct 
the physics of single beam quanta. For  this reason, we assume, that all 
non-linear obstacles and detectors which exist in our simplified world 
have been identified and eliminated as the result of a preliminary step 
of the phenomenology and we deal only with a linear (D, T, B)-system: 
such a system does not lead to problems in coding theory but it reflects 
the physics of single beam quanta. 

3. A Linear System 

The above restriction, once introduced, yields some obvious possibili- 
ties of completing the algebraic structure of (D, T, B). Given the operation 
+ in B, it is natural to introduce a multiplication of beams by non- 
negative numbers. For any natural number n and any x e B we define: 
nx = x + ... + x. A consistent generalization can be obtained by assuming 

that for any number 2 > 0 and for any x e B there exists a beam y e B 
(denoted y = 2x) such that: 

dy = 2dx ,  d e D.  (3.1) 

Eq. (3.1) uniquely determines an element of B which will be interpreted 
as a beam of "the same nature" as x but of a different total intensity. 
The product 2x possesses the following obvious properties: 

lx  = x, 0x = 0,  (3.2) 

2(px)  = (2#) x ,  (3.3) 

(2 +/ t )  x = 2x + #x ,  (3.4) 

2(x + y) = 2x + 2y.  (3.5) 



Theory of Filters 7 

Since the beams  canno t  be mul t ip l ied  by negat ive  numbers  the 
set of  beams  B is not  a l inear  space. However ,  B admi ts  a convenient  
r ep resen ta t ion  as a convex cone in a real  l inear  space X so that  the 
l inear  c o m b i n a t i o n  with posi t ive coefficients defined in B becomes a 
special  case of  the general  l inear  c o m b i n a t i o n  in X. The  space X can be 
cons t ruc ted  as the set of  formal  differences x - y of  beams  x, y ~ B with 
the a s sumed  ident i ty :  x -  x = 0 (see e.g. [6]). Symbol ica l ly :  X = B -  B. 
The  e m b e d d i n g  of  B in X is done  by assigning to each x ~ B an e lement  
x -  0 6 X. The  set B then becomes  a positive cone in X. 

Definition. A subset  B in a real l inear  space X is called a positive 
cone if: 1) x, y e B ,  2, k t > O ~ 2 x + p y ~ B ,  and 2) x ~ B , - x ~ B ~ x = O .  

W e  shall call B a cone of beams or a statistieal cone. F r o m  now on, 
we shall  use symbols  x, y, z, to deno te  a rb i t r a ry  e lements  of  X and no t  
only  e lements  of  B ( remember ing ,  however ,  that  only  the e lements  
x, y, ... ~ B represent  physical  beams).  

The  s t ruc ture  of  D will also be specified. U p  to now, we have re- 
presented  the de tec tors  d, f ,  9 . . . .  ~ D as l inear  funct ionals  on B. However ,  
it will be more  convenien t  to th ink  of each de tec tor  d E D as de te rmin ing  
a l inear  funct ional  in the to ta l  space X accord ing  to the prescr ip t ion :  

d ( x - y ) = d x - d y ;  x, y e B .  1 (3.6) 

Given  two funct ionats  d , f  represent ing  cer ta in  detectors ,  it is 
r easonab le  to assume that  their  l inear  c o m b i n a t i o n  2 d + # f ,  with 
a rb i t r a ry  real  coefficients, also represents  a cer ta in  way of detect ing 
beams :  hence, the set D of all de tec tors  forms a real l inear  space. Since 
only the values of  de tec tors  on B have a direct  physical  meaning,  we 
in t roduce  the fol lowing inequal i ty  re la t ion  in D: we shall  write d < f  if 
dx < f x  for every x ~ B. Obvious ly ,  the above  inequal i ty  is a pa r t i a l ly  
o rde r ing  relat ion.  To summar ize ,  we can represent  the set of  beams  B 
as a posi t ive  cone in a real  l inear  space X, and  the set of  de tec tors  D 
as a par t i a l ly  o rde red  l inear  space of  funct ionals  in X. 

As it is k n o w n  from papers  on ax iomat ic  q u a n t u m  mechanics  
(see e.g. [6, 10, 3]) the geomet ry  of the B-cone plays a decisive role in the 
physics  of  par t ic le  beams.  A desc r ip t ion  of  this geomet ry  should  be 
based on the de tec t ion  funct ionals  (3.6). These funct ionals  lead to a 

The uniqueness of this definition can be shown as follows. Let X be a real linear 
space spanned by a positive cone B C X and let ~/be any mapping of B into a real linear 
space Y such that r/(2 i x i + 2 2 x2)  = 3`1 r/Xi + -~-2 r/x2 for any 3`1, 3'2 => 0 and xl, x2 • B. Then 
the formula t / (x -y )=  qx-qy(x,y•  B) uniquely extends t/ to a linear operation in the 
total space X. In fact, suppose, an element z ~ X can be represented in two ways as a differ- 
ence: z = x - y = x ' - y '  where x,x',y,y'~B. Then: x+y '=x '+yeB and so: fix+fly' 
=rlX'+tlY~tlx--tly=rlx'-qy', which implies the uniqueness of our definition. By 
taking Y= R we obtain the uniqueness of (3.6). 
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natural  choice of  topology in X (and in B). We shall call a detection 
topology or D-topology the weakest topology in which all detection 
functionals are cont inuous;  with this topology X becomes a locally 
convex linear topological  space: we assume that  B is closed in X*.  
In a symmetric way we shall introduce in D a topology determined by 
beams:  we shall call B-topology the weakest topology in which all beam 
functionals are continuous.  With this topology D becomes a locally 
convex linear topological  space. 

A basic concept  in the geometry  of  the B-cone is that  of  a wall (also: 
completely convex subset [10], extremal subset [3], face for polyhedra).  

Definition. Given a convex set C C X, a wall of C is any convex subset 
C 'C  C such that whenever C' contains an internal point  of any straight 
line internal I C C, it also contains the total interval I. Formal ly :  x~, x2 ~ C, 
/~IX1 + 22X 2 ~ C'  with 2~, 22 > 0 and 21 + -~z = 1 ~ x  1, x 2 e C'. 

Geometrically,  we can interpret a wall as a "plane section" of  a 
bounda ry  of  the convex figure: 

Fig, 6 

Since the convex set B C X is a positive cone, the non-empty  walls of B 
are also convex cones with vertices at 0 (see Fig, 7). A physical significance 
must  be at tr ibuted to the closed walls of B, since they are related to the 
behaviour  of  detection functionals. We have: 

Proposition i .  I f  a linear functional 4: X ~ R  is non-negative in B, 
then the subset B4,= o = {x ~ B : ~bx = 0} is a wall of B. I f  ~ is a detection 
functional the wall Bo= o is closed. 

Proof. Since q5 is linear, Be=0 is a convex subset of B. Moreover ,  if 
x l , x z ~ B  and 2~x 1 +2zxz~B¢=o with 2 1 , 2 2 > 0  then 21~bx 1 +22q~x 2 
= ~b(21xl +22x2)  = 0. Since qSx 1 and (bx2 are non-negat ive numbers  

* Otherwise we could extend B to its closure in X by adjoining some "idealized 
beams". 
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this is only possible if qSx 1 = (~X 2 = 0 ,  i.e. x 1 , x 2 e B4~= o. Hence, B4,= o is 
a wall. If ~b is a detection functional, B,= o is closed as a consequence of 
the definition of the detection topology. 

Generalization. If dl and d2 are two detection functionals, such that 
d 1 ~ d  2 everywhere in B, then the subset Bdl=az= { x s B : d l x  = dax } 
is a closed wall of B. 

The above facts suggest a natural physical interpretation of closed 
walls, which we shall outline following Ludwig [10]. Suppose d is a 
detection functional, and d > 0 everywhere in B. The equation dx = 0 
expresses a certain verifiable property of the beam x e B :  the beam x 
is "invisible" for the detector d. Because of Proposition 1 this property 
is of such a nature that whenever a beam x has it, each component of x 
must have it too: we can decompose x into a mixture of only such 
components which are again "invisible" for the detector d. Thus, the 
property dx  = 0 concerns not only the beam x as a whole but it must 
also be attributed to every portion of the beam matter. This means that 
the equation dx = 0, in fact, specifies the type of particles carried by the 
beam x. 

These considerations suggest that various informations we can 
have about the type of beam matter are represented by various closed 
walls of B: "thicker" walls correspond to less specific informations and 
"thinner" walls to more detailed informations. 

Specil 
typ 

0 

Fig. 7 

In particular, the improper wall B represents the most general 
information possible (no information). On the other extreme there are 
one-dimensional walls (provided they exist): they correspond to max- 
imally specified sets of non-contradictory information. Each beam 
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belonging to a certain one-dimensional wall of B is of maximally specified 
type: it cannot be represented as a mixture of two components one of 
which would not be proportional  to the other. Beams of this sort are 
called pure. 

Algebra of Transmitters 

While the B-cone represents the types of beams, the set of transmitters 
T stands for operations which can be performed on the beam matter. 
Up to now transmitters were represented as linear operators in B. 
However, since B spans X, we can assume that each element a e T acts 
also as an operator  in the total space X according to the prescription: 

a ( x - y ) = a x - a y ;  x, y e B .  2 (3.7) 

The above formula defines a certain continuous 3 linear operator 
in X transforming the B-cone into itself. With the definition (3.7) the 
set of transmitters becomes a part  of the linear algebra ~ ( X )  of all 
continuous linear operators in X. 

Our  assumption, that we can multiply beams by non-negative 
numbers asserts that T contains non-negative number operators. 
Since T is a semigroup this implies that we have in T the multiplication 
of transmitters by non-negative numbers. Since, further, transmitters 
act as operators they can be added giving new operators: we shall 
assume that the set of transmitters is closed with respect to the operator 
addition. The meaning of this assumption is intuitively clear: if operations 
a and b can be performed on beams, then an operation c = a + b can 
also be performed by applying a sort of a parallel arrangemen t: 

~ A  
(Q+b)x x 

- - - - , t  ............. 

mp[ifier 

Fig. 8 

2 See footnote to page 7. 

3 The continouity is assured by the assumption about the "double role" of elements 
a e T (see § 2). Indeed, the topology in X is determined by the family of "cylindric" subsets 
of form d-  1 G = {x e X : d x  e G} where d are elements of D and G are open subsets of the 
real axis. Now, since each a e  T acts as an operator in D, each of subsets a - l ( d - l G )  

= { x  e X : a x  e d - ~ G} = ( d a ) -  1 G is again "cylindric". Hence, for any open U C X, a-  1 (u) 
is again open, which proves the continouity of a. 
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Consequently,  we have three operat ions  in T:  addit ion of  transmitters, 
multiplication of  transmitters by non-negat ive numbers  and general 
semi-group multiplication of  transmitters. Since the transmitters 
t ransform the B-cone into itself, for any non-zero operator  a ~ 2 ' (X) ,  
at mos t  one of  the operators  a and - a  belongs to T. This indicates that T 
is a positive cone in the linear space ~°(X): this cone is such, that  the 
product  of  any two elements of  the cone again belongs to the cone. 
Hence, we have here an example of an algebraic structure which can 
be described as follows. 

Definition. A convex algebra is any convex subset A of  a real linear 
space L with an associative multiplication law assigning to each pair 
of  points of  the set A a new point of that  set, the multiplication is distrib- 
utive with respect to linear combina t ion  in A. 4 

Since T is a positive cone in ~ ( X ) ,  we say that  transmitters form a 
positive algebra in S ( X ) ;  we shall call it the algebra of transmitters. 
A non-trivial character  of this algebra can be guaranteed by postulating 
the non-degeneracy property,  as explained below. 

A subset D' C D will be called sufficient if for any x ~ B the equality 
dx = 0 for all d s D' implies x = 0. Now,  the algebra of transmitters T 
will be called rich if for each sufficient set of  detectors D' the linear span 
of  D'T = {da:d ~ D', a ~ T} coincides with D. F rom now on, we shall 
mainly consider rich T-algebras 5. 

Definition of a Physical System 

The concept  of  the algebra of  transmitters seems to play an increasing 
role in the present ideas of physical systems. According to the traditional 
definition of  von N e u m a n n  a physical system was a pair of sets: (1) an 
o r thocomplemented  lattice of  events (propositions), and (2) a collection 
of  quantum states which were positive, or thoaddi t ive functionals on the 
lattice of  proposi t ions  (see e.g. [2, 12, 14, 22]). This scheme ammount s  
to considering the (D, T, B)-systems with the T-component  trivial and D 
restricted to the subset of  special, selective detectors. A more complete 
approach  is due to Ludwig [10] who extended D and introduced the 
convex cones into axiomatic quan tum mechanics. The idea of  trans- 

4 This concept should not be mistaken for the linear locally convex algebra, i.e., 
a linear algebra with a topological base of convex surroundings. We risk a terminological 
similarity for the sake of linguistic consequence: since the semigroup with an operation 
on linear combination is called a linear algebra, the semigroup with a convex combination 
will be called a convex algebra. It seems that the convex algebras are richer structures than 
the linear ones as some untrivial informations are coded in the shape of their boundaries. 

5 It would be also interesting to assume some topological completeness properties 
of T and D; as indicated by Plymen [15] careful assumptions of this sort should follow the 
idea of X-algebras. 
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mission operations was raised by Haag and Kastler [8]. Subsequently, 
Gunson [-6] noticed the insufficiency of the description of filters (prop- 
ositions) as functionals on states and introduced a representation of 
filters by operators. This approach was further perfected by Pool [61 
who introduced state-event-operation structures in which there appears 
a non-trivial semi-group of selective transmitters, and by D~ihn [-3] 
who constructed filters within the framework of Ludwig's approach. 
Some general questions concerning transmission operators have been 
discussed by Jordan [9]. The above development suggests the next 
step to be taken. In fact, the class of transmitters important  in physics 
cannot be restricted to the subclass of filters. Thus, e.g, physics of light 
is not only based on the phenomenology of measuring devices like Nicol 
prisms and coloured glasses but it also essentially explores the prop- 
erties of more general transmitters like, for example, a cell with a water 
solution of sugar a quarter wave plate, etc. Following this remark, we 
propose a generalized definition of a physical system: 

Definition. A physical system is any triple (D, T, B), where 

(1) D is a linear space composed of elements called detectors which 
act as linear functionals in a real linear space X and determine there a 
locally convex Haussdorfian topology; 

(2) B is a closed positive cone spanning X and composed of elements 
called beams 6; 

(3) T is a positive algebra composed of elements called transmitters 
which act in X as linear operators of the left multiplication transforming B 
into itself, and which act in D as operators of the right multiplication 
(so that X and D are T-modules). 

Although we have arrived at this definition by describing the phe- 
nomenology of an optical bench, the resulting (D, T, B) systems have a 
more general significance. Imagine, that elements x, y . . . .  are statistical 
ensembles of an arbitrary nature (the symbol x + y denoting the mixture 
of two statistical ensembles x and y). Let the detectors d, f ,  ... stand for 
various observable quantities of a cumulative character (i.e., such that 
they must be added when the ensembles are mixed). Finally, let the 
transmitters a, b . . . .  symbolize various evolution processes (spontaneous 
or forced) of statistical ensembles. It then becomes clear that our definition 

6 We do not specify in this paper the topological nature of B, although it may be 
essential in a deeper study of transmission operations, which are continuous in B (see 
footnote in page 7). Some interesting interrelations can be, however, noticed. Thus, e.g., 
the hypothesis that B is a normal cone with non-empty interior would suffice to assure 
that every linear mapping X into X leaving B invariant is continuous. The assumption 
about the existence of a strictly positive functional e accepted in § 4 imposes also some 
restrictions on the topological character of B. (These remarks are due to the referee of this 
paper.) 



Theory of Filters 13 

of (D, T, B)-systems covers a large area of physics. By specifying the types 
of D, T, B components, various concrete physical situations can be 
described. Thus, for example, if the T-algebra is non-degenerate but 
reducible, the system reflects the existence of certain superconservation 
laws. If no superconservation laws are present, the simplest choice of a 
T-algebra consists in the assumption that T contains all continuous 
linear operators transforming the B-cone into itself: in such a case our 
(D, T, B)-system will be called a system with maximal transmission. 
Following a suggestion in [8] we concentrate in this paper on the study 
of maximal transmission systems (although some other situations can 
also be of physical interest). 

4. Quantization 

Our scheme, so far, lacks an essential element. Although we refer 
to particle beams, all the concepts we use could be as well employed 
to describe streams of continuous matter such as classical fields. This 
ambiguity is manifested by the existence of a variety of detection func- 
tionals none of which plays a distinguished role. Thus, we can have the 
energy intensity of beams, the charge intensity, the momentum intensity, 
etc; none of these quantities is priviledged with respect to the other. 
For  streams of granular matter, however, a distinguished intensity 
measure appears: if the beams are composed of elementary quanta it is 
natural to estimate their intensity by counting the number of quanta 
arriving at the detector per unit time. A detector doing this plays a 
distinguished role in beam phenomenology: it measures the quantity 
which reflects the discrete structure of matter. These remarks suggest 
that there is precisely, one difference between general physical systems 
and quantum systems: the last ones posses an absolute intensity scale. 

This idea of quantization differs from the orthodox one: in order 
to "quantize" a system we do not need to seek formal analogies and to 
substitute operators for observable quantities. This is a convenient 
circumstance, since in fact, operators in physical theories do not appear 
due to quantization, but they arise from the phenomenology of trans- 
mission processes. Quantization amounts only to fixing the "quantum 
intensity" scale. This can be illustrated by the example of classical 
electrodynamics: the transmission processes of electromagnetic waves 
were being described in terms of linear operators long before their 
quantum nature was discovered. Quantum mechanics of the photon 
then emerged as the result of the discovery of photoeffect and the con- 
struction of devices counting the numbers of photons. A similar develop- 
ment can be observed in the case of electron wave mechanics. The 
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Schr6dinger evolution equation can be used to describe the transmission 
of  electronic beams even if their quan tum nature is ignored; we then 
have an ambigous  theory which can be interpreted as classical wave 
mechanics of a cont inuous  electronic matter. This theory becomes 
quan tum mechanics only if the statistical interpretation is adopted.  
These remarks  lead to the following definition of quan tum systems. 

Definition. A quantum system (e, D, T, B) is any physical system 
(D, T, B) with a distinguished detector e e D called the standard quantum 
detector such that:  1) ex  > 0 for any x e B, and 2) x e B and ex  = O=~x = O. 

The detector e will be interpreted as a device count ing the number  
of  quan ta  per unit time and the corresponding detection functional in B 
will be called a quantum scale of the system. Once the quan tum scale is 
fixed, a rank of substructures of (D, T, B) becomes distinguished. 

First it is natural  to distinguish the following subset of detectors:  

Q = { d e D : O < _ d < _ e } .  (4.1) 

Each element of Q will be interpreted as a detector which, like e, 
counts the number  of quanta  per unit time: however, it may overlook, 
either completely or  partly, quan ta  of  certain special types. In what  
follows, the elements of Q will be called quantum detectors or counters. 
A m o n g  all elements of Q the detector e will be interpreted as an infallible 
one, i.e. such that it never overlooks a particle. (The assumption con- 
cerning the existence of  such a perfect counter  is in agreement  with our  
initial assumpt ion of  § 1, stating that we are able to count  beam particles.) 
We shall assume that we have in (2 enough elements to allow the dis- 
tinction of beams:  

Assumption. For  any two different beams x~, x 2 e B there exists at 
least one counter  d e  Q such that  d x  I +-dxz. (This assumption seems 
to be true for all known  quan tum systems of importance.)  

Having distinguished the subset Q C D we can define some quantum mechanical 
relations between the walls of B, such as orthooonality. Given two walls B~, B 2 C B we shall 
say, that B 1 and B 2 are completely separated by quantum detectors or orthogonal (B~ A_B2) 
if there exists at least one functional d ~ Q such that B1 C Ba=0 and B 2 C Bd=,. This property 
means that we can find at least one counter which unmistakenly registers all particles of the 
B2-wall but is completely unsensitive for particles of the Bl-wall (see also Ludwig [10]). 
We thus conclude that the lattice structure of walls of B is of a more "primitive" nature 
than the orthogonality relation: it exists even on the pre-quantum level, while the ortho- 
gonality appears as a result of the quantization. 

The next structural element distinguished by the quan tum scale is 
the division of the B-cone into equivalence classes. The equations 
ex  = a(e > 0) define a congruence of  parallel hyperplanes in X. The 
intersection of  each of  these planes with the B-cone is a certain convex 
set composed of constant  intensity beams. Any two such sets are affinely 
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equivalent. As the specific values of the e-functional are not of primary 
importance, the above congruence of planes is the only element essential 
to our idea of quantization: it visualizes the quantum scale (see Fig. 9). 

scale : ~ 

e 
Z 

e=0 

Fig. 9 

Nevertheless, since we have already chosen a standard intensity 
it will be convenient to distinguish the plane given by the equation 
e x  = 1, which wilt be called a unit plane and denoted by E (see Fig. 9). 
The intersection of the plane E with the B-cone is a closed convex 
set containing all beams of unit intensity: these beams will be called 
quantum states and their set will be called a f igure  o f  states or a statist ical 

f igure  and will be denoted by S. Thus, S = BraE.  The walls of S are 
determined by the walls of B: they are intersections of non-empty walls 
of B with the unit plane E. In particular, one-point walls of S are pure 
beams of unit intensity; we shall call them pure states. The shape of the 
statistical figure S is decisive for quantum mechanics of beam particles; 
the physical implications of this shape is discussed in § 6, 7, 8. 

The choice of the quantum scale and the division of the B-cone into 
a family of convex figures suggest also a way of distinguishing a certain 
substructure of the algebra of transmitters. Since filters will be sought 
only among such transmitters which never increase the number of 
particles, we introduce the following concept of an absorbent. 

Definition. An absorbent  is any transmitter a E T such that 

e a x < e x  for each x ~ B .  

Given an absorbent a ~ T and a beam x ~ B we shall say that a is trans- 

parent  to x if e a x  = ex ,  and we shall call a neutral  to x if  a x  = x. For any 
two absorbents a and b we shall say that a is less transparent than b, 
and write a < b, if e a x  <__ e b x  for each x e B. The set of all absorbents in T 
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will be denoted by A. If a, b E T are absorbents then a b  is also an ab- 
sorbent; hence, A is a semi-group. Moreover, if a, b e A and c~,/~ are non- 
negative numbers, such that e +/~ __< 1, then ea + fib s A. This means 
that the set A forms a convex subalgebra of the algebra T: we shall call 
it the a l g e b r a  o f  a b s o r b e n t s .  The elements of A act in X as operators 
transforming the set A = {x e B : e x  __< 1 } into itself; thus, A is A-module. 
The elements of A act also as operators in Q: in fact, if d e Q and a is an 
absorbent, then d a  <_ e a  <-e, that is d a  ~ Q. Hence, Q is A-module. A 
non-trivial character of the algebra of absorbents can be assured e.g. 
by assuming the following property. 

D e f i n i t i o n .  An algebra of absorbents A is called r i ch  if the set e A  

= { c a  : a ~ A }  coincides with Q. 
(All known quantum systems of importance posses rich algebras of 

absorbents.) 
We now see that the existence of a quantum scale singles out in a 

natural way a "restricted" triple (Q, A, A) in (D, T, B). A consequence of 
this distinction is the appearance of a class of filters in the algebra of 
transmitters. 

5. Filters 

As pointed in § 1, the class of filters actually used in experimental 
physics was not defined by any clear operational criterion. It was rather 
build up stepwise, starting fi'om some primitive devices like coloured 
glass plates, and subsequently including more complicated objects like 
Nicol prisms, devices used in the Stern-Gerlach experiment etc. Some 
simple principles, however, can be noticed in this build up process; they 
can be abstracted to the following three criteria which show, how filters 
are determined by the quantization. 

I. Each filter is a linear absorbent. This condition means that we 
are refering to "quantum-mechanical" filters which select single particle 
properties. It implies that filters form a subset of the algebra of absorbents 
A. 

II. Each filter is neutral to every beam to which it is transparent, 
i.e. if a is a filter, then 

e a x  = e x  ~ a x  = x .  (5.1) 

This condition represents, in fact, the property (2) of § 1 expressed 
in terms of physically meaningful concepts. The equality e a x  = e x  

means that the beam x passes through an obstacle a without loosing 
quantum intensity: this can be verified by means of the standard detector. 
The equality a x  = x means that x must emerge from a with all properties 
unchanged: this is to be verified by using linear detectors. 
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One could suppose that conditions (I) and (II), along with the 
algebraic condition of idempotence, provide a complete description of 
objects which we intuitively classify as filters. However, it is not so. 
The following counter-example was given by K. Napi6rkowski. Imagine 
a mixture of red and violet light and let ~ be an obstacle completely 
neutral to red photons and absorbing violet photons. An additional 
assumption is, that S reemits 1/2 of the absorbed violet photons in the 
form of red photons. Schematically 

Violet 

Red 

vS 
Red 

Fig. 10 

Obviously, ff is a linear absorbent. Moreover, ~ has the property (II): 
it is transparent to the red photons and it is neutral to them. However, 
it is intuitively clear that ff cannot be classified as a filter. The true red 
light filter is not S but the following obstacle 4, completely neutral to 
the red photons and completely absorbing the violet photons: 

Violet Red . . .  --- II 

Fig. 11 

Red 

This indicates that our definition still lacks a certain preciseness which 
would allow us to reject E as a filter. The missing element is not so 
obvious, however. It does not consist in the idempotence property of 
filters, since ~ is idempotent: S ~  = 3. One could suppose that the 
physical difference between ~ and filters is due to a specific symmetry 
property of filters: in the case of some simple filters we can interchange 
the roles of the "entrance" and the "exit" by letting the beam pass through 
the filter in the "reversed direction": the action of the filter then remains 
unchanged. However, this ,property is not the required distinguishing 
criterion either, since there is nothing wrong in assuming that ~ possesses 
this sort of symmetry. 
2 Cow_mum math. Phys., VoI. 15 
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The insufficiency of the above criteria is of a deeper origin: the point 
is, that by examining only the properties of ~ we shall not discover any 
essential difference between ~ and traditional examples of filters. This 
becomes clear if we compare E with Nicol prisms. In fact, consider 
instead of previous mixture of red and violet light, a mixture of two 
kinds of linearly polarized photons: "vertical" photons and "oblique" 
photons. Let the angle between the polarization planes of both kinds 
of photons be re/4. Now, let N be a Nicol prism neutral for vertical 
photons. Then, oblique photons pass through N partially: 1/2 of them 
are absorbed and 1/2 are changed into vertical photons: 

N 

Oblique I/2 1 

Fig. 12 

We now see, that the action of N exhibits a complete analogy to 
the action of the device S represented in Fig. 10. On the other hand, 
the Nicol prism is a classical example of a filter. This makes even more 
intriguing the question: what, precisely, is the physical difference between 

and N deciding that N is a filter while E is not? To answer this, we are 
lead to the idea that the filter should possess a certain entropy mini- 
malizing propertyT: being neutral to certain specific types of quanta 
it should be minimally transparent to other types of quanta. 

In order to give a more precise formulation of this idea, we shall 
introduce some new definition. For  any absorbent a ~ A the symbol 
a n will denote the set of all beams x E B to which a is neutral: 

an= {x~B:ax=x} .  (5.3) 

For any set of beams B'C B the symbol B', will denote the set of all 
absorbents which are neutral to all beams x s B': 

B' ,={asA:ax=x  for each x e B ' } .  (5.4) 

For any a e A we can thus form (a,), that is the set of all absorbents 
which are neutral to at least those beams to which a is neutral; the set 
(a,), will be called the envelope of a. The idea of the minimalizing property 
of filters can now be expressed as follows: 

7 This idea was pointed out to the author in a discussion with Professor R. Haag. 
A similar intuition was a basis of constructions of Ludwig [10] and D~ihn [3]. 
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III. Each filter a is a minimally transparent element in its own 
envelope, i.e.: 

b e (a,),,  eb <= e a ~ e b  = e a .  (5.5) 

I t  may occasionally happen, but it need not necessarily be so, that a 
f l t e r  also has the following stronger property: 

I I I '  : a is the least transparent element in its own envelope, i.e. 

b e ( a . ) , ~ e a  < e b .  (5.6) 

Any  f i l ter  for  which I I I '  holds will be called absolute. Absolute f i l ters 
are closely related with "'decision effects" o f  Ludwig [10]. 

Property III represents the most essential difference between filters 
and non-filters. It exhibits the required physical difference between an 
obstacle ~ represented in Fig. 10 and a Nicol prism N. In fact, we do not 
know any absorbent neutral to vertical photons but absorbing more 
oblique photons than N: thus N is a filter. In the case of ~ the situation 
is different: here there exist absorbents neutral to the red photons but 
absorbing more violet photons than 5; one such absorbent is the 3- 
obstacle represented in Fig. 11. Thus, ~ is not a filter. 

It will be interesting to show that our criteria I, II, III imply the 
idempotence property of filters, which in some approaches is considered 
a definitional property (see e.g. [4, 6, 11]). We have: 

Proposition 2. Each f i l ter  a e A is an idempotent element o f  the algebra 
A, i.e. a 2 = a. 

Proof.  For any x ~ B ,  a x = x ~ a 2 x = x ,  hence a2e(an)n . Since 
a e A, hence eaZx = e a a x  < eax.  Now, III implies that e a a x  = eax ,  
i.e., a is transparent to the beam ax.  In turn, II implies that a must also 
be neutral for ax ,  that is a a x  = ax.  Since this holds for every x e B then 
a 2 = a .  

As discussed in § 2, particles with definite physical properties cor- 
respond to closed walls of B. Since we interpret filters as devices selecting 
certain special types of particles, it is to be expected that filters should 
be related to walls of B. Indeed, we have: 

Proposition 3. For any f i l ter  a e A the subsets BII -= a, = {x e B : a x  
= x}  and B± = {x e B : a x  = 0} are closed walls o f  B;  the corresponding 
sets all = {x e S : ax  -= x}  and S± = {x  • S : a x  = 0} are closed walls o f  S. 

Definition. BII will be called a neutrality wall o f  a. 
P r o o f  o f  Proposition 3. Consider the quantum detector ¢,  = ea e Q. 

Obviously B±=B¢,:~, o. Moreover, since a satisfies criterion II, BII 
= Bo,= e. Now, Proposition 1 implies that BII and B± are closed walls of 
B, and SII and $1 are closed walls of S. 
2* 
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An obvious generalization of Proposition 2 is: 

Proposition 4. Two filters a, b with a common neutrality wall a. = b. 
obey the multiplication laws: 

ab = b, ba = a (5.7) 

We have now all information necessary to analyze classes of filters 
in various quantum systems. All the systems we shall consider in this 
paper are maximal transmission systems belonging to the following 
family of atomic systems. 

Definition, A quantum system (e, D, T, B) is called atomic (absolute 
atomic) if there exists a family F C A of filters (absolute filters) with 
one dimensional neutrality walls such that the corresponding quantum 
detectors ea(a ~ F) allow to distinguish the beams. 

6. Classical System 

In this section we shall consider beams of classical objects. We 
assume, that each beam is a sequence of objects of n possible types 
1, .. . ,  n: we shall think of them as of bails painted in n distinct colours. 
We further assume that we have a class of macroscopic devices which 
can be used to transform beams: we shall think of them as of boxes 
having an "entrance" and an "exit". The balls can be introduced into 
each device through the entrance; something happens to them inside, 
and some other balls emerge through the exit. When any particular 
ball is introduced into any of the boxes we, cannot, in general, predict 
the outcome: various sets of coloured balls may emerge with various 
probabilities (the collection o f  these probabilities determines the intrinsic 
nature of the box). Apart  from the "boxes" we have detectors which 
are sensitive to various effects produced by the beams. However, we 
do not distinguish between the colours of the beam objects, and we have 
no evidence as to which detectors are selective. Our basic problem now 
is: how can we distinguish from amoung all possible "boxes" those ones, 
which act as filters by transmitting balls of certain definite colours? 
According to criteria I, II  and III  we can proceed as follows. First of all, 
we form various beam mixtures and check which of the boxes and 
detectors are non-linear. After eliminating them we are left with a linear 
(D, T, B)-system of the following structure. Each "beam" x ~ B is defined 
by a set ofn real numbers xi _>- 0 (i = 1 . . . . .  n), where xl measure the content 
of objects of type i in the beam: 

x = (xi)']. (6.1) 
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The mixture operation + corresponds to the addition of one column 
matrices (6.1). Hence, the B-cone is the "positive sector" characterized 
by the inequalities Xl > 0 . . . . .  x~ >0 ,  in the real linear space X = R n. 
The non-empty walls of B correspond to subsets of {1 . . . .  , n } :  for any 

C {1, ..., n} the corresponding wall B~ = {x e B : i ~ a ~ x l  = 0} is the 
set of such beams in which only objects of types i e ~ can participate. 
For  each wall B~ C B there exists a unique "complementing" wall B~, 
with a '  = { 1 . . . .  , n} - a, and each beam x • B can be uniquely represented 
as a mixture: 

x = x~ + x~, (6.2) 

with x~ • B~,, x~,, • B, , , .  

Some mathematical  assumptions concerning D and T should be 
specified. Obviously, each linear detector d measures a quantity: 

d x  = d 1 x~ + . . .  + d ~ x ,  , (6.3) 

where d i are certain constants. We shall assume, that the set D contains 
all possible functionals of the form (6.3); hence, D coincides with the 
set of all linear functionals in R ~. The simplest assumption concerning T 
is that our "boxes" represent all possible linear operations that can be 
performed on beams: thus, T is the set of all linear operators in R" 
which transform the B-cone into itself. 

Our  assumptions up to now may concern discrete as well as con- 
tinuous beams: we have not yet a common intensity measure to compare 
the amounts  of distinct types of beam matter. Such an absolute measure 
is suggested by the fact that we can count balls; for simplicity we put: 

e x  = x 1 + . . -  + x ~ .  (6.4) 

The introduction of the absolute scale (6.4) implies the "quantization" 
of classical matter  represented by the symplectic cone: 

e =1/2 L - ~  

e=O~/'//" 
Fig. 13 
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The resulting "classical-quantum system" is characterized by the 
statistical figure S being a symplex with n vertices 1, ..., n in the affine 
plane E; the vertices of S represent pure states of our system. The sym- 
plectic shape of the statistical figure determines the structure of filters 
in our system. 

According to the definition of § 4, the algebra of absorbents A is 
the subset of such endomorphisms B ~ B which do not increase the value 
of e x :  they correspond to all linear operators in R" which transform the 
triangular pyramide A (of Fig. 13) into itself. The subclass of filters in A 
can now be easily found. Suppose, a is a filter. Because of Proposition 4, 
a must be neutral on a certain closed wall B~ C B, and because of property 
III it mustbe minimally transparent among all absorbents neutral on B~. 
Because of decomposition (6.2) this is so only if a vanishes on the com- 
plementary wall B~,. This completely determines the nature of the 
operator a; we have: 

a x  = x~.  (6.5) 

Inversely, every operator of the type (6.5) satisfies criteria I, II and III. 
We thus see, that our definition of filters, as given in § 5, distinguishes 

from among all endomorphisms of the symplectic cone precisely those 
which were traditionally called "filters"; using this definition, even a 
totally colour-blind person could, in principle, identify filters of coloured 
balls. 

R e m a r k .  The class of filters obtained here does not depend on the 
choice of the quantum scale; this seems to be a characteristic feature 
of systems with symplectic cones. 

7. Hilbertian System 

We shall now analyze the structure of orthodox quantum mechanics. 
For  simplicity, we assume that we deal with a restricted domain of 
physical phenomena in which no unbounded observables occur. With 
this assumption, the cone of beams may be represented as the set of all 
self-adjont positive operators with finite traces in a certain Hilbert 
space Yt ~: 

B = { x e Y ~ ( ~ ) : x * = x > O ,  T r x <  + o r } .  (7.1) 

The operation + of forming mixtures corresponds to the addition 
of positive operators (7.1). Hence, the linear space X spanned by B 
is the set of all self-adjoint operators with absolutely convergent traces: 

X = {x e ~ ( J f )  : x t = x, Tr Ix[ < + oe}. (7.2) 
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The set D of detectors is the set of all linear functionals in X which 
are bounded with respect to the trace functional in B, i.e. for each d ~ D 
there exists a number k > 0  such that for each x ~B: 

d x  < k T r x .  (7.3) 

The above set of detectors induces a locally convex, Haussdorfian 
topology in X. The Hilbertian cone (7.1) exhibits certain known regulari- 
ties. The closed walls of B correspond to closed vector subspaces of Yg. 
For  each closed subspace ~ '  C oct ° the corresponding wall B' is the subset 
of operators of the form: 

B' = {P'  x P '  : x E B}  , (7.4) 

where P' is the operator of orthogonal projection onto Yf'. Inversely, 
for each closed wall B' C B there exists precisely one orthogonal projector 
P' such that B' is of the form (7.4) 8. Each pure beam of B is a positive 
operator of the form: 

x = 2 Itp x tp[, (7,5) 

where 2 > 0, ~v s Yt ~, ltpf = t and Dirac's symbol I'P1 x ~21 is used to denote 
the "transition" operator which acts on vectors q~ e Yt ~ according to the 
prescription: I'P1 x tp21 ~p = 0Pz, q~) tPt. Each mixed beam x e B can be 
represented as an infinite sum of pure beams: 

x = ~ O, ]~P, x tp, I, (7.6) 
n = O  

where W,e ~ is a sequence of orthogonal unit vectors, ~ , > 0  
(n = 0, 1 . . . .  ), and the series (7.6) converges in the detection topology. 

In orthodox quantum mechanics the set of transmitters is not 
specified since one deals rather with the algebra of observables. Of course, 
each transmitter should correspond to a certain linear mapping of the 
set of positive operators (7.1) into itself. The question arises as to how 
large is the class of those linear endomorphisms B--* B which correspond 
to physical transmitters. If no superselection rules exist we shall assume, 
following Haag and Kastler [8], that any continuous linear mapping 
B - ~ B  represents a certain physical transmission process. Hence, the 
algebra of transmitters T is composed of all continuous linear operators 
in X which transform B into itself: 

T = {a ~qP,(X) : a B  C B}. (7.7) 

The traditional quantization of the above (D, T, B)-system is obtained 
by choosing the trace functional as the quantum scale: 

e x  = Tr x .  (7.8) 

8 The proof of this s tatement  is contained in authors  notes. 
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This choice ore leads to the distinction of the following substructures 
of (D, T, B). The set Q of "quantum detectors" is the set of all linear 
functionals in X which are non-negative in B and do not exceed the trace 
functional (the continuity of these functionals in D-topology is then 
guaranteed). The algebra A of absorbents is the collection of all linear 
transformations of the set X which conserve the positive cone (7.1) 
and do not increase the trace of any positive operator (the continuity 
is then guaranteed). Finally, the statistical figure S is the set of all "density 
matrices": 

S = {x ~ ~(~g)  : x* = x __> 0, Yrx = 1}. (7.9) 

Since we have to do with a maximal transmission system, the physics 
of our beam quanta will be completely determined by the geometry 
of the convex figure (7.9). 

Quantum Mechanics and Convex Set Theory 

The role of convex set theory for quantum mechanics was for a 
certain time overshadowed by "quantum logic" and lattice theory; 
it was duly recognized only in a few papers (we mostly refer to [10, 6, 3-1) 
which are, however, still under a dominating influence of lattice theoretical 
ideas. In this article we take one more step towards abandoning the 
lattice theoretical approach and we express physics of quanta exclusively 
through the geometry of convex figures. 

At the first sight the geometry of S may appear somewhat primitive: 
the only operation which exists in S is the "convex" combination 21 xl 
+..~2X2 with 21,22 >0 ,  21 +22 = 1. This allows to define pure states as 
extremal points of S, but one may doubt  whether we are able to describe 
some more interesting properties of quantum phenomena, such as 
transition probabilities, cross sections etc. However, an essential infor- 
mation is contained in the shape of the boundary of S: due to this cir- 
cumstance the geometry of the convex figure S is rich enough to express 
the full structure of quantum mechanics. Our description of S will be 
based on the following concept of a normal functional. 

Definition. Given a closed convex set S in an affine topological 
space E, a normal functional is any continuous linear functional ¢ : E--+ R, 
such that 0 < Cx < 1 for each x e S. 

Obviously, each normal functional q~ in S determines two closed 
walls of S : $4= o = {x e S : ¢ x = 0} and S~,= 1 = {x e S : 4~x = 1 }. 

If S is a statistical figure of a quantum system, an important subclass 
of normal functionals is defined by all quantum detectors d e  Q: they 
will be used to determine physical relations in S. Two subsets $1, $2 C S 
will be called orthogonal ($1 ± $2) if they can be completely separated by 
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quantum detectors, i.e., if there exists at least one d e Q such that $t C Sd = o 
and $2 £ Sn= ~ .9 Some more general relations between walls and states 
in S can also be introduced. Let So C S be a closed wall and let x be any 
state. Then consider the subset Q(So) of such quantum detection func- 
tionals which equal 1 on So: they represent such counters which unmis- 
takenly register all particles of So-wall. If x-LSo we can find in Q(So) 
at least one functional vanishing on x. In general, however, such an 
element in Q(So) does not exist: all counters registering without omission 
particles of So-wall will unavoidably "see" a certain minimal fraction 
of particles of the x-state. This fraction is what we shall denote by 
e(x/So) and call a detection ratio of x to So: 

e(x/So)= inf dx.  (7.10) 
d~Q(So) 

In all maximal transmission systems the set Q coincides with the 
set of all normal functionats in S, and so the detection ratio (7.10) deter- 
mines simply a certain geometric property of the convex set S: we shall 
call it then an affine ratio. 

Definition. Given a closed convex set S CE, a closed wall So C S 
and a point x e S, the affine ratio e(x/So) of x to S O is the lower limit at x 
of all normal functionals which equal 1 everywhere on S o. 

In the case of simple convex figures the affine ratios can easily be 
found by constructions involving support  planes. Thus, e.g. for the 
convex figure shown in Fig. 14, the affine ratios e(y/x) and e(z/x) of 
points y, z to the extremal point x are determined by normal functionals q~ 
and Z which are represented by pairs of support  lines: 

ely/×}= ~y=I /2 \ 
e(z/x)= ¢,z =114, \ '"J. '< 

¢=0 \ \  \ =0 

Fig. 14 

9 This definition of orthogonality appears first in Ludwig [10]. 
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¢(~) = ¢ ( l e ,  

Hence:  

If this figure was a statistical figure of a certain quan tum system we 
could infer, that  each counter  registering without  omission all particles 
of  the x-state  must  register at least 1/2 of  the particles of the y-state and 
at  least t /4  of  the particles of  the z-state. The  structure of  affine rat ios 
for other  examples  of convex figures is analyzed in § 8. Now,  we shall 
illustrate the meaning  of this concept  for the Hilbert ian System. 

In this case S is the set of all density matr ices (7.9) and Q is the set 
of  all possible linear functionals which take values between 0 and 1 in S. 
Let  now jtp x ~Pl and Iq~ x q~J be two pure  states in S. 

Proposition 5. I f  ~ is a normal functional such that 

¢(19 x 91) = 1, 
then 

4'(ko x q,I)> I(q', 9)1 z. (7.11) 

Proof. Since the phases of vectors ip and q~ are irrelevant we can 
assume that :  

~o = cos~o~p + sineo~p' 

where 19'[ = 1, 9 '_L9,  and cos~ 0 = (qh~p)>0 .  Now,  consider the one- 
pa rame te r  family of unit vectors c G = c o s e 9  + s i n c t g ' ( -  re/2 < e < re/2) 
and the cor responding  family of pure  states: 

ICDa X ~Oc~ I = COS2CX It]) X 9]  + sin ~ cos~(17 x ¥"I + lip' x tpI)+ sin2~ It/)' x 9 ' i -  

Since the functional ~b assumes its extreme value at [9 x 9[ the 
following function qS(cz) has an extreme value at ~ = O: 

x ~Gt) = cos2~ + sin~ cos~ 4~(tW x ip' t +t tp '  x v;[) 
(7.12) 

+ sin za ¢(19' x ~'). 

,;b'(O) = q5(19 × 9'1 + 19' x 91) = O. 

By introducing this into (7.12) and by put t ing c~ = ct o we obta in  

q~(k0 x ~01) = cosZao + sin2ao ~b(ltp' x ~P'I) > cos2c% = I(q ~, 9)1 z- 

The  inequali ty (7.11) exhibits a certain interesting p roper ty  of  the 
Hilber t ian statistical figure. It implies that  two pure  states x = [q) x q~[ 
and y = h9 x 9[ can be complete ly  separated by no rma l  functionals 
only if (p _1_ 9 ;  otherwise no normal  functional,  valued 1 at y, can assume 
at x a value smaller  than l(q~, ~p)12. This means,  that  the or thogonal i ty  
of  vectors  in H is reflected by the or thogonat i ty  of pure  states in S. 
Inequal i ty  (7.11) has, however,  some stronger  consequences. It gives 
the best possible est imate of qSx for fixed e y  = 1 as there is a no rma l  
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functional 49y which converts (7.11) into equality 

49yx = Tr (yxy) = (N, x~p). 

This indicates that the basic geometric relation I(tp, ~p)12 (determining 
the angle between the two unit vectors (p, ~p E sut °) is "coded" in the affine 
geometry of S: it is simply the affine ratio of two extremal points x 
and y: 

I(~o, ~p)l 2 = e(x/y). (7.13) 

This result admitts an immediate generalization. 

Proposition 6. Let S O be a closed wall of S, ~o  the correspondin 9 
subspace of YF and Po the corresponding orthogonal projector. Now, 
let 49 be a normal functional. I f  49 x = 1 for each x • S o, then for an arbitrary 
x e S :  

49x >= Tr(PoxPo). (7.14) 

(The proof can be easily constructed by applying Proposition 5.) 
The inequality (7.14) gives the best possible estimate of 49x for 

49 e Q(So) as there exists a functional 490 • Q(So) converting (7.14) into 
equality: this functional is determined by right hand side of (7.14): 

49o x = Tr(PoxPo). 

In the Hilbert space geometry the basic relation between a state 
x • S  and a subspace ~/#0 C )f° is given by the quantity Tr(PoxPo). 
We now see, that this quantity is simply the affine ratio of the state x 
to the wall So: 

Tr(PoxPo) = e(x/So) . (7.15) 

We thus conclude that the affine geometry of the convex figure S 
describes all numerical relations between the density matrices and the 
subspaces of ~ which are of physical importance. 

It is worth-while to notice that Proposition 6 shows a common 
regularity of symplexes and Hilbertian statistical figures. In both cases 
we deal with convex figures, with all walls exhibiting the following 
regularity property. 

Definition. Given a wall R C S we say that R is an absolute reference 
wall if: 1) the subclass of all normal functionals which map R into 1 
contains a smallest functional 49R and 2) if: x~  S, 49Rx = l ~ x E  R. 1° 

A family ~ of absolute reference walls will be called complete if 
for any x, y • S the equality 49Rx = 49RY for each R • ~ implies x = y. 
Any one-point absolute reference wall will be called an absolute atom. 

10 This property was abstracted by Ludwig [10] in the form of axiom 2. 
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A convex figure will be called an absolute atomic f igure if it has a complete 
family of absolute atoms ix. Both symplectic and Hilbertian figures 
belong to the class of absolute atomic figures. 

It now becomes clear that the present day quantum mechanics 
reduces to the description of certain convex figures having particularly 
regular shape: the geometry of these figures is responsible for the known 
quantum mechanical structure of filters described in [2, 4, 5, 12, 14, 15, 
21, 22]. 

Filters in Hilbertian Sys tem 

We shall now find out to which class of filters our criteria lead in the 
case of the Hilbertian system. Since we are here on the ground of the 
orthodox quantum mechanics, we know where they should lead: 
according to well justified assumptions, any filter should produce 
a mapping 

x--+ x'  = P x P  , (7.t6) 

where P = P* P is a certain orthogonal projector in a f .  We shall show 
that, indeed, conditions I, II, I II  represent an operational criterion 
distinguishing mappings of the type (7.16) from among all other endo- 
morphisms B -~ B. 

Theorem 1. Each mappin9 B--* B o f  the form (7.16) satisfies criteria I, 
I I ,  I I I  o f  § 5. Inversely, each mapping a : B-+ B for  which I, I I ,  I I I  hold 
must be o f  form (7.16). 

Proof. Let a v be defined by: apx = P x P .  Then I and II obviously 
hold. Moreover, ae has the minimalizing property III, because of Proposi- 
tion 6. Hence, ae is a filter. (Remark: ap is even an absolute filter.) 

Now, let a e A be a filter. Because of Proposition 4, a determines a 
closed wall Bfl = a, = {x e B : a x  = x}. This wall in turn, determines a 
closed subspace ~a C ~ and an orthogonal projector P. This projector 
defines a filter %. We shall show that a = ap. 

Note  first, that a and av determine the same detection functional: 

ea = e a r .  (7.17) 

In fact, the operators a and ap have the common neutrality wall 
B[I = a n. Now, since av has the minimalizing property III ' ,  then eae <-_ ea. 
However, since we assumed that a is a filter, it has the property III ;  
hence, ea = eap. This proves (7.17). Let now x = I~P x *P[ be a pure state; 
we shall show that a x  = aex.  If P~o = 0 then apx = 0, and the equality 
e a x  = eapx = 0 implies that a x  = 0. If P~p 4= 0, then consider the "pro- 
jected" beam 

Xo = aex  =P[tp  x ~,]P = [P /p l  2 ]~ × (p[ 

11 This property corresponds to Gunson's axiom IX (see [6]). 
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1 
where q~ = - -  Pip ~ # .  Consider  also 

X 1 = a x  . 

We shall show that x o = x 1. According to (7.17), beams x o and x 1 
have the same s tandard quan tum  intensity: e x  o = e x  1 = IP~pt z .  Let 
now ao be a filter of the type (7.16) with P = Po = Iq ~ x ~ol; such a filter 
is neutral  only to beams propor t ional  to x o. Let us apply a o to the beam 
xl ;  we then obtain a beam propor t iona l  to Xo, i.e.: 

a o X  1 = }~x 0 . 

Moreover ,  this t ransformat ion must  be done without  an intensity 
decrease: if e a o x l  < e x l  = I P ~ [  z ,  the superposed operat ion a o a  would 
represent an absorbent  neutral  to x o but  absorbing a greater fraction 
of  the x-beam than alowed by inequality (7.11). By applying such an 
operat ion we could construct  a normal  functional 4)* = e a o a ,  such that 
q~*(ko x 91) = 1 but qS*([• x ~Pl) = e a o x l  < [PwI 2 = I(q ), 1~)12, which con- 
tradicts (7.11). Hence, 2 = 1, so that a o is t ransparent  to x~. But a o is a 
filter: it has proper ty  II. Hence, a o x  ~ = x 1. This shows that  x~ = x o. 
Thus, we have shown that for any pure state x s S: 

a x  = a e x  . 

For  an arbi t rary mixed state the same follows from the spectral 
decomposi t ion  (7.6), and from the continui ty of  operators  a and av 
in the detection topology.  Thus a = a e .  

R e m a r k .  The Hilbertian system is an absolute a tomic system; this 
follows from the absolute a tomic  structure of the Hilbertian statistical 
figure. 

It will be worth-while to discuss the consequences of Theorem 1 
for axiomatic  quan tum mechanics. This branch of physics provides an 
idealized description of  the phenomeno logy  which leads to the present 
day quan tum theory. With a naive simplification this description can be 
outl ined as follows: at the beginning we have a certain particle beam 
and a class of filters ("propositions"). We then measure the decrease in 
beam intensity caused by various chains of filters: in this way we can 
verify that  filters form a lattice which is i somorphic  to a lattice of closed 
subspaces of  a certain Hilbert  space. This leads us to the o r thodox  
quan tum mechanics. The above description, however, lacks a beginning. 
The class of  filters in it is supposed to be given a priori; the problem of 
how to obtain such a class is not  considered. Theorem 1 suggests that  
we can construct  axiomatic  q u a n t u m  mechanics with one information 
tess: rather than base it on the phenomeno logy  of  filters we can ground  
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it on the more general phenomenology of transmitters. Our description 
of the origin of quantum mechanics becomes then more complete: 
at the beginning we have a particle beam and a class of obstacles; however, 
we do not know which obstacles are filters. We then use criteria I, II, III 
and we determine the class of filters: in this way we reach the level where 
we can verify the assumptions of the existing axiomatic quantum me- 
chanics. 

Affine Geometry and Statistical Interpretation 

An additional advantage of the above approach is that it gives a 
deeper insight into the "mechanism" of some quantum mechanical 
concepts as, e.g. transition probabilities. In the orthodox formulation 
of quantum mechanics one usually makes two assumptions: 

1) pure states of a quantum system correspond to unit vectors in a 
certain Hilbert space .3f; 

2) for two arbitrary pure states represented by vectors (p, ~p ~ W the 
transition probability equals to ]((p, ~)]2. 

In that approach the transition probabilities are introduced by the 
separate assumption 2) which cannot be deduced from more elementary 
principles of the theory. It is not so in our approach. Here, once the 
quantum scale is fixed, we cannot independently postulate any axiom 
concerning the transition probabilities, since the complete information 
concerning them is contained in the definition of the (e, D, T, B) system: 
transition probabilities for pairs of pure states exist if the system is an 
absolute atomic one, and then they are uniquely determined by the 
structure of the algebra Of absorbents. 

In fact, suppose our (e, D, T, B) to be an absolute atomic system; 
let then x, y e S be two pure states and let a~ and ay be the corresponding 
filters "verifying" whether particles are in states x and y, respectively. 
Suppose that we let the state x pass through the filter as: a portion of the 
particles of the x-state will be then absorbed and another portion will 
pass through ay with the participation to the y-state verified in positive. 
The fraction of the x-state particles passing through a~, is 'what we 
customarily call the "transition probability" between the states x and y 
(see e.g. Pool [16]). This fraction is uniquely determined by: 

p(x, y) = eayx . (7.18) 

In this formula, the transition probability p(x, y) is determined by 
means of the filter ay. However, in our approach the concept of a filter 
is not primary but it can be derived from more elementary concepts. 
As a consequence, we can eliminate ay from the definition (7.27). We then 
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obtain the following description of the quantity p(x, y). Given a pair of 
pure states x, y ~ S, we consider the set y, of all absorbents which are 
neutral to y: by using them we try to absorb as much of the state x as 
possible. However, y, does not contain any element which would absorb x 
completely: by letting x pass through various absorbents neutral to y 
we can never prevent a certain minimal fraction of the x-particles from 
penetrating them. This "unpreventable" fraction is precisely the transition 
probability p(x, y): 

p(x, y) = inf eax.  (7.19) 
aC-yn 

(The above description is valid only for absolute atomic systems.)If  
the algebra of absorbents of our system is rich, the lower limit (7.19) 
coincides with the minimal value at x of all quantum detection functionals 
which assume value 1 on y; hence, the transition probability p(x, y) 
equals to the detection ratio: 

p(x, y) = inf qSx = e(x/y), (7.20) 
q~eQ(y) 

If, in addition, we have to do with a maximal transmission system, 
the above quantity coincides with the affine ratio of vertices x and y, 
and so, the statistical interpretation of the theory is determined by the 
shape of the statistical figure. This remark leads, in particular, to a 
unique definition of the transition probabilities for the Hilbertian 
system: according to (7.13) the transition probability for any pair of pure 
states x = Iq~ x ~01 and y = IN x h01, is 

p(x, y) = I(<P, ~P)I 2- (7.21) 

We thus see that the choice of the formula for the transition prob- 
abilities in the orthodox quantum mechanics is not accidental but is 
uniquely implied by the geometry of state figure. 

The above affine geometric interpretation of the transition prob- 
abilities explains the origin of a certain basic law of quantum mechanics. 
The form of the time evolution operator in quantum theories is usually 
deduced from the assumption that the evolution process must leave 
invariant the transition probabilities between pure states. A theorem of 
Wigner then implies that the evolution operator is unitary, and the 
Stone theorem states that it is of the form e ira, where H is a self-adjoint 
operator. In the above reasoning, the law of conservation of transition 
probabilities is assumed as a basic fact underivable from the theory 
but generalizing our laboratory experience with quantum phenomena. 
Now, however, we can deduce the conservation of I((P, ~P)l z quantities 
from some more elementary principles. First, we must assume, that the 
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structure of our B-cone is complete enough to describe the evolution 
of statistical ensembles: with this assumption, the evolution in any time 
interval [to, tl] can be represented by a certain mapping B ~ B .  Next, 
we must assume, that the quantization of the system corresponds to a 
division of matter into stable particles: within this assumption the 
quantum intensity e is an evolution invariant and the evolution process 
can be described as a transformation S ~  S. 

If we assume the micro-reversibility of the time evolution, we should 
also assume, that the above mapping can be inverted. Hence, we arrive 
at the following general principle: 

(1) the evolution in any time interval [to, tl] corresponds to a 
reversible mapping S ~ S. 

Since the state figure S was so constructed as to describe the statistics 
of large ensembles of identical non-interacting systems, it is natural to 
assume that the evolution of any mixed state is due to independent 
evolutions of all mixture components. This leads us to a next general 
principle: 

(2) the evolution corresponds to a linear mapping S---, S. 
These two principles make the conservation of I(~o, ~v)12-quantities 

practically inescapable. In fact, statements (1) and (2) mean that the 
evolution in any time interval corresponds to an automorphism of the 
convex figure S. Each automorphism of S must conserve the quantities 
1(~0, ~)l 2 since in agreement with (7.13) they have an affine geometric 
interpretation. Hence, we have proved the following theorem. 

Theorem 2. Each reversible linear transformation of the Hilbertian 
statistical figure must conserve the values of the transition probabilities 
between pure states 12. 

8. Some Non-Orthodox Systems 

In § 6, 7 we have seen how our definition of filters works for particles 
obeying laws of either classical theory or orthodox quantum theory. 
However, we do not need to assume this. In fact, we do not even have to 
restrict considerations to filters selecting any information specific to 
physics of micropartides.  The concepts of § 3, 4, 5 are of such nature 
that they may be applied to define filters of other types of information. 
We thus arrive at the following general programme:  

Suppose, B is any positive cone, T is an arbitrary positive algebra 
and D is any set of linear functionals; the triple (D, T, B) forms a physical 

12 This theorem admits obvious generalizations. Thus, e.g. each linear mapping 
S ~ S  which transforms pure states into pure states (i.e., each pure endomorphism of S) 
must not decrease the values of the transition probabilities. 
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system according to the definition of § 3. Now, choose arbitrarily an 
absolute intensity scale e and use the criteria of§ 5 to determine the class 
of filters. What structure of filters can be obtained in this way? To what 
real phenomena may it correspond? 

An interesting class of examples will be obtained by considering 
all possible maximal transmission systems corresponding to various 
shapes of the B-cone. In order to simplify the topological problems we 
below consider only (e, D, T, B)-systems where B is a positive cone in a 
finite-dimensional space X = R", D is the set of all linear functionals in 
R", the algebra T is the set of all linear operators in R" transforming the 
B-cone into itself, and the quantum scale e is any functional consistent 
with the definition of § 4. A subclass of models with particularly regular 
properties is obtained by taking the statistical figure S to be a compact, 
strictly convex domain with a differentiable boundary in the affine plane E. 
Such a figure has a very simple structure of walls: besides the two "im- 
proper" walls 0 and S it only has a variety of the one-point walls corre- 
sponding to all points on its boundary. We shall show that each point 
on the boundary of S is an absolute atom. To prove this, choose any pure 
state x e S and consider the set Q(x) of all normal functionals ¢ for which 
Cx = 1. How can they vary in the plane E? The point x determines a 
parallel congruence gx of hyperplanes in E, one of which is the plane 
E~ tangent to S at x: 

x ~ 

Fig. 15 

Each functional ~b e Q(x) must be constant on hyperplanes of the 
congruence Cx; otherwise the inequality ~bx < 1 would not hold every- 
where in S. The congruence g~ determines a unique antipode x' of the 

3 Commun. math. Phys., Vol, 15 
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point x (see Fig. 15). It now becomes clear that each functional ~b e Q(x) 
is fully determined by its value 0x '  at the point x'. Hence, the family 
Q(x) contains a smallest functional: it is the functional ~bx determined 
by: ~bxx' = 0. This shows, that each point of the boundary of S is an 
absolute atom and S is an absolute atomic figure. The class of filters in 
the algebra of absorbents can now be easily determined. 

Because of the structure of Q(x) to each pure state x e S there corre- 
sponds a unique filter ax checking whether a particle is in the state x; 
the filter a~ acts in R" according to the following prescription: 

axy=(c~y)x;  y e X .  (8.1) 

This formula defines a projection operator determined by two 
subspaces of X: the projection range XII which is a 1-dimensional 
subspace spanned by x, and the projection kernel X± which is a (n - 1)- 
dimensional subspace tangent to the B-cone along the 1-dimensional 
subspace determined by the antipode x' of the state x: 

x ~ 

Fig.  16 

Besides the projectors (8.1) the algebra of absorbents of our system 
contains only two "improper" filters 0 and I which correspond to the 
improper walls 0 and S respectively. Thus, the class of filters in our 
quantum system is completely determined. 

As we have shown in §7, the structure of any quantum system 
contains complete data about the set of the transition probabilities. 
This phenomenon can be observed in our example too. Because of the 
correspondence x~--~a x between the pure states and the filters (8.1), for 
each pair of pure states x, y s S there exists a definite transition probability 
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given by the formula (7.18), i.e.: 

p(x, y) = (oyx; x, y e S.  (8.2) 

Since our (e, D, T, B) is a system with maximal transmission the 
transition probabilities (8.2) should be completely determined by the 
geometry of the statistical figure. In fact, definition (8.2) is equivalent 
to the following geometrical construction. Given a pair of points x, y 
on the boundary of S, we construct a parallel congruence of planes, one 
of which is the plane E~. tangent to S at y. We then find the antipode y' 
of the point y (see Fig. 17), and we join the points y and y' by a straight 
line interval yy'. Now, given the point x on the surface of S, there is 
precisely one point 2 in the interval yy' situated on the same congruence 
plane as the point x: the position of 2 between y and y' determines the 
transition probability p(x, y). 

Ey 

Fig. 17 

We have: 

p(x, y) = 2y' : yy'  . (8.3) 

The above expression exhibits certain nice regularities. Given a 
pure state x E S a unique state "orthogonal" to x is x' :p(x, x')--O. 
Hence, the points on the surface of S form a set which is an analogue 
of two-dimensional spaces of states in orthodox quantum mechanics 
(as, e.g., the space of the polarization states of photons). Each pair of 
points x, x' is an analogue of an orthonormal basis. What makes the 
analogy even more complete is, that for any pure state y e S and any 
"basis" {x, x'} the sum of transition probabilities to x and x' is 1: 

p(y, x) + p(y, x') = 1. (8.4) 
3* 
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In [13] we have proposed that the set of all pure states of a physical 
system together with the set of all transition probabilities be considered 
as a basic structure of quantum mechanics which we have called a 
probability space. We now see, that we obtain here a sort of a probability 
space; the geometry of this space provides an important structural 
characteristic of our (e, D, T, B)-system. It characterizes the statistical 
figure S since the transition probabilities are affine ratios. It also charac- 
terizes the structure of the convex algebra A since the transition proba- 
bilities determine the multiplication law for minimal idempotents 
(8.1) of this algebra: 

axl ax2 ... a~n = p(x, ,  x ,_  1) ,"  P(x2, X1) axl a x .  (8.5) 

The probability space determined by (8.3) is, in general, non-Hil- 
bertian, i.e. there is no representation of pure states x, y . . . .  ~ S by unit 
vectors p~,~py . . . .  in a Hilbert space such, that the scalar products 
reproduce the transition probabilities according to: 

](tpx, ~p,,)12 = p(x, y). (8.6) 

To illustrate this phenomenon assume S to be an ellipsoid in the 
affine space E. All points on the surface of the ellipsoid S are pure states, 
and all points of its interior are mixed states with one mixed state (center 
of the ellipsoid) distinguished (a "complete chaos"). Since the distances 
in an affine geometry are immaterial, we are free to represent our ellipsoid 
S as a sphere with a unit diameter in a (n-1)-dimensional Euclidean 
space; then (8.3) leads to the following equivalent construction of the 
transition probabilities: given two points x, y on the surface of the sphere, 
the transition probability is the square of the distance between x and 
the antipode of y (see Fig. 18): 

p(x .y)  = ,~y'= xy '2 

F I 

~1 / 

I [ 
I [ 
I i 

Fig. lS 
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Hence, we obtain here a "spherical" probability space which was 
studied in [13] and denoted by S(2, n - 1). The number 2 indicates that 
our space is 2-dimensional, i.e. it contains at most two orthogonal pure 
states, and the number n indicates how extensive is the set of "super- 
positions" of any pair of orthogonal states. For n = 2, 3 . . . .  the above 
construction leads to a sequence of examples of probability spaces: 
S(2, 1) is trivial; S(2, 2), S(2, 3) and S(2, 5) are isomorphic to probability 
spaces determined by "rays" in real, complex and quaternionic 2- 
dimensional Hilbert spaces respectively, with transition probabilities 
given by (8.6). The S(2, n) with n > 6 are essentially non-Hilbertian: in 
these spaces each pair of orthogonal pure states has too extensive a 
manifold of superpositions so that it may not be embedded in any Hilbert 
space. 

The possibility of non-Hilbertian probability spaces S(2, n) was 
first pointed out by Haag [7]. It was independently raised in our article 
[13]. The special space S(2, n) plays the basic role in quaternionic 
quantum mechanics proposed by Jauch, Finkelstein, Speiser, Schimono- 
wicz [5] where it represents the geometry of 2-dimensional super- 
position subspaces. The idea of obtaining new quantum mechanical 
structures in the framework of convex set theory was put forward by 
Ludwig [10]: now, we can say more precisely, how they look like. 
As far, as the spaces S(2, n) with n > 6 are concerned, it remains an 
intriguing question, whether they can be given any physical meaning, 
and whether they can represent superposition subspaces of a certain 
physical space of states. 

We now return to the discussion of our general example represented 
by formula (8.3). For non-elliptic shapes of the statistical figure the 
resulting probability spaces are even more distinct from the orthodox 
Hilbertian space than it was predicted in [13]: our construction leads 
then to asymetric transition probabilities (see figure below): 

1 /2  

I t y' I 
I L - - - ~  ~ - - 1  

' : i  -5 
\ 

Yi t t 
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Fig.  19 

pfx,y) = ~/2 

p{y,x) = 3/4 
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Thus, in the framework of our definitions the symmetry of the transition 
probabilities is not guaranteed: on the contrary, without some additional 
restrictions we cannot prevent the appearance of systems for which: 

p(x, y ) .  p(y, x) . 

Although the asymetric probability arises in our scheme in a natural 
manner, one can object to the physical meaning of such a concept. The 
"transition probability" is often interpreted as a probability of a certain 
dynamical process which leads from one pure state to another: we thus 
easily associate the symmetry of the transition probability with the 
symmetry of the corresponding evolution process. This interpretation, 
although plausible is too restrictive. As was rightly pointed out by 
Finkelstein [4] and Pool [16], we need not to interpret the quantity 
p(x, y) as a probability of a certain dynamical process, but we should 
rather understand it as a conditional probability: given a set of informa- 
tion x the quantity p(x, y) indicates the probability of verifying with a 
positive result another set of information y. Now, there is nothing un- 
usual in the asymmetry of the conditional probability• A classical 
example can be obtained by considering two finite volume domains 
A and B in a Euclidean space: if we know that a certain point is some- 
where inside A, the probability of finding it inside B is given by: p(A, B) 
= vol (A c~ B)/vol A, which in general, is an asymetric expression. 

There is only one feature essentially new in our model represented 
in Fig. 19. In orthodox classical and quantum theories the asymmetry 
of the conditional probability appears exclusively ifx and y are incomplete 
sets of information (mixed states), and the mechanism of the asymmetry 
is always explained by a suitable statistics of microstates (pure states)• 
It is not so in the case of the physical system represented in Fig. 19: 
here, even for two complete sets of information the conditional proba- 
bility may exhibit an asymmetry. This indicates that in the framework 
of our concepts some new information structures become possible: 
they are non-Hilbertian not only because of combinatorial relations 
among transition probabilities, as discussed in [13], but because of 
non-analizable, "immanent" asymmetry of transition probabilities for 
pairs of pure states• In these structures the Haag-Kastler operations 
describing the processes of selection and subsequent preparation of 
pure ensembles are no longer describable in the framework of *-algebras, 
because the multiplication law (8.5) does not exhibit the required sym- 
metries. Indeed, by assuming the filters (8.1) to be represented by self- 
adjoint elements of a certain *-algebra, and by applying * to both sides 
of (8.5), we would obtain the identity: p(x,,  x ,_  l). p(x ,_  l, x , -  2) . . . .  
• P(X2, xl) = p(xl ,  xz)" p(x2, x3) . . . . .  P(Xn- l, X,), which, in general, does 
not hold for probability spaces represented in Fig• 19. 
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It now becomes obvious, that our programme represents a sort 
of mathematical machinery to produce various types of "quantum 
worlds". Depending on the shape of the statistical figure introduced 
into the machinery, it yields worlds representing various levels of 
generality. As far as maximal transmission systems are concerned these 
levels can be exemplified as follows. 

1. By choosing S to be a symplex, we obtain a classical world: 
in this world for any two maximal sets of information the conditional 
probability is either 0 or 1. 

2. Taking S to be the set of all density matrices (7.9) we obtain the 
orthodox quantum world. In this world pairs of maximal sets of in- 
formation may appear, for which the conditional probability is neither 0 
nor 1. Each maximal set of information may be "coded" by specifying a 
unit vector in a Hilbert space, and it may be "read" by applying orthogonal 
projectors. The conditional probability for each pair of maximal in- 
formation sets is given by the symmetric expression I(q~, ~p)l 2. 

3. By choosing S to be an ellipsoide in a n-dimensional affine space 
we obtain a sequence of quantum worlds S(2, n) with maximal informa- 
tion sets related by symmetric conditional probabilities. Only three of 
these worlds are Hilbertian, i.e. they belong to the previous level of 
generality. For  n > 6 we obtain a family of non-Hilbertian worlds in 
which maximal sets of information cannot be coded in form of rays in 
any Hilbert space. 

4. Assuming S a general strictly convex figure with differentiable 
boundary, we obtain quantum worlds in which the maximal sets of 
information are, in general, related by asymmetric transition prob- 
abilities. These worlds are not describable in terms of *-algebras. They 
nevertheless belong to the class of Ludwig's quantum worlds and they 
also can be described in the spirit of Temple's algebraic approach (see 
[19, 11]). 

In all these examples the basic quantum mechanical concepts 
(such as filters and transition probabilities) survive; they only change the 
"geometry". However, it must not always be so. We are still lacking the 
last level of generality which will be obtained by assuming that S is an 
arbitrary convex figure in the affine space E. 

5. In such a case we obtain a quantum world in which the trans- 
mission processes, in general, do not allow to distinguish a subclass of 
"absolute" selection processes satisfying criteria I, II and III' of § 5. 
To illustrate this effect we shall consider a maximal transmission system 
with the statistical figure S being a hexagon in the affine plane (see 
Fig. 20). 
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The walls of the above S-figure can easily be listed. There are two 
improper  walls: 0 and the whole S; besides, S has only two types of walls: 
pure states (vertices of S) and one-dimensional walls (sides of S). The walls 
of S form a modular  lattice; however, the behaviour of normal functionals 
and the structure of the orthogonality relation differ from what we 
have observed in the previous examples. Given a pure state x, the set 
Q(x) of all normal functionals mapping x into 1 does not contain the 
smallest element: it contains a variety of minimal elements, none of 
which is smaller than any other in the whole S-figure. Each minimal 
functional of the set Q(x) vanishes on a certain straight line which passes 
through the vertex x' without intersecting the interior of S (see Fig. 20): 
the set of all minimal functionals in Q(x) corresponds to the collection 
of all such lines. In particular, Q(x) contains two minimal functionals 
vanishing on the two one-dimensional walls yx' and zx', respectively; 
however, it does not contain any functional which would vanish on 
both yx' and zx'. This fact reflects a new character of the orthogonality 
relation between the walls of S: the set of all walls which are orthogonal 
to a given wall does not contain the largest element. As a consequence, 
no unique "complementary" walls can be assigned to the walls of S. 

The above behaviour of normal functionals implies a new structure 
of the algebra of absorbents of our system. Given a pure state x, the set 
x, of all absorbents which are neutral to x does not contain a least 
transparent element: it contains a variety of minimally transparent 
absorbents none of which is related to the others by the inequality 
> defined in § 4. The above minimal elements of the set x, are given by: 

aoY = (4) Y) x ,  (8.7) 
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where ~b are various minimal functionals in Q(x). As it is easily seen, 
operators (8.7) are filters selecting the state x. As none of them has 
property III' we shall call them relative filters. 

The appearence of a variety of "relative" filters which are neutral 
to the same state x means that, in our model od quantum world, there 
is no unique way of separating a given type of beam particles: we have 
many distinct selection operations which represent distinct methods of 
selecting merely the same. As a consequence, for a pair of pure states 
x, y there exists, in general, no unique transition probability: each select- 
ion method (8.7) determines its own measure of the "content" of the 
state x in the state y, which is given by: 

p(y, x; 4) = ~Y, (8.8) 

where ~b is the functional appearing in (8.7). The numbers p(y,x; 4) 
[~b being the minimal functionals in Q(x)] will be called relative transition 
probabilities. The appearance of these quantities means that, in our 
quantum world, we have no unique method of estimating the conditional 
probability either: for a given pair of maximal information sets there 
exist many distinct conditional probabilities which manifest their im- 
portance under various circumstances; their lower limit coincides with 
the affine ratio: 

infp(x, y; ~b) = e(x/y). (8.10) 

We thus conclude that, in our example, the physics of beam particles 
should be based on the transition probabilities as relative quantities and 
on the affine ratios as defining their absolute limits. 

The "desintegration" of certain traditional quantum mechanic- 
al concepts which we can observe here, opens some perspectives of 
generalizing the existing quantum mechanical scheme. The appearance 
in our model of relative filters and relative probabilities indicates that 
there is, perhaps, a place here to consider systems of quantum states 
where the "geometry" is not absolute but depends on certain additional 
circumstances such as, e.g. the relationship between system and the 
observer, external influence etc. (see also our discussion in [13]). 

It now becomes clear that the orthodox classical and orthodox 
quantum systems described in § 6 and 7 do not represent a unique 
alternative for quantum theories but they are only particularly degenerate 
members ofa vaste family of"quantum worlds" which are mathematically 
possible. This leads us to a controversial problem. 

9. Critique of "Quantum Logic" 
Among all quantum systems as defined in §4 the traditional 

symplectic and Hilbertian systems occupy a special place. They are 
distinguished by certain common regularities. Moreover, they seem to 
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provide a sufficient description of known microphenomena. A question 
arises, as to whether there are any fundamental reasons why these two 
types of systems should be the only ones important to physics. A domi- 
nating opinion states that such reasons exist. 

One argues, that the structure of filters in quantum mechanics 
reflects the law of a specific, non-distributive logic ("quantum logic"). 
Each filter represents a "proposition" of quantum logic: the proposition 
holds for a particle if the particle has passed the corresponding filter. 
For two filters a, b the relation a N b (defined in § 4) has the meaning 
of implication of the logic. Since filters are "propositions", it is natural 
to assume that we can form their negations, alternatives and con- 
junctions; this leads most of authors to postulate the following axioms: 

1. For each filter a there exists a unique complementary filter a' 
(a "negation"), such that 

e a x  + e a '  x = e x  

for each x E B. 
2. For each pair of filters a, b ~ A there exists a unique filter a ~ b > a, b 

called the union of a and b, such that for any filter x the relations x > a 
and x>b  imply x>a~b .  Similarly, for each pair of filters a,b thece 
exists an intersection arab, such that for any filter y: y<a  and y<b 
~y<=ac~b. 

Once these axioms are accepted, the class of quantum systems 
admissible becomes very narrow: it was shown by Piron [14] that 
with the additional assumptions of semimodularity, the lattice of filters 
is isomorphic to a lattice of subspaces in a certain Hilbert space, which 
indicates that the whole system is Hilbertian. This result was amplified 
by Gunson [6] by working with a more complete set of physical and 
mathematical concepts. The strongest result along this investigation 
line was recently obtained by Pool [16] who showed that semimodularity 
is equivalent to the assumption that filters transform pure states into 
pure states. These results completely answer the question of how to 
characterize the Hilbert space model of quantum mechanics in terms of 
physically meaningful properties. A question remains whether this 
means that v. Neumann's model of quantum mechanics is the only one 
acceptable for physics. 

We think that such a conclusion would not be justified. In fact, 
the validity of axioms such as (1) and (2) is not absolute but it involves 
some particular physical assumptions. To illustrate this, consider the 
following example, due to St. Woronowicz. Let N be a Nicol prism and r 
an ideal filter of red light. Their product Nr is a classical example of a 
filter selecting linearly polarized red light. Note now, that we have no 
effective prescription of constructing a complementary filter (Nr)'. 
Such a filter should contain both the colour filter r' (complementary 
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to r) and the Nicol prism N' (with the plane of polarization perpendicular 
to that of N). However, it is not obvious how to construct any filter 
different from 1 and containing both N' and r'. In fact, the existence of 
such a device is obvious only in the framework of a particular model 
in which the light beam is described by linear classical electrodynamics. 
Within this model, the beam can be uniquely decomposed into two 
parts: a part selected by Nr and the "rest" which correspond to the 
hypothetical filter (Nr)'. This argument, however, does not work in 
more involved models, like that of non-linear classical electrodynamics: 
we do not know according to what laws non-linear fields can be split 
into components with various physical properties. In fact, we even 
ignore which properties of self-interacting waves can be subject to 
selection processes. This remark exhibits the true physical meaning of 
axioms such as (1): these axioms not so much reflect the "inescapable 
logic" of microphenomena but they rather generalize the properties of 
linear classical field theories. However, physics does not end at this. 
After all, there also exist non-linear field theories. The problem, how can 
we imagine non linear waves as split into elementary quanta is one of 
intriguing questions of present day physics. It seems that our non- 
orthodox systems are closely related to that problem: they suggest, 
how non-linear quantum mechanics could be constructed. 

10. Relation to Non-Linear Theories 

Note, that we have no basic difficulty with the formulation of non- 
linear wave mechanics: what we are, however, lacking is the statistical 
interpretation. For waves obeying a non-linear equation the scalar 
products, in general, are not conserved, and so, they are not appropriate 
for the definition of transition probabilities. A question thus arises, what 
functions of non-linear fields should be used instead of the [(~, cp)l z- 
quantities to provide an adequate statistical interpretation? According 
to the ideas outlined before the answer can be obtained from the following 
construction. 

Given a certain wave equation, consider the set • of all it's classical 
solutions (cp). As a first step we must decide which wave functionals 
f(cp) are observables. This can be done by analyzing the structure of the 
classical wave theory (an adequate geometric language has been recently 
developed ([18, 20, 17]). For fields with rich groups of gauge trans- 
formations this must lead to a non-trivial investigation programme 
formulated by Bergmann [1]. 

Once the set F of all wave observables is known, the set of solutions ~b 
becomes a topological space, and we can construct the statistical cone 
of the theory as follows. We consider the statistical ensembles of many 
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solutions: each ensemble corresponds to a positive, finite measure # 
on Borel subsets of ~b; the mixture operation + means the addition of 
measures. For  each measure ff and each observable f ~  F the "ensemble 
observable" f(p) in constructed by integration: f(/~) = ~ f(~0)d#(q~). Any 

q) 

two measures /q,/~2, such that f (Pl):  f(/z2) for every f ~  F, are called 
equivalent (#1 - J~2) and they are interpreted as defining two physically 
indistinguishable ensembles. The above relation of equivalence is a 
crucial element in our construction. An example can be obtained by 
considering electromagnetic waves: if 1", -~ and ~,,/" are two pairs of 
monochromatic light waves of the same colour and intensity but with 
mutually orthogonal polarizations, the mixture T + ~ can by no means 
be distinguished from \ +.~ : this fact is due to the structure of the 
electromagnetic wave observables, and it predetermines some essential 
features of quantum mechanics of photons. 

Given the relation - ,  the statistical cone B may be defined as the 
set of all classes of equivalent measures; the topology of the cone is 
determined by the set of all ensemble observables. An associated (D, T, B)- 
system can be obtained by assuming that D is the set of all continuous 
linear functionals in B, and T is the algebra of all continuous linear 
operators B~B. Up to now, the whole construction can be done on a 
purely classical level; the resulting (D, T, B)-system describes the statistics 
of classical waves with the most general assumption as to the nature of 
transmission processes. 

According to § 4 the quantization should be performed by fixing a 
quantum scale. Some indications concerning the quantum scale are 
again contained in the structure of the initial wave equations. This 
equation is usually characterized by certain conserved quantities, such 
as energy, momentum, charge etc. (see discussions in [18, 17]). It seems 
natural to choose one of them as the quantum scale: the most obvious 
choice would be to employ the charge, if such a quantity exists. This leads 
to the distinction of a certain convex figure S C B: the geometry of this 
figure determines the physics of the hypothetical wave quanta. For 
waves obeying linear equations (with quadratic Lagrangians) the 
observables f ~ F are real quadratic forms in q~, and the whole construction 
leads to a Hilbertian figure: this seems to explain the origin of orthodox 
quantum mechanics. For non-linear fields, however, the field observables 
are no longer quadratic forms but they exhibit a more involved behav- 
iour; so, the same programme will, in general, lead to non-Hilbertian 
figures corresponding to certain new types of quantum mechanics. For 
any shape of S, our theory leads to a unique statistical interpretation of 
the resulting system. By analyzing the geometry of S we can determine the 
affine ratios which are the basic invariants of our theory taking the place 
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of the 1(9, ~o)12-q uantities. We can determine the structure of filters and 
we can find whether they do or do not form an orthocomplemented 
lattice. We can also say whether the physics of our wave quanta should 
be based on absolute or on relative transition probabilities and we can 
determine the geometry of these probabilities. Since this programme, in 
principle, can be carried our for any classical field theory, we thus 
conclude that the concepts reviewed in this article represent the missing 
element necessary to convert non-linear wave mechanics into "mechanics 
of non-linear quanta". 

We now return to the fundamental problem of the axiomatic theory: 
should we believe, that the Hilbertian model of quantum mechanics is 
the only one acceptable to physics? Our construction indicates, that the 
affirmative answer given in [2, 14, 12, 6] has an objectable physical base. 
The present quantum electrodynamics operates with the concept of a 
physical particle which, although "dressed" propagates freely in absence 
of external forces; the statistical ensembles of such particles obey linear 
wave equations. If this description is exact, the Hilbertian model is 
sufficient. However, it may be, that the idea of a physical particle as 
being a "heavy replica" of a free particle is only approximately true. 
The next step of quantum theory would be to consider a physical particle 
which, even in the vacuum, does not propagate according to linear laws: 
the statistical ensembles of such quanta would be described by non- 
linear wave equations. In the resulting quantum theory no representation 
of pure states by vectors in a Hilbert space would be possible and we 
would be lead to consider non-orthodox worlds like those described 
in §8. 
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