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Abstract. Starting from an algebra of fields ~ and a compact gauge group 
of the first kind ~, the observable algebra 91 is defined as the gauge invariant 
part o5 ~:. A gauge group of the first kind is shown to be automatically compact if 
the scattering states are complete and the mass and spin multiplets have finite 
multiplicity. Under reasonable assumptions about the structure of ~ it is shown 
that the inequivalent irreducible representations of 91 ("sectors") which occur are 
in one-to-one correspondence with the inequivalent irreducible representations of 
~¢ and that all of them are "strongly locally equivalent". An irreducible represen- 
tation of 91 satisfies the duah'ty property only if the sector corresponds to a 1-dimen- 
sional representation of ~¢. If ~ is Abelian the sectors are connected to each other 
by localized automorphisms. 

I. Introduction 

One of the most characteristic assumptions of relativistic Quantum 
Field Theory is the principle of locality. In its most general form it may 
be s ta ted as follows: 

There is a correspondence between regions in space-time and algebras 
of observables 

(9 -> 92(0). (1.1) 

Here and th roughout  this paper  0 denotes an open and finitely extended 
region of space-t ime; 92 (0) is the  algebra generated by  all the  observables 
which can be measured within (~. I f  &l and 02 are two regions which lie 
to ta l ly  spacelike with respec~ to  each other, 92 (01) and 92 (02) are required 
to commute.  The a rgument  for this is based on Einstein 's  relativistic 
causali ty principle which states t ha t  no physical influence is possible 
between the two regions. Hence a measurement  in 01 should not  disturb 
a measurement  in 02. 

Historically, in the  development  of Quan tum Field Theory,  it has 
been found necessary (or at  least convenient) to introduce unobservable 
"local"  quantit ies (e.g. "charged fields", Fermi-Dirae fields etc.). Such 
quantities,  being unobservable as a mat te r  of principle, need not  commute  
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at space-like distances. Indeed to obtain Fermi statistics for certain 
particle types, J o ~ D ~  and WIGN~ postulated the anticommutativity 
of certain unobservable fields at  space-like distances. In recent years 
more complicated commutation relations have also been discussed 
("para.fields"). 

In all such cases we have an assignment 

0 -~ 5:(O) (1.2) 

where the "field algebra" 5:(0) of the region 0 is larger than "observable 
algebra" 01((9). We know on general grounds [I] that  the algebraic 
structure of the observable algebra should contain all physical informa- 
tion about the system. In particular this means that  the existence of 
particles not obeying Bose statistics or oi particles carrying charge 
quantum numbers must already be expressed by certain structural 
properties of the observable algebra 01, although 01 does not contain any 
elements which anticommnte with their spatial translates at large 
distances or elements which transfer charges. In other words, it  should 
be possible to construct the "field algebra" 5: (uniquely to the degree to 
which 5: is physically relevant) from a given observable algebra 01. 
Such a construction has been attempted by BOnCHE~S [2]. This inter- 
esting attempt unfortunately uses certain structural properties of the 
representations of 01 absent in typical easesL Our present paper is, there- 
fore, devoted entirely to the opposite problem: given the representation 
of the field algebra generated from the vacuum state, find the properties 
of the irreducible representations of the observable algebra which are 
contained in it. The more interesting problem of constructing the field 
algebr~ from 01 will be tackled in a subsequent paper. 

The main assumptions we make are standard and will be listed here: 
1. We consider a Hi]bert space 5/f and, acting on it, the algebra of all 

bounded operators ~ (J/f). Associated with each finitely-extended, open 
space-time region (9 there is a *-subalgebra 5:((9)C~(~f). Without toss 
of generality in any of the following arguments, we can assume that  5: (G) 
is weakly closed, i.e. 

5:((9)- = 5:((9)" = 5:((9). (1.3) 

}{ere ~ -  denotes the weak closure of a set 2; z of bounded operators; 
:W' denotes the eommutant of 5 f.  The correspondences (1.1), (1.2) have 
to satisfy "isotony" i.e. 0~ D 0z implies 01 ((91)) 9/((9~) and 5: ((9i) D 5: (~o2)- 

The total field algebra 5: is defined as the closure in the norm topo- 
logy of the union of all ~ ((9) : 

5:  = ~ 5 : ( (9 )  • ( 1 . 4 )  

These properties were suggested by Theorem 13 o~ [3] ~he proof o~ which 
c o n t a i n s  a n  error .  
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The Hitbert space is irreducible with respect to ~,  i.e. 

i~- = i~" = ~ ( ~ ) .  (1.5) 

2. We have a strongly continuous unitary representation U(L) of 
the Poincar6 group ~ +  in J r .  Here L is a general element of .~t+ and 
U(L) its representative, la 

The generators of the space-time translations are called the energy- 
momentum operators. They satisfy the spectrum condition: there is 
exactly one vector ~ (the vacuum state) which belongs to the eigenvalue 
zero of the energy operator. The energy operator Po has its spectrum 
confined to the range E ~ 0. This representation induces automorphisms 
of ~ denoted by ztL: 

U (L)I 'U (L) -1 = ~z(F).  (1.6) 

~ transforms a subalgebra ~ ((9) into the subalgebra of the transformed 
region g (L (9). 

3. There is a compact group f~, the gauge group, and a faithful, 
strongly continuous unitary representation of it  g E N --> U (g) ~ ~ (i/f) 
which induces a group of automorphisms of g :  

The representations U (L) and U (g) commute, i.e. U (~+) C U (~)'. Also, 
~g acts in a strictly local way on ~, i.e. 

.~(5~((9)) = ~((9) for all (9. (1.8) 

4. The observable algebra of the region (9 is defined as the subset of 
((9) which is invariant under gauge transformations: 

9.1((9) = ~:((9) r-, U(~) ' .  (1.9) 

The total observable algebra is defined analogously to (1.4) as 

oa = ~ 9a((9).  (1.10) 

The observable algebra shM1 have the locM commutation relations 

9/(01) C~I((9~)' if (91 is space-like to (9~. (1.11) 

The structure specified above has been tailored to describe gauge 
invariance of the first kind. From a physical point of view, one expects 
it to be directly relevant only in the absence of long-range forces, e.g. 
if one wants to describe charge quantum munbers in strong interaction 
physics. The significant assumption - which fails for instance in Quantum 
Eleetrodynamics - is the covariance of the field algebra under the 
Poincar6 group (in a Hilbert space with positive metric). Related to this 
is the requirement that  gauge transformations and Poincar6 trans. 

a In this paper 2~+% wilt always be understood to be the covering group of the 
inhomogeneous Lorentz group. 
1" 
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formations commute, and this excludes, of course, gauge groups of the 
second kind. On the other hand, in a theory with only short range forces, 
the assumptions are coherent. In particular, if we omit the topological 
requirements on the gauge group [compactness and strong continuity of 
g --> U(g)] in 3, we can consider the group ~max consisting of all unitary 
operators U on ~¢# satisfying 

[U, U(L)] = 0, L ~ t + ,  (1.12) 

U~  ((~) U -I  = ~ (@), for all 0 ,  (1.13) 

u ~  = ~9. (1.14) 

We equip this group with the strong operator topology. Then we show 
in section I I  that  ~max is compact if the theory has a complete particle 
interpretation, with the usual definition of scattering states, and if no 
particle multiplet has infinite multiplicity. The gauge group is a subgroup 
of ~¢max and we can take it  to be a closed subgroup without affecting the 
definition of the observable algebra. Thus ~¢ will be compact and g -+ U (g) 
strongly continuous. 

One usually considers gauge groups of the first kind to be groups 
generated by one or more independent charges. In  this case, ~ is an 
Abelian group, the direct product of circle groups (phase factors). 
However, if one considers strong interaction physics by itself, the natural 
gauge group is the isospin group [isomorphic to SU (2)]. One of the aims 
of this investigation is to analyse the effect of a non-Abelian gauge group 
on the structure of the family of representations of 91. Section IV shows 
how an essential distinction between the Abelian and the non-Abelian 
case can be made in terms of duality. A certain duality requirement on 
the field algebra [see Eq. (1.23)] implies tha t  the irreducible represen- 
tation ~ of the observable algebra corresponding to a specific sector 
satisfies the duality relation 

~(91(0'))- = ~(91(0))' (1.15) 

if the sector corresponds to a one-dimensional representation of the 
gauge group. In (1.15) as in the remainder of this paper, 91((~') denotes 
the C*-algebra generated by all 91(@/) with (9/totally space-like to @. 
The relation (1.15) will not hold in sectors associated with the irreducible 
representations of the gauge group of dimension greater than one which 
occur if ~¢ is not Abelian. 

The relationship between the irreducible representations of 9 /con.  
rained in 5/# and the irreducible representations of ~¢ is studied in section 
III .  According to the standard terminology, an element of the "spectrum" 
of a group (or algebra) means an equivalence class of irreducible represen- 
tations. For convenience, we refer to the set of equivalence classes of 
irreducible representations of 9/contained in ~ as the "physical spectrum" 
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of 02. The main conclusion of section I I I  is that  the physical spectrum of 
9A is in natural 1 - 1  correspondence with the complete spectrum of (¢. 
For this result, the following two additional assumptions are made: 

5. The "cluster property"  of the vacuum state vector f2~: 

lira <~'~, F 1 ~x (F2)Fa~2 > = <~2, FiFsff2 } <~, _E~ff2> (1.16) 
fxr -+~  

for all ~ ,  F~, F~ ~ ~. Of course, x C ~ denotes a spatial translation. 
6. The Reeh-Schlieder property of analytic vectors: 
If • is an analytic vector for the energy operator (a.f.e.-vector)8, it 

is cyclic and separating for each ~(0)  i.e. ~( (~)T is dense in 5¢~ and 
F W =  0, F C ~((9) implies F = 0 .  

As BORCHERS has shown [4], assumption 6 is equivalent to "weak 
addit ivity" in the following sense 

V ~((~ ÷ x) = ~ ( ~ )  4 (1.17) 
xER~ 

v f f (e  + x)' = ~ ( ~ z ) .  (l.lS) 
x E R  4 

This should hold if the scheme bears any resemblance to field theory. 
In Sections V and VI, we investigate various forms of local equi- 

valence for the representations of the observable algebra in different 
sectors (compare [2], [3]). "Local equivalence" means that  the restric- 
tions of the representations to each local subalgebra 91 ((9) are unitarily 
equivalent. "Strong local equivalence" means that  the same is true for 
the restrictions to each 92(0'). An even stronger form of local equiva- 
lence could be defined by requiring that  the representations of the 
"relative commutants" 9~ (0) of the local algebras are unitarily equivateng. 
Here ~[~(0) is the C*-subalgebra of ~[ consisting of all elements of 
which commute with every element of N (0). Considered as an operator 
algebra on ~ ,  9A ~ (6s) is given by  

~ ( e )  = ~ ( s ) '  ~ ~ .  (1.19) 

Our conclusion is tha t  typically the representations of 9.1 c (~) in the 
different sectors are disjoint (Section V) but that  the different sectors 
are strongly locally equivalent (Section VI). The strong local equivalence 
follows from a mild restrictive assumption on the commutation structure 
of ~:  

If ~ has Bose or Fermi commutaiion structure, then (1.16) is a consequence 
of the earlier assumptions. 

Ttt 
3 T is an a.f.e.-vector if the power series z~ %~- IIP~T[[ has a non-zero radius of 

convergence in T. ~ .r~. 
4 The symbol V is used to denote the least upper bound in the lattice of yen 

Neumann algebras on ~ ordered under inclusion. 
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7. The field algebra in do commutes with the obse:rvable algebra in (9, 

(o) < ~ (o ') ' .  (~.2o) 

The disjointness result on the other hand is derived with the help of 
assumption 8, formulated in Section V, whose physical content is roughly 
that  there exist local currents generating the gauge transformations. We 
illustrate this connexion here with a heuristic argument for the case of 
the free charged scalar field. Let  ~R = (x: ixol q-Issl < R}, the open 
double cone of "radius" R centred on the origin. Pick R - d such that  
~OC&R_ ~ and let j0(x) be the charge density, ]~ a smooth function of 
ss E Rs, vanishing for lacl > R and equal to I for Ixl < R - d ,  and g~ a 
smooth function of x 0 with total integral 1, vanishing for Ix01 > & T h e  
local charge Jo ([l~ge) is associated with 9A e ((~) and converges in a certain 
sense on each sector to the corresponding charge quantum number as 
R -~ ~ .  On the other hand it should always tend to the same c-number 
on all subspaces yielding mutually equivalent representations for 9As (&). 

We turn now to the question of the commutation structure of ~. 
One may note that  the way in which the observable algebra is defined 
[see Eq. (1.9)] imposes certain restrictions through the locality require- 
ment on ~1. As N C Nmax, we have 

where 
~ ((9) = ~ (0) ~ u ( ~ G j .  (L22) 

Thus the algebra 91rai~, which is determined entirely by ~ and U ( ~ )  has 
to be local. We shall not at tempt to classify the possible commutation 
structures of ~ from this point of view. Instead we consider explicit 
restrictions on the commutation structure such as assumption 7 above 
and the "twisted locality" introduced in Section IV. 

Assumption 7 may be strengthened to a duality relation used in 
Section IV: 

9/((9')- = ~(@)' ~ U ( ~ ) ' .  (1.23) 

For Abelian gauge groups, this leads to a very simple description of 
the relation between the different, sectors in terms of "localized automor- 
phisms" of 92 (Section VI). This structure will be the starting point of a 
subsequent paper on the reconstruction of the field algebra. I t  wilt be 
shown there tha t  it leads to an Abelian gauge group and a, field algebra 
whose commutation properties satisfy the Bose-Fermi alternative. 

II. Compactness of the Gauge Group 

In the introduction, we defined the "maximal gauge group" ~max 
which can be associated with a given field algebra. This group is the 
group of unitary operators on 2F satisfying (1.12), (1.13) and (1.14). We 
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want to show that  it is compact in the strong topology of Y~ under 
reasonable physical assumptions. 

We consider the subspace ~4e(:) spanned by the single particle states 
of ~ .  The restriction of the representation of the Poincarg group to ~( : ) ,  
denoted by U(1), is a d~eet sum of factor representations: 

ye(:) = @ ( ~ i  ® ye~) (2.:) 
i 

u(1) (L) = @(V:m~,~,j (L) ~ Z:). (2.2) 
i 

Here the index i denotes a specific value of the mass and spin of a particle 
multiplet. U[,~. sd is the corresponding irreducible representation of @~+ 
and 24f~ allows us to distinguish the different particles of the mass and 
spin multiplet. 

We shall now assume that  the formalism of collision theory which 
has been derived in the case of Bose- and Fermi-fields (see e.g. [5]) can 
be applied analogously in our context. Let  ~ denote the (norm dense) 
*-subalgebra of ~ consisting of those elements which are quasfloeal of 
infinite order 5. We can find a collection Bi, ~ of operators from ~ such 
that  

Bi,~ D = ¢i ,~  ~ o / ~ i ®  ~f~. (2.3) 

and such that  the whole single particle space ~(1) is spanned by the 
spatial translates of the vectors ¢~,~. We define, in the usual way (see 
e.g. [5]), time-dependent creation operators 

B~a(t) = f h(x) o:~(B~,a)d~x (2.4) 

where ]i (x) is a function whose Fourier transform it (P) has support con- 
centrated on the positive shell of the hyperboloid of mass mi: 

f~ (p) = ¢ (p) ~ (p~ + - ¢  - po ~) 0 (P0) (2.5) 

and ¢ (p) is infinitely often differentiable and of compact support. The 
a t vector B~I a (t) D is then independent of t and lies in :gt°t ® 5/z°~. We assume 

that  the states corresponding to configurations of several incoming 
particles can be constructed with the help of the operators (2.4) in the 
usual fashion, i.e. (omitting for brevity the indices i, 2) tha t  the state 
vectors 

~m B ~ ( t ) . . .  BJ~(t)~9 ~ (¢1 x ¢~ × . . .  × ¢ , / ~  = q5 (2.6) 

exist as norm limits and depend only on the ¢i = Bh (t)~. The order of 

s Let 0~ be a sequence of concentric double cones wi~h ba.se radii R,~ tending to 
infinity for n --> c~ and let d~ be the norm distance between F ~ ~ ~nd the set ~ ((Y,~). 
Then F is called, qua~ilocal of order 2g if 

tim _R~d~ : 0 for 0 ~< ~ --< 2v'. 



8 S. DOPZICHE~, t~. HAAO and J. E. ROB1~RTS: 

the factors is, of course, relevant if we are dealing with particles other 
than Bosons. The mapping 

¢1® ¢3®--. ®¢~-> (¢1X ¢3 X . . .  × ¢~)"+~ (2.7) 

is assumed to be a continuous linear mapping of (~ ( ~  ® gf~) into gf.  
i = 1  

In addition to these features of collision theory which have been 
established in the Bose-Fermi case we assume 

(i) The linear span of the ranges of all the maps (2.7) is dense in 
(i.e. the incoming states ]orm a complete set). 

(ii) Each particle multiplet has only a finite number of components, 
i.e. each 9f~. is finite dimensional. 

Let us now consider the group N~o of all unitary operators which 
commute with the Poincar6 transformations, act as the identity on the 
vacuum vector and transform ~ into itself. The first two conditions 
defining ~f~ are the same as conditions (1.12) and (1.14) on the elements 
of Nm~x. The last condition 

~{~ u - ~  = ~ (2.8) 

is weaker than the corresponding condition (1.13). ~max is thus a sub- 
group of (go~- By (1.12), (go¢ transforms the single particle subspace gf(1) 
into itself. We denote its restriction to J4°(1) by ~ ) .  Considering ~¢oo and 
~ )  as topological groups with the strong operator topologies of ~ and 
Jr<t) respectively, we first note that  ~oo and ~f~) are isomorphic. Indeed, 
(2.6), (2.4) and the properties of a U ( ~oo imply 

V(¢~ × ¢3 × - . .  × ¢~)in = (U¢1× U¢~ × . . ,  × V¢,J i'*. (2.9) 

By assumption (i), Eq. (2.9) implies that  U ( Noo is uniquely determined 
by its restriction to N~) and further, with the continuity of the map (2.7), 
that  the elements of ~f~) are in continuous 1 -1  correspondence with 
their extensions to N~. 

Next, let qg (Jf~) be the group of all unitary operators on gf~. with 
the strong operator topology. Since a4°~ is finite dimensional, this group 
is compact. The group of all unitaries on gf(l) satisfying (1.12) (equipped 
with the strong operator topology) is isomorphic t o / / ° ] l  (af~), the topo- 

i 
logical product group of the ~ ( ~ ) .  By TYCHONOFS'S Theorem [6; I, 

(1) § 9 No 5], this group is again compact. I t  obviously contains Noo. 
Finally we note that  Nmax (though perhaps not ffo~) is closed since 

the three defining relations (1.12), (1.13) and (1.14) remain valid for 
iimits in the strong operator topology. 

Putting the three remarks together we have 
2.1 Theorem. Noo is isomorphic to a subgroup o] the compact group 

H q/ (~ ' ) .  ~ra~x is a compact subgroup o/f¢oo. 
i 
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Note that  it has not been necessary to assume that  the total number 
of different multiplets is finite. In  fact, the proof remains valid for a 
non-separable 24f with an uncountable number of multiplets. 

IH. The Decomposition into Sectors 

Having seen in detail how asymptotic completeness and the finiteness 
of particle multipIets restrict the possible nature of the gauge group, and 
in particular allow us to assume it compact, we turn to the main problem 
of describing the given structure in terms of representations of the ob- 
servable algebra and its local subalgebras. The simplest problem we can 
pose ourselves is that  of decomposing the given representation of the 
observable algebra into its irreducible components. As a preliminary, 
we must describe how the observable algebra may be obtained from the 
field algebra by averaging over the gauge group. We begin with two 
simple lemmas establishing the basic properties of taking means of 
operators over a compact group. 

3.1. Lemma. I /  F ~ ~(2/ f )  then re(F) = f a~(F) dlZ (g), where the 

integral is considered in the weak operator topology and l~ denotes normalized 
Haar measure. Further 

a) ~g o m = m o ~g = m, i.e. m projects [rom 3Y(J/C) onto U (~)'. 

b) I / F ~  O,m (F)  >= 0 and m ( I )  =- I,  i.e. m is a normalized positive 
mapping. 

c) m o m = m, i.e. m is idempotent. 

d) m is ultrawealdy continuous; equivalently m is normal, or weakly 
continuous on the unit ball o / ~ ( J ~ ) .  

Pro@ The integral exists as g -~ U (g) is strongly continuous. A com- 
pact group is unimodular so Haar  measure is left and right invariant, 
hence a). The positive cone of ~ (d4f) is weakly closed and # is normalized 
hence b). c) follows directly from a). We may prove d) by  showing directly 
tha~ m is continuous on the unit  bail of ~ ( ~ )  using the compactness 
off#.  

Alternatively, we may note that  
1. the set of trace class operators (~ c) is the ultraweak dual of ~ (54 z) 

[7 ; p. 37--42] ; 
2. m maps (v e) into itself, in fact T rm(T)  = T r T ;  
3. the map m : (z c) -~ (T e) is the dual map of m: ~ (5/D) -+ ~ (gff), 

i.e. T r (Tm(F) )  = Tr(m(T)  F), T C (~ c), F ~ ~ ( ~ ) .  
3.2. Lemma. Let 93 be a C*-algebra on Jd  such that m(93) C93, then 

(~3~ u ( ~ ) ' ) -  = ~ - ~  u(~) ' .  
Pro@ Since m(93) C~3, Lemma 3.1a) gives 93~ U(~) '  --- m(93). But,  

by Lemma 3.1d), m(~3)- = m(93-) = 93-~ U(~) ' .  
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Note tha t  if if acts on ~ ,  then m (~) < ~ if either ~3 is a v o n  .Neumann 
Mgebra or if g -~ % (B) is a norm continuous mapping from ~¢ into ~3 
for each B ~ ~ .  6 We shall apply this Lemma to various subalgebras of 
and the crucial property which allows us to do so is tha t  m is local and 
normal as a mapping of ~. 

From the definition of the observable algebra in (1.9) and (1.10) we 
get 

~/(@) : ~(@)~ U(~)' : m(~(@)) (3.0 

and by  the norm continuity of m 

9A = m(~)  = g ;h  U(~ ) ' .  (3.2) 

Now g is irreducible by assumption, so tha t  

9/- = re (g- )  = U(~) '  (3.3) 
by  Lemma 3.2 7. 

In  view of Eq. (3.3), we may  decompose the representation of ~t by  
decomposing the representation of the gauge group. Let  

aEz 

u(g) = Q Go(g) ~ I~ (3.5) 
a6z  

be the factoriM decomposition of the representation U of the gauge 
group, wit, h X the set of equivalence classes of irreducible representations 
contMned in U, U~ a representation of class a acting in the finite dimen- 
sional Hilbert  space J~ , .  ~t~ a Hilbert  space of dimensionMity equal to 
the multiplicity of q, and I~ the unit  operator on 5/F~. Let  E a denote 
the projection in JF onto ~ ®  iF"  then E~ C U(~f ) '~  U(f¢)" = 91-5~ 91' 
by  (3.3) so 9f~® ~ reduces 91-. A ~91 acts on ~ o ®  Jf~ as I ®  z , (A)  
where =~ is an irreducible representation of 9X in the Itflbei4 space ~ .  
~r~ and ~r~ are disjoint, if a # • since their central supports Eo and E~ 
are orthogonal [10; 5.2.1 (iii)]. Hence ~r, and x ,  are inequivMent for 
a 4 v .  

The term "physical spectrum of 91" was introduced in section [ to 
denote the equivalence classes of irreducible representations of 91 
occurring in our problem. Hence we have derived 

3.3. Theorem. a -~ ~ defines a 1 - 1 mapp ing / rom Z to the "physical 
spectrum" of 91. 

~(~) is assumed to be a yon iNeumam~ algebra so this remark applies wi~h 
= ~(e) but also g--> e~(F) cannot then, in general, be a norm continuous 

mapping from N into ~(6). 
I t  is perhaps worth noting that the existence of a locally normal projection 

mapping m: ~ ~ 9.1 = ~ ~ U(ff)' in no way depends on the compactness of f¢, 
since for local yon Neumann algebras ~(t~) we may apply the Theorem of KovXcs 
and Sz/~es [8, 9] to construct such a mapping for an arbitrary group f¢ acting 
locally and leaving D invariant. 



Fields, Observables and Gauge Transformations I 11 

The purpose of the remainder of this section is to show that  every 
irreducible representation of the gauge group must occur, The techniques 
will be those of [11] and involve constructing operators from the field 
algebra with definite tensor character. Given ¢, ~0 ~ ~f~, we define, for 

M~,,p(F) = f <¢, v~(g) w} ~.(F) d~(g). (3.6) 

3.4. Lemma. Let ~r ~ 27 and let t ~ 27 denote the trivial representation o/CY. 
a) F -~ M~c.v (F) is a norm-continuous linear mapping ~ -~ ~. 

c) M~,,~,(F) (-.Z~® <Z:) c~<,@ Yf'. 
d) I/{¢7~} is an orthonormal basis/or ~fo, yJ C ~/~o, ~P =P 0 then there 

exists an F ~ ~((9) such that {M~ck, ~(F) ~}  is an orthonormal basis o] a 
subspace o/J~f carrying a representation equivalent to a. 

We omit the proof of this result which is of an elementary nature 
and which may be found in a different setting in [11 ; Theorem 4]. d) uses 
the cyctieity of (2 for ~ ((9) which is part of the Reeh-Sehlieder theorem 
and shows in particular that  ~?((9) contains non-zero tensors of type ~. 

3.5. Theorem. a) I / a  and a' ~ Z, there exists a subrepresentation o / U  

equivalent to a ® a'. Hence a ® a' = ~ ai with ai ~ 27. 
i ~ 1  

b) If  a E 27, then 5 C 27- 
Proo]. a) Let ~, a'  ~ 27, ¢, ~o C ~ ,  ~b', ~p' C 5~ o,, and F, F '  ~ ~. Then 

4® 4'-+M~c,v(F) M~,,v,(F')(2 defines a unique linear map T from 
S ~ ®  S~,  onto a ~-invariant finite dimensional subspace 3U of Y{~. 
Further, by Lemma 3.4b), 5" U~ (g) ® 5~, (g) = Ua~ (g) T where Ua~ is the 
restriction of U to~(C. If Thas  a inverse, U,@ U~, and U~ are equivalent. 
This we show to be the case if F and F '  are suitably chosen. Now 

<T ¢, ® ¢~, T ¢~ ® ¢~} = <~, M~¢~> ~, (F')*M~¢~,~ (F) *M$~>~ (F)M¢;, ~,, (F )/2}. 

Choose j7 ~ as in Lemma 3.4d) and F '  ~ in the sume way with a' 
replacing a. Replace F by ~x (F) and let the corresponding map T be 
denoted by Tx. Now M~, v and ~x commute so 

<T~¢~® ¢~, m~¢~® ¢~> 

= < 9 ,  ~ ' * ~ * ~ ( F ) ]  M + ; ~ , ( ~  ) 9 > .  M¢i ' ~, (F)  ~,. [M<~. ~ (2,) Me,, ~, 

But by the clustering propcr~y, 

= <~2, M~¢~,~(F)*M$o,v(F ) ~ }  <~, M~Ci,¢(F')*M~ci, v ( F '  ) ,Q} 
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Thus T* T~ -+ i as Ixl -> oo and in particular T ,  has rank d im¢-  dima'  
for ]x] sufficiently large and hence has an inverse. This proves a). 

b) Given ¢ ~ Z, ¢, %s C ~ o ,  ¢, Y; 4 0 we can by Lemma 3.4d) choose 
a .¢ F* ~ ( ( 0 )  such that  M¢ .~(F ) g= 0. 

ThenM$, v(F*)* = f (¢,  U,(g)yJ}~g(F)d/~(g) g= O, MS, ~(F*)*C~(0). 

But  by the Reeh-Schlieder Theorem g2 is separating for ~(0)  hence 
a $ $ Me, v(E ) g2 is a non-zero vector transforming according to the repre- 

sentation ~, so ~ ff X. 

Recalling again the situation in Section II,  where ~ can be identified 
with a subgroup of the internal symmetries of the single-particle mul- 
tiplets, we can see why Theorem 3.5 should hold. I t  is an analogue of 
the Theorem on the additivity of the energy-momentum spectrum [12] 
and may be sharpened to include this result as well. Let S~ denote the 
energy-momentum spectrum in Y~  and let p ~ S, ,  p' E S~,. Then repla- 
cing F and F '  of Theorem 3.5 by f [(x) ~ ( F ) d x  and f / ' ( x )  o~(F')dx  
where supp ~ and supp [ '  are contained in an arbitary neighbourhood 

n 

of p and p' respectively, we deduce that  if a ® ¢' = (~  ai, 
i = 1  

S~ + So, C S¢~ for i = 1, 2 . . . .  n . (3.7) 

We can now show that  every irreducible representation of the gauge 
group occurs. 

3.6. Theorem. Z = ~, the complete spectrum o / ~ .  Thus c~ -+ :~ define8 

a 1 - 1 mapping o] f~ onto the physical spectrum of OA. 

Proo]. Let gz denote the linear space of functions on ~ generated 
by the functions ](g)---- (¢,  U~(g)7J) ~dth (; C Z and ¢, 7J ~ 5/f~. I t  
suffices to show that  :W is dense in L"(~) since if ~ ~ X, f ](g) (¢, U~(g)W) 
dl~(g ) = 0 for all / ~ ~ .  Now ~ is a *,subalgebra of the C*-aIgebra of 
continuous functions on ~¢, C(~),  since it is clearly a linear subspace, 
and is closed under products and complex conju I ~ation by Theorem 3.5. 
However U is a faithful representation of ~¢~ so ~9 ~ separates points of 
and is norm dense in C(~) by the Stonc-Weierstrass theorem [13]. But  

is compact, so ~ is also dense in Z2(~). 

This completes our analysis for it  shows that  the structure of tha t  
part  of the spectrum of 92 occurring in the decomposition of the given 

representation into irreducible components is determined by ~,  the 
spectrum of the gauge group. In particular, we have a multiplication 

law of sectors and a conjugation. Further ff ~ is Abelian, ~ is just the 
dual group of ~ and the family of sectors has the structure of a discrete 
Abelian group. 
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IV. Duality 

We now investigate when the irreducible representation 7~ of 9A 
defined in the las~ section can be expected to satisfy duality [see Eq. 
(1.15)]. We shall assume first tha t  (1.23) holds and postpone a discussion 
of its validity until after the proof of Theorem 4.1. 

We call a sector a "Abelian" if dim Yf~ = 1 so tha t  

V(g) Eo = E o U O )  = Zo(g) E~ (4.1) 

where Z~ is a character of ~. We then have 
4.1. Theorem. I ]  ~A(0')- = m ( ~  (0)') then ~ satisfies duality ]or 0 in 

any Abelian sector. 
Proo/. Let E be the central projection of U(~) '  determining an 

Abelian sector and an irreducible representation ~ of OA. 

~ ( ~ ( e ) ) '  = ( ~ ( e ) E ) ~ #  = ( E U ( e ) ' E ) ~  

by  the yon Neumann commutant  Theorem [7; pp. 17--19J. Now 

E ~ ( ( 9 ) ' E  = Ef t (0 ) '  V U((C)"E = E f f ( O ) ' E  by (4.1). 

Again (4.1) implies for any T ~ ~(54 ~) 

E r a ( T )  E = E f U(g) TU(g) -~d#(g )  E = E T E .  

Hence 
E ~ ( e ) ' B  = E .~(ff (e) ' )  E (4.2) 

and applying (1.23) we get 

E ~ (e)' E = E 9.1 (e ' ) -  E .  

This yields the required statement of duality 

7~(9A ((P))' = 7~ (gA ((P'))-. (4.3) 

In  contrast to this result, we shall show in section V tha t  duality 
does not hold in a non-Abelian sector. Actually under assumption 7, 
(1.23) is a necessary condition for duality to hold for (P in the vacuum 
sector. 

We shall now consider a specialization of the commutat ion structure 
of ~. This allows us to formulate a notion of duality for the field algebra 
itself from which the relation (1.23) follows. I t  will also wovide a back- 
ground for some of the discussion in the next section. 

We consider yon Neumann algebras on 54 ° stable under the action 
of the gauge group. We suppose tha t  there is an operation on the set 
of such algebras called "twisting", R ~ R ~ such tha t  

m (R ~) -- m (R),  (4.4) 

m ( R  t') -~ m ( R ' )  . (4.5) 
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4.2. Definition. ~(60) ~' is called the "twisted eormnutant" of f((P) 
and ~ is said to satisfy "twisted locality" if 

f ( 0 ' ) - < ~ ( 0 ) ~ '  for each @. (4.6) 

I f  ~ is made up of Bose and Fermi fields, there is always a natural  
twisting structure such that  ~ satisfies twisted locality. In  the case of 
normal commutat ion relations we construct i t  as follows. Let, y ~ g (~)  
be the automorphism which changes the sign of Fermi fields and leaves 
Bose fields invariant. Then F ~ f may  be written F = F+ + F where 
F+ = 1/2 (F + ~ (F)) and F_ = 1/2 (F - Y (F)). Further  m (F) = m (i~, +). 
Let U implement V, then ff R is invariant under ~ (invariant under y 
would do) we define 

R ~ = {/7+ + UF_:  F ~ R } .  (4.7) 

Clearly m (R ~) = m (R) which is (4.4) and in this case we have the far ther  
properties R tt = R and R ~' = R ' t  Hence m ( R  ~') = m ( R  't) = m ( R ' )  which 
gives (4.5). For the free Fermi field we can take U = e i=Q = e i=i~', Where 
Q is the charge operator and iV the particle number operator . .R ~ is 
then obtained from R by applying a Klein transformation, There are 
Mso more complicated examples of twisting structure when f is made up 
of Bose and Fermi fields but  with abnormal commutation relations where 
different fields do not necessarily either commute or ant icommute wi~h 
each other. 

4.3. Definition. f is said to satisfy "twisted duali ty" for @ if 

if(co')- = i ( e ) ~ ' .  (4.s) 

Of coarse duality is the special ease of twisted duality where R t = R. 
We show in the Appendix that  the free Fermi field satisfies twisted dua- 
lity for any open double cone @. When ~; satisfies twisted duality the 
relation (1.23) is an immediate consequence since 

m(~(e ) ' )  : m ( ~ ( e ) g  = m(f(@') - )  = ~[(e ' ) -  

where the last step uses the fact tha t  m is local and normal, see Lemma 3.2. 

V. Relative Commutants and Weak Duality 

5.1. Definition. A representation st of 92 is said to satisfy "weak 
duali ty" for 6 o if 

~(92° (e))-  = =(92(@))' ~ st (92)- (5.I) 

where the relative commutant  92c ((~) is defined by (1.19). 
I f  (5.1) holds for the defining representation of the concrete C*- 

algebra OA on Wf, we simply say that  92 itself satisfies weak duality 
for @. The crucial difference between weak duality and duality is that  
92c(0) takes the place of 92(G'). The intersection ~i th  st(92)- is taken on 
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the right hand side of (5.1) only because the representation ~ is not 
necessa:rily irreducible. Since 9,1 (0') C 92~ ((9), duality in the representation 

implies weak duality in that  representation. 
5.2. Theorem. I[ 92 satisfies wealc duality/or (9, i.e. i/92~ ((9)- = 9A ((9)' 

c~ 92- then ~192¢((9) and z~o~192~ ((9) are disjoint ]or a # a' and weak duality 
holds/or (9 in each representation :re. 

Pro@ If E is a central projection of 92', then E ~ 92 (0)' z5 92- = 92c ((9)- 
so E is also a central projection of ~[c ((9)-. But Eo a.nd E~. are orthogonal 
for g ~ # ,  so the representations of 92c ((9) in the spaces E j g f  and Eo,gf 
are disjoint [10; 5.2.1 (iii)]. Further weak duality holds in the sub- 
representation on E 5{0: 
we have 

E 92° (e)- = E {92 (e)' ~ 92-} E < E 92 ((9)' E ~ ~- E < 92 (O)% ~- = 92~ (e)- 

where the first inclusion is obvious and the second one holds because E 
is in 9A ((9)' and 92-. Hence 

E 92c ((9)- = E 92((9)' E ~  92-E. 

Applying yon Nettmann's theorem [7; pp. 17-19] we get 

E 92+((9)- = {E 92~ ((9)}- = {E 92((9)}'m {E 92}- 

and our assertion holds. In particular for E : E~, 

Eo92- = I ® ~ (~f~) = {~ (o%f~)® I}' by [7; p. 26, Proposition 4] 

and using the same Proposition again we get 

I®  ~o(92~(e))- = {I® ~(92((9))}% {~(Yf~) ® I}' 

= { ~ ( ~ )  ® ~(92( (9 ) ) } '  = 1 ®  ~o(92((9))' .  

Thus zo(92~((9))-= Zo(92((9))' which is the required statement of weak 
duality in ~he representation ~ro. 

We want to show next that  weak duality in the defining represen- 
tation of 92 follows from two assumptions on ~. The first assumption, 
"weak twisted duali ty" for ~, is defined by analogy with (5.1) using the 
"relative twisted commutant":  

ff~°(~) = ff(e)~'~ f t .  (5.2) 

is said to satisfy weak twisted duality for (9 if 

ff, c ((9)- = ff ((9)~'. (5.3) 

The second assumption is on the gauge automorphisms: 
Assumption 8. Given any (9 and any g C N there is a unitary operator 

V~ E ~ (depending on (9) such that  

~g (F) = VgF V~ -1 for all F ~ ff (0) t . (5.4) 
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We expect this to be valid when U (g) may be derived from a local 
density. In the case of the free charged scalar field discussed in this 
context in the introduction after Eq. (1.20) we would set 

Vo = exp[i  O]o(]Rg~)], 0 <= 0 < 2 ~ .  

We may rewrite (5.4) as V~-IU(g)C~(@)¢; the twisted eommutant 
appears here rather than the commutant since, roughly speaking, we 
expect V~ -1 U (g) ~ ~ (0')- and under the assumption of twisted locality, 

(@')- < ~ (0) t'. Note that  in the standard cases where ~ has Bose-Fermi 
structure and Vg, U(g) commute with the Klein operator, one also has 
V~ -1U(g) ~ ( 0 ) '  which means that  the gauge automorphisms on ~(0)  
can be implemented by unitary elements from ~. 

We now show that  ff ~ satisfies weak twisted duahty for @ and 
assumption 8 holds, then 9./satisfies weak duality for (P. In  other words 
we have : 

5.3. Theorem. I] ~c(@)- = ~((~)~', and i/ /or each g ~ ~¢ there is a 
unitary operator Vg ~ ~ such that V~ -1 U (g) C ~ (@)~', then 9[c (@)- = 9./[ (0)'~9[-. 

Proo]. 9[c(@)= 9[((0)'~ 9./= m(9[(@)'~) .  Hence as m is local and 
normaI 9[¢ (¢)- = ~n ({9./((~)' ~ ~}-). Thus it  suffices to show that  

{ ~ ( o ) ' ~  ;~}- : 9[(e)'. (5.5) 
Now ~t ~ (0)- ( {9[ (0)' ~ ~}-  so, by hypothesis, 

i~ (e),' < {9[ (e)' A ~} - .  (5.6) 
But Vg ~ 9 [ ( @ ) ' ~  and V]-lC(g) ~((0)*' ,  hence U(g) ~ { 9 [ ( @ ) ' ~ } - .  
But this holds for all g C {¢ so 

V({¢)" < {9[ (@)' ;', ~:}-. (5.7) 

Now by (4.4) 9./((9)= m(~((9)O so that  9[((9)' =~( (~)¢V U(f¢)" and 
(5.6) and (5.7) give 9./((9)' C {9./(0)' ~ 7}-.  However the reverse inequality 
is trivial, so we have (5,5) and with it the theorem. 

Weak duality (5.1) was first assumed by B o g c ~ g s  [2; 1{ 8] for the 
irreducible representations s describing individual sectors; it was moti- 
vated by the statement [2; Lemma I I I -  1] that  the representations 
of 91 e (@) in the different sectors are unitarily equivalent. Weak dua]ity 
in the sectors would then imply that  the various intertwining operators 
between these representations differ from one another by observables 
from 9./((~), and thus admit a,n interpretation as local fields. However 
theorems 5.2 and 5.3 show that  the representations of 9[~(~) fl~ the 
different sectors are disjoint in typical cases so that  intertwining opera- 
tors do not exist. We show in the next  section that  the representations 
of ~/(~') in the different sectors are unitarfly equivalent. Weak duality is 
not a strong enough property to allow the intertwining operators between 
these representations to be interpreted as fields. However that  interpre. 
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ration is again possible under the stronger assumption of duality in each 
sector. 

In  Section IV we showed how relation (1.23) implies duality for (0 
in each Abelian sector. We now show that ,  under our assumptions, we 
can never get duality in non-Abelian sectors. We begin with a Lemma 
characterizing Abeliun sectors. 

5.4 Lemma.  o ~ f~ gives rise to an Abelian sector if and only i/  

o C o ® T, T ~ ~ ,  implies that v = t, the identity representation. 

Proof. We note first of all tha t  if @, 3 ~ ~,  then ~ < ~ ® T if and only 
if @ = ~ and t is contained just once in ~® 3. This follows at once from 
the orthogonality relations for the characters of a compact group 
[14; § 32]. Suppose now d ime  = 1 and o < o ®  v. Then 5® o = t since 
dimS® o =  dimo ~ = l . H e n c e t = ~ ® o < o ®  ( o ® 3 ) = t ® 3 = 3 s o t = 3 .  
Conversely suppose d imo > 1, then 5@ oD ~ with 0 # t. Now 5® (0@ o) 
= ~® (5® o) D O® OD t. Hence O® a D o  and we may  take 3 = O" 

5.5. Lemma. I] 91 satisfies weak dual i ty /or  (0 and F C ~ (0) is a non- 
zero tensor o/ character 3 4= t then there exists an A ~ Pdc((~) such that 
( F A  - A F )  f2 # O. 

Proof. As in the proof of Theorem 5.2, a central projection of 91' 
is a central projection of 91c (0)-. Hence E, C 91c ((0)-. But (FE~ - E y )  t9 
= F t9  4= 0 by  the Reeh-Schlieder Theorem. Hence since we can appro- 
ximate E~ weakly by  elements of 91~ ((9), there exists an A ~ 91c (6) with 
(FA - A_F) £2 # 0. 

Note tha t  Theorem 5.2 already tells us tha t  ~ ((~) cannot commute 
with 91~ (0) because otherwise a tensor of character 3 from ~ ((9) would 
be an intertwining operator between the representations of 91~((0) in 
E~J/' and E, J4C On the other hand assumption 7 states tha t  ~((9) 
commutes with 9.1(U). Hence 

~(e')- 4= ~(e)-. 

I f  we do not make use of any of the "weak duali ty" properties then as- 
sumption 7 leads by  the same reasoning to 

~ ( 0 ' ) -  # ~ ( 0 ) ' ~  ~ - .  (5.8) 

5.6. Theorem. I] 91 satisfies weak dua l i t y /or  (~, then duality does not 
hold for (9 in any non-Abelian sector. 

Proof. Suppose o ~ ~ defines a non-Abelian sector, then by  Lemma 5.4 

there exists a 3 ~ ~,  T %= t such tha t  o C o ®  3. By Lemma 3.4d), ~((P) 
contains a non-zero tensor F~ of character 3. By  Lemma 5.5 there exists 
an A C 92~(g)) such tha t  C~9 :-- (AF~ - F~A) f2 ~ O. Let C~, i = l, 2 . . .  
dimT be a basis of the tensor multiplet of character 3 to which C~ belongs. 
Then using the clustering property as in Theorem 3.5, we can choose 
2 Commun.math.Phys.,Vol. 13 
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a basis F~, ] = 1, 2, . . . ,  d ima of a tensor multiplet, of character ~ so ~haI 
C ~ F ~  forms a basis of vectors of the representation a ® ~. But a C ~ ® T 
so that  E~C~E, --4= O. Hence 

Eo(AF~ - F , A )  E~ # O . (5.9) 

We now show that  7l,(A) (~ z~(OA((9'))-. For if it were, there would exist 
a B C92(0')- such that  E , A  = E , B .  But  B ( ~ ( 0 ) '  by assumption 7. 
H e n c e  

0 = E~(BF~ - F~B)  Eo = E , ( A F ~  - E~Ai  E ,  

contradicting (5.9). Hence z~(A) E z~(PA~((9)) <zo(9.1((~))' but zo(A) 
~o(9A((~'))-. In other words duality does not hold for (9 in the sector zo. 

We may note tha t  if instead of the inequMity sign in (5.8) we had 
an equality sign, duality would hold in every sector in contrast to 
Theorem 5.6. Furthermore one could conclude that  the representations 
of 92 ((~') in distinct sectors were disjoint, whereas we shall show in the 
next section that  they are unitarity equivalent. 

YI. Strong Local Equivalence and Localized Automorphisms 

The first aim in this section is to prove that  the representations of 9] 
in the different sectors are strongly locMly equivalent. Here we must 
use assumption 7 that  the observables commute with space-like separated 
fields and the Reeh-Schlieder property, assumption 6. 

Since we do not assume any specific commutation properties of the 
fields with themselves, (1.18) does not necessarily follow from (li17). 
However assumption 7 goes some way towards justifying (1.18); in fact, 
(1.20) implies 

f3 ~:((~ + x)Cgl'  = U(!¢)" (6.1) 
xER 4 

and if we also assume 
ff~ u ( { ) "  = {zz} (6.2) 

t h e n  
n ,;~(e + x) = {~i}. (6.3) 

xER 

Eq. (1.18) follows from (6.3) by taking commutants. The additional 
assumption (6.2) allows the physical interpretation that  the gauge trans. 
formations are not quasfloeal quantities. 

Now let ~1 and ~ be any two subrepresentations of 9A (in particular, 
two sectors), then as a first step we show that  the restrictions of ~1, 
and ~ to 92 ((0') are quasiequivalent for any 0', i.e. tha t  

~lI~(e')  ~ ~=l~t (¢'). (6.4) 

I t  is clearly sufficient to prove this when zl  is the defining representation 
of 9A. Let  E ~ 9A' be the projection such tha t  7~ is the restriction of ~1 
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to E • :  
z2(A) = A E  on E ~ f .  (6.5) 

Since ~ '  (91(¢')', E E Od(&')'. Now by [10; 5.3.1 (v)], (6.4) holds if and 
only if the central support E '  of E in 9/(0')' is equal to I. However 

E'  = [91(e')' V 91(e')- E~Z] : [91(0')' E ~ ]  8. (6.6) 

Further since E E g I ' :  U(~ )"C  U ( ~ ) ' ,  we can find an a.f.e.-vector 
T E E ~ .  Thus from (1.20) and the Reeh-Schlieder property 

E'  _~ [if(d)) Egff] ~ [5(6) T]  : I .  (6.7) 

Hence E'  : I and we have established (6.4). 
Now the quasiequivalence in (6.4) implies unitary equivalence ff 

~zj(91(d~'))-, i : 1, 2 both have cyclic and separating vectors [7; p. 233 
Thin. 3]. However a.f.e.-vectors are cyclic for 5(0)  by assumption 6 
and hence separating for 91((~')- from (1.20). Further U 91((P' ÷ x) is 

~ER 4 
norm dense in 91 so that  for any representation z 

v z (91 (e '  + x)) = z(~)-.  (6.8) 
z E R  ~ 

Hence by the Reeh-Schlieder Theorem [4] a.f.e.-vectors will be cyclic 
for zj(91(d)'))- if and only if they are cyclic for z~.(91)-. This is always 
true for irreducible representations. Moreover, if there are a countable 
number of sectors, i.e. if ~ is separable, 91 itself and hence any gj has 
cyclic a.f.e.-vectors. In  particular we have now proved 

6.1. Theorem. Let ~o, 7~o be irreducible subrepresentations of 02 corres- 

ponding to the vacuum sector and the sector (r, (r E ~ acting on subspaces 
l ] t I ~ f  o and J f  ~ o / ~ .  Then there is a unitary operator V~ : ~VF o -~ ~ such 

that 
Vo~o(A ) = ~ ( A )  V,, A E91((~') - (6.9) 

In general, nothing more can be said about these intertwining opera- 
tors V,; however under the assumptions of the next Theorem, they can 
be related to special elements of ~(6n). 

6.2. Theorem. I / g  is Abelian and i] m ( i ~ ( 6 ) ' )  = 91(0 ' ) - ,  then given 
a unitary opera,or I~ satis/ying (6.9), there is a unitary operator ~v~ ~ ~((9) 
o/tensor character a, such that 

Vo = Eo~v~E o on EoJ/F. (6.10) 

Proo]. As #2 is cyclic and separating for ~((P)' by ~ssumption 6, we 
can introduce a densely defined linear operator ~v~ on JF such that  

y ~ F ~ 2 = F V o [ 2  if F C~(6) ' ,  (6.11) 

s We use square  brackets  to denote the  project ion onto  the  closure of a l inear 
subspace. 
2* 
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where gf'o is identified with E~W and hence V J 2  ff X .  We verify that  
~p~ can be extended to a unitary operator on 5/z. Now 

Eo~(6) 'D = m(~(e) ' )  ~2 = 92((9'): 9 .  (6,12) 

However (6.9), (6.11) and (6.12) show that  ~ coincides with V~ on 
E0~ ((9)'~ which is dense in E 0 g f  = g ~ .  If F ~ ~ ((9)', m (F* F) ~ m (ff ((9)') 
= ~[((9')-; furthermore since a is Abelian, (4.1) implies tha t  E,F*FE~ 
= m(F*F)E~. Hence by (6.9) 

II~oF~tl 2 = ( V ~ ,  F * F  V,~)  = IIF/211 2 . (6.13) 

Since [~((9)'~2] = I, this means that  v2, can be extended to map ~ j ,  

isometrically into ~fjo, for each a ' ~  ~ Hence ~0~ becomes isometric 
on ~Y~, (6.10) is satisfied and by (6.11) 

~, ~ ff ((9)" = ff ((9). (6.14) 

I t  remains to show that  ~p~ is unitary. Now since Vo is unitary we may 
pick fi5 ~ ~/~ such that  V~b = ~ 5  is an a.f.e.-vector. Hence by (6.14) 
and assumption 6 

[ ~ , ~ ( 0 ) ' ~ ]  = [i~(0)' ~ ]  = X (6,15) 

and ~ maps onto gf .  
I t  is important to note that  when ~ is Abelian w*Aw is an observable 

for each A C 92 and each W C ~ of definite tensor character. Combining 
this remark with what precedes we derive 

6.3. Corollary. Under the assumptions o/ Theorem 6.2, there is an 

automorphism Ya o] 92 /or each Abelian a ~ ~ such that 

z~ ~ ~o o y~ (6,16) 

and a unitar 9 operator y~ C ~ ((9) o] tensor character a implementing y~ 

y,(A) = ~p*~A~p~, A ~ 92. (6.17) 

We therefore see ~,hat in ~he case of an Abelian gauge group and a 
field algebra, satisfying (1.23) the sectors of 92 are connected to one another 
by automorphisms of 9 /act ing trivially on 92((9') and leaving the set 
92 ((9) invariant. We call such automorphisms "automorphisms localized 
in (P". Notice that  such an automorphism also leaves the set 92~((9) 
invariant but it must, from the results of the preceding section, induce 
a non-trivial automorpkism of 92~ ((9). 

The existence of localized automorphisms connecting the different 
sectors is characteristic of an Abelian gauge group. We shall show in a 
second paper how the group of localized automorphisms of a given algebra 
of observables describes an Abelian group of superselection quantum 
numbers carried by Bose or Fermi fields. Theorems 4.2 and 5;6 show the 
intimate connexion between an Abelian gauge group and duality for 



Fields, Observables and Gauge Transformations I 21 

the observable algebra in every sector. The following Proposition shows 
directly how the existence of localized automorphisms is governed by 
duality in the sectors. 

6.4. Proposition. Let (91 and (9~ be double cones such that (9~ contains 
the closure o] (9 3. Suppose/urther that 92 is generated by 92((91) and 92((~) 
and that 7~ o and 7~ are two irreducible representations o/9A such that :~o (92) 
has the duality property 

9-g0(~¢[ ((91)) = YC0(~[ ( ( ~ ) ) '  (6.18) 

and that the restrictions o/7~ o and ~ to 92((9~) are equivalent as in (6.9). 
Then there is an automorphism o] 92 localized in 0~ and connecting ~o to 
~ ,  i.e. satis/ying (6.16), i / and  only i /~ (91)  also enjoys the duality pro- 
perty (6.18). 

Proo]. The "only if" part is trivial. Assume z ,  (92) satisfies (6.18). By 
(6.9) the restrictions of ~o and ~ to 9/(0~) are unitarily equivalent hence 

! - - 1  ! Vo~0(92(01))Vo = ~(92((91)). Taking commutants and using (6.18)for 
~0 (92) and 7~o (92) 

Vo~0(92 ((91)) V~ -1 = ~o(92((9~)). (6.19) 

But 92((91) and 92((9~) generate 92. Therefore (6.9) for (9~ and (6.19) imply 
that  V~0(92 ) Vg -1 = 7~(92). Hence 

V j  1 zo (A) V, = ~0(Y~ (A)) (6.20) 

defines a localized automorphism A -+ yo (A) with the desired properties. 
A state co of 9/is "strictly localized" [15] if it is equal to the vacuum 

state on some 92((9'). The characteristic assumption of this section, 
assumption 7, has the consequence that  each sector contains a total set 
of strictly localized states. 

Appendix 

Twisted Duality/or the Free Fermi Field 

Consider a free field of half-integral spin and mass m => 0, and let (9 
be a bounded open double cone and (Y its space-like complement. I t  
follows from the results of DELL'AzqTO~IO [16] tha t  the Hilbert space 

of the Fock representation can be represented as an incomplete in- 
finite tensor product with respect to the vector £2 = ~ .Qi: 

i 
$2 

i 

where 9~i and ~ are two-dimensionM Hilbert spaces, in such a way that  
1. There exist operators Ai ,  B i ~ ~ ( J ~ f ) ,  i = 1, 2 . . .  satisfying the 

canonical anticommutation relations (CAR) with A i ~  = B i ~  = 0. (Note 
that  .Q ~ ~ f  is not the Foek vacuum). 
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2. There exist operators  ~i,/~i E ~ (5(f), i = 1, 2 . . .  satisfying the 

CAR such tha t  
~i = ViAl  - 8 iB*  

fli = 8 iA*  + c iB t  

and ~(0) and ~:(g)')- are the yon Neumann algebras generated by 
{~i: i = 1, 2 . . . }  and {fli: i = 1, 2 . . . }  respectively.  

r /  ~ I Ol 
P] 

I . \  / J 
m ~  

place. 
% 

fit ~ Pl  ~ P2 {~ '"  "~ P i -1  ~ I(10 _~) ~ (O0~)]~ -]~i+1 ~ £~i+9~ " " * 

where / / , deno te s  the ma t r ix  (10 _ ~)® (I 0 _ ~ ) i n  t h e  ~t ~ p l ace . . ( . ) i  = ci[O}~IO )& 

- 8, I1}~ I1}~, using an obvious notation. 
Now, see (4.7), ~((~,)- t  is genera ted b y  {e~'vfi~: i = t ,  2 . . . }  where 

N is the  to ta l  part icle number  operator .  Fur the r  

e i = l v f l i : Q , ® Q ~ ® . . . ® Q i _ , ® [ I i ® ( ° o l o ) ] ® I ® I ®  . . .  

where Q~ denotes the  ma t r ix  I ® (10 0 . - 1) m the  ]~ a place. Now let  M i  denote 

the factor 2Y(~F~)® I~, then M~-=I~® ~(J/#~) and ~ ( 0 ) =  ~ M ~ ,  
i 

~(d)') -~ = M~.. Bu t  by  [17; L e m m a  6.10] M i = ~1f~. Hence  
¢ 

~:((9') - t  = ~((9)'  so t h a t  ~:(g)')- = ~:(0) '* = ~ ( 0 )  *~ which is the required 
s t a t ement  of twis ted duali ty.  
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Note added in proo]. The following result expresses the connexion between 
localized automorphisms and duality in the sectors more conveniently than Pro- 
position 6.4. 

Let 01 be a double cone and suppose that the vacuum representation ~0 has 
the duality property 

~0(~(0)) = ~0(~a(o'))' (6.21) 

for each double cone 0 ~ • 1. tf ~a is a representation of 9A unitarily equivalent 
to ~r0 when restricted to 9A(¢~) then there is an automorphism of 9A localized in 
01 and connecting zr0 to ha, i.e. satisfying (6.16), if and only if ga(OA) also enjoys 
the duality property (6.2I). 
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This result is proved as in Proposition 6.4 noting that (6.19) now holds for all 
double cones ¢ ) ~ .  

Theorem 3.6 for the case of an Abeliun gauge group is essentially contained in 
JADCZYK [18]. 
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