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Abstract. The theorem that each derivation of a C*-algebra OA extends to an 
inner derivation of the weak-operator closure ~(~)- of OA in each faithful represen- 
tation ~v of 91 is proved in sketch and used to study the automorphism group of 91 in 
its norm topology. I t  is proved that the connected component of the identity ~ in 
this group contains the open ball ~ of radius 2 with center ~ and that each auto- 
morphism in ~ extends to an inner automorphism of ~(02)-. 

I. Introduction and preliminaries 

Our purpose in this paper  is to  s tudy  the group ~(~) of automorphisms 
of a C*-algebra 02 together  with and in relation to  some of its subgroups. 
We note t ha t  the mappings ~v of C*-algebras we consider are assumed 
to preserve adjoints (~v (A*) = ~(A)*) th roughout ;  so tha t  "representa- 
t ion"  etc. refer to  what  is sometimes designated by  "*representat ion" 
etc. Our part icular  concern is with ~(02) provided with the  topology it 
acquires f rom ~ ( ~ ) ,  the bounded linear operators on ~ (in its norm), 
taken in its norm (or, uniform) topology. Recall t ha t  each element of 

(0A) is an i sometry  of 91 [10]. 
I n  a recent  series of papers [16, 18, 24], i t  is shown tha t  each deriva- 

t ion of a C*-algebra OA extends to an inner derivation of the weak- 
operator  closure 02- of 02 in every faithful representat ion of OA. Each  such 
derivat ion is a bounded  linear operator  [23] and, as such, the infinitesimal 
generator  of a norm-continuous,  one-parameter  group of automorphisms 
of ~/. The fact  t ha t  a derivation extends to  one which is inner is equiv- 
alent to the fact  tha t  the automorphisms of the one-parameter  group 
extend to ones which are inner. These considerations as well as an  
account  of the derivation result, for convenience and  completness, are 
found in § 2. 

The main  technical result of this s tudy  (Theorem 7) is t h a t  each 
au tomorphism of a C*-algebra 91 in the interior of the ball ~ of radius 2 
in ~ (PA) with cen~er t, the  ident i ty  au tomorphism of ~[, lies on a norm- 
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continuous one-parameter subgroup of ~(92) and extends to an inner 
automorphism of 9.1- in each faithful representation by virtue of the one- 
parameter group result. I t  is proved in the following stages. Each such 
automorphism a is shown (Lemma 4) to extend to an automorphism 
of 9.1- leaving each element of the center of 02- fixed, in each faithful 
representation of 9.1, by C*-algebra representation and yon Neumann 
algebra methods. (One can go on to show that  ~ is spatial at this point, 
though it is not needed, and follows from the final result.) I t  is proved 
(Lemma 5) tha t  each inner automorphism interior to 2 of a yon Neumann 
algebra can be implemented by  a unitary operator in the algebra with 
spectrum in an open right half-plane by  a combination of yon Neumann 
algebra and spectral theoretic techniques. The next fact (Lemma 6), 
tha t  each spatial automorphism of a C*-algebra which can be imple- 
mented by a unitary operator with spectrum in the open right half-plane 
lies on a norm-continuous one-parameter subgroup of a (92), is proved by 
the methods of the theory of analytic operator-valued functions, or [9; 
Corollary 3]. The main theorem (Theorem 7), tha t  the connected com- 
ponent Y (92) of t in ~ (9l) is open, generated (as a group) by one-parameter 
subgroups of ~ (92), and consists of automorphisms which extend to inner 
automorphism of 92- in each faithful representation of 92, is an easy 
consequence of these considerations, after passing to the reduced atomic 
representation. I t  follows that  the various subgroups of ~ (9.1) we consider 
(with the exception of the group of inner automorphisms) are also open, 
since they contain the connected component of t (by virtue of its "inner" 
properties). The results of this section (§ 3) are in sharp contrast to the 
situation which obtains if ~ (92) is viewed with one of its weaker topologies. 
As a result of our information in the case of the norm topology, each 
(norm) continuous representation of a connected topological group in 
a(9.1) has image (in y(~))  consisting of automorphisms which extend to 
inner ones (Corollary 8). On the other hand, :BLATTI~IER [1; Corollary] 
shows that  each locally compact group with a countable base has a 
(faithful) strong-operator continuous representation by unitary operators 
which induce outer automorphisms of a (hyperfinite) factor of type I I  1 

(except, of course, for the identi ty operator I). (N. SuzuKI [30] did the 
same thing for a countable discrete group at the same time.) In  [28], 
StNGE~ analyzed certain subgroups of ~(92), with 92 a factor of type I I  1, 

producing numerous groups of outer automorphisms of 92 in the process. 
The existence of outer automorphisms of factors of type I I  1 had been 
known for some time [6; Exercise 15, p. 308]. 

In  § 4 various special classes of C*-algebras and special C*-algebras 
are discussed with regard to their automorphism group and its subgroups 
to illustrate tha t  all possibilities not in conflict with the results of § 3 
can occur for automorphisms on the sur]ace of ~ (e.g. they can, in certain 
3 Commun. math. Phys., Vol. 4 
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eases, lie in the connected component of t; they can, in certain cases, be 
extendable to be inner in all faithful representations without being 
either inner or in the connected component of t, etc.). 

In  a number of physical contexts, the bounded observables are 
associated with the self-adjoint operators in a C*-algebra 92. The sym- 
metries of the physical system under consideration are expressed in terms 
of a representation of the physical symmetry  group G by  automorphisms 
of 92. In  general G will be a Lie group. The infinitesimal generators of the 
one-parameter subgroups of G often correspond to (unbounded) self- 
adjoint operators of special physical significance. I t  is of importance to 
know whether these generators are observable (in some sense) - -  equiv- 
alently, if the automorphisms corresponding to the one-parameter group 
are inner. A case in point is the t taag-Araki  description of relativistically 
invariant  local quantum fields in terms of yon Neumaun algebras of 
bounded local observables. The dynamics and relativistic invariance are 
expressed in terms of a (strong-operator continuous) uni tary representa- 
tion g-+ U~ of the inhomogeneous Lorentz group satisfying certain 
conditions. The Ug induce automorphisms (which are the physically 
significant entities associated with the Ug) of 92, the C*-algebra of 
(bounded) global observables. The infinitesimal generators of the trans- 
lation par t  of G correspond to the energy and momenta  of the field. Given 
the "spectrum condition" ( tantamount  to "positive energy"), i.e. tha t  
the spectral measure decomposing the representation of the 4-space 
translation subgroup of G on its dual group (energy-momentum space) 
has support in the future light cone of tha t  space; H.  B o t c H e r s  [3] 
proves tha t  the automorphisms of 92 corresponding to this subgroup 
extend to inner automorphisms by  reducing the unbounded generator 
case to the bounded one a n d  then applying the norm-continuous re- 
presentation results. G. DELT,'ANTo~IO [5], dealing directly with a 
representation of G by  automorphisms satisfying the appropriate 
analogue of the "positive energy" condition, proves the automorpb~ms 
extend to inner ones by  making the same reduction to the norm-con- 
tinuous case. The results of BT,ATTN~,~, Sn~G~R, SvzvxI  [1, 28, 30] make 
it  amply clear tha t  something in the nature of the spectrum condition is 
required to replace norm continuity if " inner" (or "observabiti ty") are 
to be concluded. 

We wish to record our gratitude to H. BoRc~r~s, G. DELL'AN~ONXO and S. 
DorLm~:a~ for their role in discussions of the interplay between the mathematical 
and physical background of the material in this p~per; to g. D ~ _ a ~  for pointing 
out the relevance of [1] to the study of the automorphism group in topologies 
weaker than the norm topology; and to L. K~ISTENSE~ for help (specifically noted 
in § 4 Example d) with certain applications of algebraic topology to groups of auto- 
morphisms. Both authors extend their thanks to Professor S v ~ n  B v ~ n G ~ n  for 
the hospitality of the Mathematical Institute in Aarhus during a period of the 
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development of these results. The first and second named authors would like to 
thank Dr. L. MOTC~_A~]~ and Professor PAUL H_~MOS for their kind hospitality at 
the Institut des Hautes Etudes Scientffiques and at the University of ~Iichigan, 
respectively, during the initial stages of this work. 

We recall tha t  a C*-algebra 91 is a Banach algebra with an involution 
A -+ A* which is a conjugate-l inear anti-automorphism of 9/sat isfying 
HA*All = ]IA*II. IIA][. Each such C*-algebra has a faithful isometric 
representation as a norm-closed self-adjoint subalgebra of ~ ( ~ f ) ,  the 
algebra of all bounded operators on a Hilbert  space JF  [I0, 12]. A state 
Q of 92 is a linear functional on 91 such tha t  @(I) = 1, where I is the unit 
element of 92, and @(A) > 0 when A ~ 0 (i.e. when the spectrum a(A) of 
A consists of real non-negative numbers and A = A*). Each such ~ gives 
rise to a representation T on the completion of the quotient space 91 /~  
of 9 /by  the le/t kernel ~ of ~, the left ideal consisting of those elements A 
in 9.1 such tha t  ~ (A* A) ---- 0, relative to the inner product (A + 9if, B + 9if) 
= Q(B*A), where ~(T)  is determined by  its action on 92/~C as 
q;(T) (A + ~f) = T A  + ~ f  . From [26] one knows tha t  the pure states, 
those not expressible as a convex combination of states distinct from it, 
are precisely the ones which give rise to irreducible representations. In  
particular, the Krein-Milman theorem [21] yields the fact  tha t  there is a 
separating family of pure states of 9/ and, so, a separating family of 
irreducible representations of 91. Choosing one such representation q% 
from each equivalence class, we form their d~ect  sum ~ (where ~ (A) 
transforms the vector {x~} in the direct sum of the representation Hflbert 
spaces onto {q~ (A)x~}), and refer to this as the reduced atomic representa- 
tion of 92 (" the"  since any  other such is unitarfly equivalent to it). 

Definition. An automorphism ~ of a C*-algebra 9.1 acting on a t tf lbert  
space ~ is said to be: extendable if there is an automorphism of the weak- 
operator closure of 9.1 equal to it  on 92, spatial if there is a uni tary operator 
U on 5¢f such tha t  ~(A) = UA U* for each A in 92, and weakly.inner if it 
is spatial and U can be chosen in the weak-operator closure of 92. I f  ~ is 
a faithful representation of 91 on a Hflbert  space, we denote by  s~(91), 
a~(92), and t~(92), the groups of those elements ~ of the automorphism 
group of 91 for which q zc~v -~ is extendable, spatial, and weakly-inner, 
respectively. We denote by  ~r (91) the intersection of all the subgroups 
t~(91) and refer to its elements as 10ermanently weakly (for brevity, ~r-) 
inner automorphisms of 92. We write to (91) for the group of inner auto- 
morphisms of 92 and y(92) for the connected component  of t in ~(92) 
provided with its norm topology. 

The ~-inner automorphisms of 92 would seem to be the "eternal"  
symmetries of the physical system 92 represents. We note, especially, 
tha t  there are such symmetries (in y(92)) which are not inner and such 
symmetries which are neither inner nor in y(92). 
8. 
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II. Derivations and inner automorphisms 
We present a brief survey of the proof tha t  each derivation of a 

yon Neumann algebra is inner, To begin with, note tha t  each derivation 
8 of a C*-Mgebra 91 acting on the t t i lber t  space 5~ is continuous on the 
unit ball cJ 1 of OA taken in the weak operator topology. For this one 
makes use of S~KAfs result tha t  8 is norm continuous [23], the equality 

1 1 1 1 
(8 (A) x, y) = (8 (A ~) A~x ,  y) + (A~8 (A ~) x, y) for A _-_ 0 and the strong- 

! 
operator continuity of A -> A 2 on the set of positive bounded operators. 
This establishes the continuity of 8 on the positive elements in 5fi at  0 
from 5f 1 taken in the strong-operator topology to 9A taken in the weak- 
operator topology. The strong-operator continuity of A - >  A + and 
A ~ A -  on the self-adjoint operators together with A = A + - -  A -  and 
this last conclusion yields the same continuity of ~ at 0 on the self- 
adj oint operators in ~1. The linearity of 8 yields this continuity on the 
self-adjoint operators in 5f 1, and this linearity together with the fact 
tha t  the weak and strong-operator closures of a convex set of operators 
coincide give the continuity of ~ on the self-adjoint operators in 5el 
taken in the weak-operator topology. The weak-operator continuity of 
the adjoint mapping and the decomposition A = (A ÷ A*)/2 ÷ 
+ i (A  - - A * ) / 2 i  give the same continuity for 8 on 5~ 1. 

I t  follows, next, tha t  (~ extends to the weak-operator closure 5f~ - of 
5f 1 and then linearly to 9/- the weak-operator closure of 9I, a yon Neu- 
mann algebra. The extension 3 so obtained is a derivation of 91-. Let ~¢ 
be a (self-adjoint) maximal  abelian subalgebra of 02% the commutant  of 
91 (the existence of such an z~ is easily established by  the use of Zorn's 
lemma) ; and let ~ be the lattice of orthogonal projection operators in x/ .  
With 910 the set ( A l E  1 ÷ " " • + AnEn : A 1 . . . . .  A~, in 91- and E~ . . . .  , E~ 
in ~}, define 8o on 91 0 by: 

(50(ALE I + - ' -  + AnEn) = 3(Ax) E~ + " "  + 5(A~,)E, .  

One establishes tha t  8 0 is well-defined (i.e. independent of the representa- 
t ion of an operator in the form A l E  1 + • • • + AnEw,), is a derivation of 
the self-adjoint operator Mgebra 910 into 91o and is bounded. From the 
boundedness and linearity of 8 0 it extends to a derivation of the norm 
closure of 91o, a C*-Mgebra. From the preceding, this extension has, in 
turn, an extension ~0 to the yon Neumann algebra 9A o. Since 91o contains 
91, its commutant  91~ is contained in 91'; and since 910 contains ~ ,  91o 

t e contains z~' and 910 commut s with ~4. But  ~¢ is maximal  abelian in 91' ; 
so that  91~ is contained in d and is abelian. Thus 91 o is a yon Neumann 
algebra of type I ,  and from [20; Theorem 9], 50 is inner. Say S0(A ) 
= B A - - A B ,  with B i n  91o, for all A in 91o. Since 5o(E)= 0 (=  8 ( I ) E )  
for each E in ~ ,  B commutes with ~¢. Moreover, since S0 is an extension 
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of d, we have tha t  $ is spatial (i.e. of the form A ~ B A - - A  B = ad B(A) 
for some bounded operator B). 

The remainder of  the argument consists of showing tha t  B can be 
chosen in 92-. I f  d(A) = B o A - - A B  o for each A in 92 then B - - B  o lies 
in 92'. Conversely (B + B')  A - -  A (B + B') = (3 (A) for each A in 92 and 
B'  in 92'. I f  U' is a unitary operator in 92', U ' * B U ' A - - A U ' * B U '  
= B A -  A B, so tha t  each operator in co~,(B), the convex hull of 
{ U ' * B U ' :  U' a unitary operator in ~l'}, and in ~5~,(B), its weak- 
operator closure gives rise to ~ on 92. Now d-d~, (B) is weak-operator com- 
pact, convex, non-null and stable under the mappings T -> U'* T U', U' 
a uni tary operator in 92'. Zorn's lemma provides a minimal such subset 
of ~d~,(B). One establishes, now, tha t  ~C consists of a single element 
which, by  stability under the mappings T-+ U'* T U', commutes with 
all the uni tary operators in 92', hence with all operators in 92'; and, 
therefore, lies in 92-. Since ~ is minimal, ]]B 1P]] = lIB2 P][ for each Bx and 
B e in S and each operator P in the center ~' of 92- (for {B o : B 0 E NC and 
I!BoPII < a} is convex, weak-operator compact and stable under the 
mappings T -+ U'* T U'). Since B commutes with ~¢ and d contains ~,  
B and hence each B 0 giving rise to ~ commutes with ~'. Thus the argument 
may  be given assuming 92- to be of pure type. We illustrate the rest of the 
argument  in the case where 92- is of type I I I .  (The other cases involve 
some variations of this argument,  though one could deal just with the 
type I I I  case by using a device of SaxAI [24]. The algebra 92- is ten- 
sored with a factor of type I I I  and d is extended to this produc~, an 
algebra of type I I I  by [22], as we did in defining ~0. I t  is easy to show 
tha t  the extension is inner if and only if ~ is.) 

Assuming 92- is of type I I I  let ~fo be the set of differences of opera- 
tors in 3g ~. Then ~Yz 0 is a subset of 92', is weak-operator compact, convex, 
non-null and stable under the mappings T - >  U'* T U'. Of course, we 
want  to show tha t  ~ o  consists of 0 alone. Since B ' A - - A B *  
= - - ( B A * - -  A* B)* is in 92, for each A in 92, B +  B* and B - - B *  
provide derivations of 92; so tha t  we may  assume, at  the outset tha t  B is 
seif-adjoint. Replacing B by B + IIB]I I ,  we may  assume, moreover, tha t  
B > 0. Then each element of b-d~, (B) is positive. I f  A o in "Yfo is not 0, the 
lemma following this discussion, which is a slight extension of J .  Sehwartz's 
slight extension [25; X X I I  p. 3.33, Lamina 15] of the Dixmier Process 
[6: Chapter 3, § 5], implies tha t  ~ , ( A 0 )  contains a non-zero central 
operator C. Since - - A  o lies in ~f'0 so does - -C .  For at least one of C and 
- -C ,  say C, there is an a > 0 and a central projection P such tha t  
C P  > uP.  Now C-= B~- -Be ,  for some B 1 and B 2 in ~ ;  and ]IB1PI] 
= IIB2Pl l  = [IB2P.-k CP[I > I I B 2 P  -k aPll > [1B2Pll (since B2P >= 0), a 
contradiction. Thus 5C o contains only 0, NC has a single element in 92- 
inducing 8, and ~ on 92- is inner. 



38 R.V. KAD~S0~ and J. g .  Rr~ogos~,: 

We m a y  assume,  in the  foregoing t h a t  92' is countably  decomposable ,  
for if {P~} is an or thogonal  fami ly  of central  projections, d (P~) = 0 as 
noted;  so t h a t  3 m a p s  9A-P~ into itseK. I f  this der ivat ion is inner and 
induced b y  B~ with IIB~II ~ ][BIt, then  Z B ~  induces d on 92- and  lies in 
92-. Using projections in ~ cyclic under  c#,, we m a y  assume  ~ is countab ly  
decomposable .  I n  this case 92' has  a cyclic project ion E '  with central  
carrier I .  Since A ~ A E '  is an  i somorphism of 9.1- wi th  92-E' ,  we m a y  
work  with 92-E' ,  whose c o m m u t a n t  E'92"E' is coun tab ly  decomposable .  
Wi th  this in mind,  the  l e m m a  following is the  extension of the  Dixmier  
Process  needed in our  a rgument .  

L e m m a  1. I] ~ is a countably decomposable yon 5~eumann algebra o] 
type I I I ,  then eo~(A)  has a non.zero operator/tom the center ~ o / ~  in its 
norm closure i / A  is a non.zero element o] ~2. 

Pro@ With  ~ -  a fami ly  of operators ,  we say  t h a t  the  posi t ive linear 
n 

mapp ing  ~ defined b y  ~ (B) = ~ a~ U* B U~ wi th  a~ => 0, Xa j  --- 1 and 
i=1  

each U~ a un i t a ry  opera tor  is f rom ~ when each Uj lies in ~ ' .  Note  t h a t  
II~[I < 1 and  tha t ,  if ~ is f rom an algebra of operators  with center  ~f, 

(C) = C for each C in (g. 
I f  we can prove:  

for each non-zero A in ~ and  each e in (0, 1) there  is an ~ f rom 
(*) ~ and  C i n ~  such tha t  [[~(A)--C[1 < e[[CII - i rA  is self-adjoint, 

C m a y  be chosen self-adjoint and  such t h a t  [[A[I _-< (1 + e)[]CII ; 
then,  given non-zero A in ~ ,  we m a y  choose :¢1, ~ . . . .  f rom ~ and 
C 1, C 2 . . .  in ~ such t h a t  

] [ ~ - x .  • . ~x(A) - -  C~[1 < (n + 1)-iiICni] . 
Hence  

n (n  + 1) -x IlC.]] g IIan. • • ~ ( A )  H _-< IIAtl ; 
and with m > n, 

< (m + 1)-~ I[OmlI + I I~ .  • • ~ ( A ) - -  C~II _-< m-~llAll + n-~tlAll < 
< 2n-~IlAIi  • 

Thus  {C.}, and  therefore also {:¢n • • • ¢q (A)}, converge to  some C O in ~ .  
Since 

C o is non-zero and  the  l e m m a  follows. 
I t  remains  to prove  (*). Given (*) for self-adjoint  operators,  if 

A = A~ + iA~ with, say, A~ non-zero and A~, A~ self-adjoint, choose C~ 
and C~ self-adjoint in ~f and  ~ ,  ~ f rom ~ such t h a t  

1 
II~I(A~)- C~ll < ~ e l I c ,  l[, [ [ ~ , ~ ( A , ) -  c ,  lt -<_ ~ l l C ,  II 
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Then H ~ 2 a l ( A ) - - C  u < s][cu, where C =  C I + i C  v We m a y  confine 
a t t en t ion  to  a non-zero, self-adjoint  A in ~ .  Given s > 0, we can find 
orthogonM (spectral) project ions E 1 . . . . .  E~ and real numbers  a 1 . . . .  , an 

1 
such t h a t  U A - Z a ~ E j ] ]  <-ffs][A[] and max]a~[----]IAI[. I f  (*) holds for 

such a sum of projections,  choose C self-adjoint  in ~ and ~ f rom 
such t h a t  

(1 + s)][C H _--> I]ZajE~H = ]]A]] and  ][o~(ZajEj)--C[] < l s ] [ C I ]  . 

Then  

H~(A) - -  C]] < Ha(A) - -  a(Xa~Ej)][ + []~(Za~Ej) - -  CI] 

=< gs( I lAI l  + HC/]) = I[cll < ~llcII. 
Note  nex~ t h a t  there  are mu tua l ly  orthogonM project ions Q1 . . . . .  Qm in 
(~ such t h a t  Q~E~ and Q~ - -  ZjQeEi have  central  carrier Q~ or 0 for each 
j and  k, Qk~ja~Ej 4= 0 for each k, and  (Z~Qe) (Z~ajE~) = Xja~Ej. I f  (*) 
holds for  2J~ajEjQI: for each k, choose /9~ f rom NQ~ and CeQ~ self- 
adjoint  in %OQ~, the  center  of NQk such t h a t  Uflk(ZjajE~Qk) - -  CkQkl[ < 
< s]IC~Q~I [ and [[X~a~E~Q~I ] < (1 + s)HC~Q~][. Defining ~ on ~ as the  
linear extension of/5~ on ~ Q~ and the  iden t i ty  on ~ (I  - -  Qe), ~e is f rom 
~ ,  satisfies the  same inequal i ty  a s / ~  and  

[I~1- • • ~m(Z~a~E~)--  Z~C~Q~I[ < sIlZ~C~Q~I] • 
I n  addition, 

[]~a~E~[ I =< (1 + s ) [ [~C~Q~[  I . 

These reductions permi t  us to  assume t h a t  A = 2 a~E~, t h a t  each 
i = l  

E~ has central  carrier Q, t h a t  Q - -  ZE~. (=  Fro) is ei ther 0 or has central  
carrier Q, and  t h a t  HAll = [%1. Since ~ is of t ype  I I I  and countably  
decomposable ,  all the  E~ are equivalent .  ~o reove r ,  E~ is the  sum of 
project ions Fn, Fn+ ~ . . . . .  ~ _ ~ ,  for m arbi t rar i ly  large, each equivalent  
to  E v Wri t ing  N~ for  E~ with  ~" < n, b~ for a t with ] < n, b~ for  a~ with 
n < ~" < m, bm for 0 and  m' for  m - -  1 or m according as F m is or is not  0, 

n 

we have  ~ a~E~ = ~ b~F~. Choosing suitable par t ia l  isometrics in 
i = l  1=1 

be tween *he F¢'s, we can cons$ruct a un i t a ry  opera tor  U, in ~ such ¢hat 

U*~(~ b~F~) U,: = ~ b~FT(~), for each pe rmuta t ion  z of {1 . . . . .  m'}. Wi th  
i=l  i=l  

S ~he group of all pe rmuta t ions  of {1 . . . . .  m'} and  ~m f rom ~ defined b y  
m '  l m '  

am (B) = . ~  U~* BUT, we have  a~ ( ~ b~F~) = b Q, where b = m-7 . ~  b~ 
T I n S  ] = 1 ~ = 1 

I n - - 1  m - - ~  

= ~ ~ a,. + ~ a ~ .  W i t h  C = a,~Q, w e  h a v e  IIAI[ = HClI- S i n c e  ~ i s  
2 = 1  

fixed, g iven s > 0, we can choose m so large %hat [[O:m(~a~E~)--C][ < encI1. 
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The result on derivations of C*-algebras can be rephrased in terms of 
one-parameter groups of automorphisms. In  this form it is the key  lemma 
of our study, though its conclusion is subsumed in Corollary 8. 

Lemma 2. I] t-+ ~(t) is a norm-continuous one-parameter group of 
(i.e. representation o/the additive group of reals by) automorphisms o / a  
C*-algebra 9.1 acting on a Hilbert space YF then each a(t) is weakly.inner. 

Proof. From [8; Theorem 2, p. 614], there is a bounded linear 
operator ~ on 9~ such tha t  expt (5 = ~(t) for each real t (~ is the infinitesimal 
generator of t-+ o~ (t)). The series for expt~ yields 

o:(t) [AB] = A B +  t a ( A B )  + O(t 2) = :¢(t) [A] ~(t) [B] 

= A B + t (A~(B)  + (5(A)B) + 0 (t2), 

so tha t  ($ is a derivation. The derivation theorem tells us that  ~ = ad iA  ]9.1, 
with A in ~ -  (and A = A*, since ~(B*) = ~(B)* for each B in PA). 
Comparing series coefficients ~( t ) [B]  = ( e x p t ~ ) ( B ) =  U~BU_~, with 
U~ (= exp i tA)  a unitary operator in 9.1-. 

I I I .  The automorphism group 

The principal results are contained in this section. 
Lemma 3. I] ~ is an automorphism of a C*-algebra Od acting on a 

Hilbert space and ~ is weak-operator bicontinuous on the unit ball of 9.1 
(i.e. ~ is ultra-weakly bicontinuous on 02) then ~ has an extension ~ which 
is an automorphism of Og-, ~ is ultra-weakly bieontinuous on OA-, and 

- = ll - tiT. 
Proof. From [17; Lemma (2.3)], ~ has an ultra-weakly continuous 

extension :2 to ~2- with image ~[-. The argument  of [17; Lemma (2.4)] 
shows tha t  ~ is a homomorphism. The same considerations applied to 
~-1 yield an ultra-weakly continuous mapping of 02- onto 9.1- inverse to 

on ~[. By  ultra-weak continuity, this mapping is inverse to ~ on ~[-; 
so tha t  ~ is an automorphism of Pd-. From the Kaplansky density 
theorem, the unit ball of 9d is strong (hence, weak)-operator dense in 
tha t  of 0d-; so tha t  the ultra-weakly continuous mapping ~ - -  t maps the 
unit ball of 0A- into the weak-operator closure of the image under ~ -  t 
of t~he unit  ball of 9A. This closure is contained in the closed ball of 
r ti.s II -gI in 9A-. Thus II - lt and, course, lI -- It 

Lemma 4. I f  ¢¢ is an automorphism of a C*.algebra 9.1 acting on a 
Hilbert 8pace, and II ~ - t l l  < 2, then ~ extends to an automorphism ~ of ~- ,  
leaving each element of the center of 9.1- fixed, such that lI~¢- t H -~ I[~-tI1. 

Proof. Suppose that  9.1 acts on the Hilbert space ~%f, that  a is an auto- 
morphism of 02 and tha t  f l a - tH  < 2. With E '  a projection in 9A', and 
defined by  ?(A)  = a(A)E' ,  for A in 9.1, (~ ~ ~) (0d) acting on g f  ~ E '  (J r )  
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does not have strong-operator closure ~ (91)- $ 92-. Otherwise there is an 
A in the unit ball of 9/, with x a unit vector in E '  given, such tha t  

1 
l - -~-[ [~  - -  eli > t[ [(~v + t) (A) - -  ( - -E '  ~ I) ]  (x, x)l 1 

= }](~(A)E'x, A x ) -  (--x, x)I I 
and 

1 IlAx-x][ < l - ~ H ~ - t ] ] ,  ] ] ~ ( A ) x + x l [ < l - - l [ l ~ - - t [ l .  

Hence 

I [ ~ -  ~ll >= 1T~(A) x -  ~ xlI > Ij2xll - 2 (1 - 1 I J ~ -  ~fl) = l l ~ -  ~l]. 

I t  follows now from [12; Lemma 3] tha t  ~ and t are not disjoint re- 
presentations of 91. Zorn's lemma prox4des us with a maximal  orthogonal 
family {Fa} of projections in 91' such that ,  for each F a there is a pro- 
jection Ga in 9/' and a partial isometry U~ with initial space G'~ and final 
space F~ such tha t  a(A)F~ ' * = Ua A Ga Ua. i%[aximality of {Fa} and the 
fact  tha t  q and t are not disjoint no mat te r  which (non-zero) projection 
E '  we use in defining ~, allows us to conctude tha t  /:~F~ = I .  Thus 
o:(A) = Z~UaAGaU a for all A in 9/. With y and z vectors in J~, there is 

m 

! F / r a finite subset F x . . . . .  F~  of { a} such tha t  [[y - - ~  Fiy[l < 1/4[[z[]. I f  A 
i=1 

and ~ ~ the - ~ t  ball of ~ are s . e h  that  I([A - -  S ]  Gi C~* y, V* ~)1 < ~/2 m 
for ] = 1 . . . . .  m; remembering tha t  a is isometric on 9/, 

I(~(A - -  B)y, ~)l -<- I(~( A - -  B) (~F;y) ,  ~)1 + 21[Y--Z~iYll" llzlI =< 

<_r~ i ( [A B] ' * -- +-2-<1. 

Thus z¢ (and, similarly, a -i) is ultra-weakly continuous on 9/; and, from 
Lemma 3, has an extension a which is an automorphism of 91- satisfying 
l ]~- t I ]  = [ l~-t][  < 2. With P a central projection in 91-, ~ ( P ) =  P,  

since I I ~ ( P ) - P l I = - 2 I I y c ( 2 P - i ) - 2 P + i t i < l ,  and $(P)  and P 

arc commuting projections. (We can go on to show tha t  ~ is spatial, 
though we shall not use this fact. I t  is sufficient to prove tha t  ~ pre- 
serves the multiplicity function of 91- [15; Theorem 4.4.2], and since 
acts identically on the center it  remains only to show tha t  ~ preserves 
maximal  cyclicity of projections in countably decomposable central 
portions of 9.I-. Let  E be a projection in 91- which is maximal  cyclic in 
91- Cm where CE is the central carrier of E. With Y = ~ (E), the argument 
used above shows tha t  ItF--EII < 1. Hence IIF--FEFII ~ 1, and the 
self-adjoint operatorFEF is one to one on the range ofF,  zero on its ortho- 
gonal complement, and so has range projection F. Thus F E  has range 
projection F ;  a similar argument  shows tha t  E F  (=  (FE)*) has range 
projection E,  so E ~ F,  and F (=  ~(E)) is ma×imal cyclic in 91-CE). 
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Lemma 5. Let ~ be an inner automorphism o / a  yon tVeumann algebra 
~ ,  /or which Ug-- tll < 2. Then there is a unitary operator U in ~ ,  with 

spectrum ~ (U) in the halJ-plane : Rez  ~ ~ ( 4 - -  II~ , such 

that a (A)  = U A  U * / o r  all A in  ~ .  
Proo]. The argument  is divided into three distinct stages. The first 

par t  proves the lemma when ~ is the algebra ~g/n of all operators on an 
n-dimensional I tf lbert  space, n being an  integer. This special case is used, 
in the  second part ,  to  obtain  a weaker form of the lemma in which 
a (U) is contained in a slightly larger half-plane. Finally, the full lemma 
is deduced from this weaker form. 

(a) We assume t h a t  ~ = ~£n. Let  V be a uni ta ry  operator  in ~ n  
such t h a t  ~(A) = V A  V* for each A in ~gn, and let a be the  point  in the  
convex hull of a(V)  which is nearest  to  O. There are distinct points  
a 1 . . . .  , aq in a(V),  positive real numbers  c l , . . . ,  c a with sum 1 such tha t  
a = cla 1 + • • • + cqaq, and unit  vectors x~ . . . . .  xq such tha t  Vx¢ = a¢x¢ 
(] = 1 . . . . .  q). Since x l , . . . ,  xq are pair~dse orthogonal,  the  uni t  vector  

x = c2xl-k  • • • ÷ cUxq satisfies (Vx,  x) = a. Let  E and F be the 1-dimen- 
1 q 

sional projections with x and Vx,  respectively, in their ranges. Then 

F = V E  V* = ~(E), so 

II~-tl] >= H ~ ( 2 E - - I ) - - 2 E  + Ill 
1 

= 21]F--Etl ~ 2 U V x - - E V x  u = 2 1 1 V x -  (Vx ,  x )x  H = 2 ( 1 - ] a l 2 )  ~ .  

1 1 
Thus fat ~ ~ (4 - - I i a - - t i l  )~ > 0. Wi th  U = (5/!al) V, U is a un i t a ry  

element of "g/n such tha t  ~(A) = U A  U* for all A in ~/~, and a(U)  lies in 

(b) With  ~ now a general yon  N e u m a n n  algebra, let V be a un i t a ry  
operator  in ~ such tha t  ~(A) = V A  V* for each A in ~ .  Choose a real 

number  k such tha t  0 < k < 2 (4--[1~--tll2)~. We shall show tha t  

can be implemented by  a un i t a ry  operator  U in ~ with ~(U)__< 
_<_ {z : Rez  ~ to}. For  each non-zero central  projection P in ~ let d ( P )  
denote the distance f rom 0 to the  convex hull o~ the spectrum ap (P  V) 
of P V (considered as a un i ta ry  operator on the range of P).  We first  
prove t h a t  each such P contains a non-zero central  subprojection Q 
such t h a t  d(Q) :> It. Suppose, ¢o the  contrary,  t h a t  P contains no such 
Q. Given s > 0 such tha t  []~--t][-~ 2e  < 2, we can choose spectral 
projections E~ . . . .  , E~  for V, with sum I ,  and  complex numbers  

m 

a~ . . . . .  am of modulus  1, such t h a t  H V - -  WI] < s, where W = ~ a~E~. 

With  fl the  automorphism of ~ defined by  fl (A) = W A  W*, ]I ~ - -  fill < 2 e 
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and so TI~- tll < l ] ~ -  ~II + 2~ < 2, With Pj the central carrier of E¢, and 
Q the p roduc t  of a m a x i m a l  subset  of {P, P1 . . . . .  P~}  containing P 
~dth non-null  intersection,  Q is a non-zero central  subproject ion of P 
for  which each QEj either  is 0 or has central  carrier  Q. R e n u m b e r  so tha t ,  
for some n ~ m, QE~ is non-zero if and  only if 1 ~ ?" ~ n. 

B y  hypothesis ,  d(Q) < k, so we m a y  choose b 1 . . . . .  bq in 
ao(Q V) and  posi t ive real  numbers  c~ . . . . .  % with sum 1, such t h a t  

n 

]clb 1 + ' "  + c,lb~[ < k. Since [1Q V - - ~  a~QEj[ I = I[Q(V--  W)H < e, each 
i=1  

of b l , . . . ,  bq is a t  dis tance less t h a n  e f rom (~Q(QW)= { a  I . . . .  , a n ) .  

(Recall tha t ,  if A and B are normal  opera tors  and  ~ C a(A),  then  the  
dis tance d f rom ~ to  a (B)  is a t  mos t  t]A - -  BI[. For  b y  spectral  theory., 
d = I t (B- -~I ) -1 ] I -~ ;  and  if d > ] I A -  B]I then  ]t(A - -  2,I) - -  ( B -  2I)I I 
< H(B- -  ~I)-~][-~, which implies [8; L e m m a  1, p. 584] t h a t  A - -  ~ I  has 
an  inverse, con t ra ry  to  hypothesis) .  Replacing b's b y  appropr ia te  a 's,  
we obta in  a convex  combina t ion  a 0 of a l , . . . ,  an for  which laol < /~  + s. 

Le t  F 1 . . . . .  F n be equivalent  project ions in ~ such t h a t  0 < _F~ __< QEj 
(1 g ] -<_ n), and  choose par t ia l  isometrics Fi~ (i, ~ = 1 . . . . .  n) in ~ ,  
wi th  F~ j = Fj ,  which fo rm a se~ of ma t r i x  uni ts  in a *-subalgebra ~ (  of 

which is isomorphic  to dt'~. Wi th  W 0 = ~ a~Fj, W o is un i t a ry  when 
i=1  

considered as an  e lement  of all, and  WoFi jW ~ = aiSjFij-~ W F i j W *  
= fl(Fi~ ). Hence  the  restr ict ion ~ of fl to  ~ is an au tomorph i sm of 
which is implemented  b y  W o. Since I]y-tH <= ][f l- t l ]  < I [ a -  t][ + 28 < 2, 
while a o is a convex  combina t ion  of a 1 . . . . .  a~ and  so lies in the  convex 
hull  of the  spec t rum of W0, we deduce f rom p a r t  (a) t h a t  

1 
[a01 ~ ~ [ 4 - - ( ] [ ~ - -  t H -t- 2c)~] ½ 

This, wi th  our previous es t imate  for  lao[, gives 

> ½ [ 4 -  (l[~-,[] + ~ ~)~]1_ ~ ,  

contradic t ing the  assumpt ion  t h a t  

1 ~1  

with  su i tab ly  chosen e. 

We have  now shown t h a t  each non-zero central  project ion P in 
contains  a non-zero central  subproject ion Q for which d ( Q ) ~  k. I t  
~ollows tha~ there  is an  or thogonal  fami ly  {Q~} of central  projections,  
with sum I ,  such t h a t  d(Q~) >-_ k. With  a,. the  point  in the  convex hull 
of aQ~(Q~V) which is closest to 0, [aj[ __> k > 0 and  (5~/]a~l)Q~V has spec- 
t r u m  in (z :  R e z  ~ k}. Hence  U = (.~(5~/[a~t)Q~) V is a un i t a ry  opera tor  
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in ~ ,  with spectrum in the same half-plane, such that  ~(A) = UA U* 
for each A in ~ .  

(e) F o r c i n  0 , ~ - ~  de f i ne s  c = { e x p i t : - c <  t=< c},so t h a t S c i s  

the arc of the unit) circle tha t  lies in the half-plane {z : Rez >eosc} .  }Ve 

can choose b in 0,-~-~ so tha t  II~--tll = 2sinb, whence 
1 

c o s b  = ( 4 - - I I ~ -  ~II~) 2 

and we have to show tha t  a can be implemented by  a unitary operator 
U in ~ with a(U) ~_ St. 

1 1 
Choose real numbers c, 0 such tha t  b < c < y ~ and 0 < ~ < y cosc, 

and let en = ( c - - b ) ( 1 -  (3) n-1 (n = l ,  2 . . . .  ). We shall construct in- 
ductively a sequence {Un} of uni tary operators in ~ ,  each of which 
implements ~, such tha t  

(**) a(U,~) =<St+. . ,  I IU.+~--  U,,li =< l l - - e x p ( i O e . ) l .  

1 (4_[i~_ei]2)½, it  follows from part (b), Since 0 < cos c < cos b = ~- 

with k = cosc, tha t  there is a unitary operator U 1 in ~ which implements 
a and has a(U1) a subset of Se -= Sb+~. Suppose tha t  a unitary operator 
Un in ~ has been constructed, with Un implementing a and a (U~) <= Sb + ~. 
Let E and F be the spectral projections for Un corresponding to the Borel 
sets 

{expit  : b + (1--  26) e~ < t ~ b + e,} 
and 

{ e x p - - i t : b + ( 1 - - 2 0 )  e ~ <  t <  b + e ~ } ,  

respectively. Suppose tha t  ~ contains a non-zero partial isometry W 
with initial and final projections dominated by  E and F, respectively. 
Then 

]IEU,~--exp(ib + ie,~)Ell < 2~e,~, 
l fU,,F--exp(--ib--ie~,)Fii  < 20e,, 

and 

Thus 
W E =  F W =  W .  

H W U,, - -  exp(ib + ien) W H < 2Oe~, 
l] U~ W -  exp ( - - ib  - - ie , , )  W H < 20e,, , 

whence 

ll ~ - ,]1 ->- 11 w u .  - u .  wll  
_>_ Iexp(ib + ~ . )  - -  e x p ( - - i b - -  i~,,)i II WiI - -  4 ~ .  
= 2 sin (b + en) - -  4 O e., 
= 2sinb + 2{sln(b + e•) - -  s inb}--  4Oe,, 
> 2sinb + 2(cosc) e n - - 4 0 e .  
> 2sinb = H~¢-- t[[, 



Derivations and Automorphisms of Operator Algebras 45 

a contradiction. Hence no such W exists, and there is a central projection 
Q in ~2 such that  E < Q  and F < I - - Q .  Thus crQ(QU~) and 
az-Q ( ( I -  Q) U~) are contained in the arcs 

{expit : - -b  - -  (1 - -  2(~) sn g t ~ b + en} 
and 

{expit : - - b - -  e~ ~ t <- b + (1- -2~)s~} ,  

respectively, Since (1 - -~)sn  = s~+l, the unitary operator 

U.+ 1 = {exp(--i~e~) Q + exp(i(~s.) (I--Q)}U. 

has spectrum in S b + *.+r I t  is clear that  U~+ 1 implements a and saris- 
ties (**). This completes the inductive construction of the sequence { Un}. 

Since I e ~  < oo, { U~} converges in the norm topology to a unitary 
operator U in ~ which implements ¢. Each point of a (U) is at  distance 
at most II U - -  U~I I from a(U~) (as noted, in part  (b), for any two normal 
operators), and since a(U.) c= Sb+,~ and [[ U - - U . I  [ -+ 0, it follows that  
a(U) ~ S~. 

Remark A. The condition on the spectrum of U established in Lemma 5 
can be reinterpreted more geometrically as saying that  ~ (U) lies on the 
are of the unit circle symmetric about 1 with endpoints midway between 
1 and the points at distance [[c¢ - -  t[[ from 1. Having proved this under the 
assumption l l a -  t!I < 2, our operator U is chosen with spectrum in the 
"open right half-plane" (Rez > 0). 

Remark B. Let U be a unitary operator on a Hilbert space ~Yf, for 
which the convex hull of a(U) contains a neighbourhood of 0, and let 

be the (inner) automorphism induced by U on ~ (~Yf). Every other 
unitary operator in ~ (5~f) which implements z¢ is a multiple of U by  a 
complex number of modulus 1 ; and no such multiple has spectrum in the 
right half-plane. I t  follows from Lemma 5 that  [I a - -  el1 = 2 (a fact tha t  
can easily be proved directly by reasoning as in part  (a) of the proof of 
Lemma 5, after approximating U by a unitary operator V which is a 
finite linear combination of spectral projections for U). This example 
shows that  the conclusion of Lemma 5 can fail to hold when ]t ~ - -  tl] = 2. 

If  we restrict U further by reqtfiring in addition that  U 3 = I,  then 
a a = t, and the spectrum of c~ as an operator on ~ ( ~ )  consists of third 
roots of unity. Thus ~ - -  t has spectral radius r at most V ~. i t  follows that  
the statement obtained from Lemma 5, upon replacing tl a -  tit through- 
out by  r, is false. I t  should be noted that  the spectrum of a is a subset of 
{ab-l:  a, b in a(U)}, which is consistent with the possibility of choosing 

l 1 
(4  - r )½1 . U with a (U) in the closed right half-plane (z : Rez ~ 

Lemma 6. I /92  is a C*.algebra and U a unitary operator acting on a 
Hilbert spaze ~ f  such that co(A) -~ U A  U* lies in 9A ]or all A in 02 and 
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Rea  > 0 / o r  each a in a(U), then o~ lies on a norm-continuous one-Tara- 
meter subgroup o/c~ (9.1) and is ~-inner. 

Proo]. By hypothesis on a(U), we can choose H self-adjoint with 
a(H) in (--7~/2, 7~/2) such that  U = expiH.  AsinLemma 2, ~ = exp (adiH) 
both as a power series and as an analytic function of the bounded linear 
operator adiH acting on the Banach space ~ ( ~ f ) ,  where ~ is the ex- 
tension of ~ to ~(d4f) defined by ~(B) = UBU*. From G A I ~ I ) ~  [9: 
Corollary 3], taking ~ ( • )  as the Banaeh algebra andO2 as the invariant 
subspace of that  statement, we have that  ~l is invariant under 
A -~ exp(isH) A exp(-- isH) for all real s, since there is no difficulty in 
identifying iH  as log U in the sense GAxI)~I~ uses for "log U". Thus 
lies on a norm-continuous one-parameter subgroup of :,(02). I t  seems 
worthwhile to include our original proof of this both for completeness and 
directness. 

With T in ~(5~f), we denote by L(T)  and R(T)  the (bounded) 
operators on ~ ( ~ )  defined by  L(T)  (A) = T A  and R(T)  (A) = A T. 
Since L and R are algebraic isomorphism and anti-isomorphism of ~ (JY) 
into the Banach algebra ~ ( ~  (5/~)) of bounded operators on ~ (~f) each 
of which maps I onto t the spectra of L(T)  and R(T) are contained in the 
spectrum of T. Let  ~¢ be a maximal commutative subalgebra of ~ ( ~  ( ~ ) )  
containing L(T)  and R(T).  :By maximality an element /~ of ~¢ has an 
inverse in ~ ( N ( ~ f ) )  if and only if it has an inverse in ~4, so that  the 
spectra of/~ relative to ~¢ and ~ ( ~ ( 3 F ) )  coincide. Since each element of 
the spectrum of fl is the image of fl under a multiplicative linear functional 
on ~4, the spectrum of L ( T ) - - R ( T ) ( =  adT)  is contained in {a- -b:  
a, b in the spectrum of T}. In  particular adiH has spectrum in 
{it: It] <= r}, where 211H H = r < ~, by choice of H. From $ = exp(adiH)  
and the spec ia l  mapping theorem [8; VII. 3.11], ~ has spectrum in 
{expit: Itl =< r}. 

For each real s, let g~ denote the principal value of z ~ z ~ on the plane 
of complex numbers slit along the negative axis ; and ~, multiplication by 
s. On the strip S = {z : IImzI < ~} we have gs o exp --- cxp o ~. Since g~, 
exp and g are analytic where defined and adiH has spectrum in S, 
~*(=g~(~c))=exp(sadiH)=exp(adisH),  for all real s, from [8; 
VII. 3.12]. Since ad(isH) is a derivation of ~(5/Y) and i sH is skew- 
adjoint, $* is an automorphism of ~ ( ~ )  (cf. Lemma 2). 

Having identified the spectrum of ~ as a subset of {expit:  ltl < r < Jr} 
(= Co), we can choose a compact set K with Co in its interior K0 and a 
rectifiable Jordan curve C in the plane slit along the negative axis 
having K in its interior such that  z --> (% - -  z) -~ is uniformly approxim- 
able on K by polynomials in z (from Runge's theorem) for each z o on C. 
Then (z 0 - -  ~)-~ is a uniform limit of polynomials in ~, from [8; VII. 3.13], 
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for each z 0 on C; so tha t  ( % - -  ~)-1 leaves 92 invariant.  Now, 

I f  ~" - g~(z) ( z - -  ~)-1 d z  ; 2 ~ i  
o 

so tha t  ~* leaves 02 invariant [S, VII. 3.9]. Again, g, converges uniformly 
to the constant function 1 on K 0 as s -~ 0; so tha t  [In s -  t[l -~ 0 as s -+ 0 
from [8; VII .  3. la].  Finally, ~,~t = ~s+t from [8; VII .  3.10(b)], since 
g, • g~ = g,+t; so tha t  s -+  ~'!92 is a norm-continuous, one-parameter 
subgroup of ~ (92) with ~ = ~119.1. 

Bemark C. With Tl the (factor) group algebra of the free group on 
two generators a and b, the automorphism of the group arising from 
interchanging a and b gives rise to an outer automorphism :¢ of ~ [6; 
Exercise 15, p. 308] and a uni tary operator U implementing it. Since U 
is of order two, its spectrum consists o f - - 1  and 1 ; so tha t  i U has spectrum 
in the closed right half-plane, and implements ~. Thus the conclusion of 
Lemma  6 above need not hold if the hypothesis is weakened to allow 
(r(U) to he in the closed right half-plane. 

I t  is now a simple mat te r  to assemble the preceding lemmas in our 
main result. 

Theorem 7. I1 ~ is an automorphism of a C*-algebra 92 and I I a -  ell < 2, 
then ~ lies on a norm.continuous one.parameter subgroup o/ a (92). Such 
subgroups generate ~,(OA), the connected component o/ t in a~(92) with its 
norm topology, as a group; and y (92) is an open subgroup o] a (02). Each 
element o] y (92) is ~-inner. 

Proo]. Pass to the reduced atomic representation of 02. We assume 
tha t  92 acting on ~ is this (faithful) representation of 92; so tha t  92- is of 
t y p e /  - -  in fact, a direct sum of algebras of the form ~(5~0) [12: 
Corollary 4]. From Lemma 4, there is an automorphism ~ of 92- leaving 
each element of the center of 92- fixed whose restriction to 92 is ~. From 
[6; Corollary, p. 256], there is a uni tary  operator U in 02- implementing 
~; and from Lemma 5 U can be chosen with a(U) in the half-plane 
(a : R e a  > 0}. Lemma 6 now tells us tha t  ~ lies on a norm-continuous 
one-parameter subgroup of a(92). Each such subgroup is a (norm) 
connected subset of ~ (02) containing t, and, therefore, lies in y (92) - -  as 
does the subgroup they generate. However this subgroup contains ~he 
interior of the ball of radius 2 about  t in a (92) (as we have just shown); 
so tha t  it is open in a (02), hence, closed, and no larger subset of ~ (92) is 
connected. Thus this subgroup coincides with y(92). Since the norm- 
continuous one-parameter subgroups of ~(02) consist of ~-inner auto- 
morphisms of 9.1 (Lemma 2), each element of y (02) is ~-inner. 

Remark  D. Note that ,  after passing to the reduced atomic representa- 
tion and by  restricting to a minimal central projection, i t  is necessary to 
employ Lemma 5 only in the case where ~ is ~ (5(f) for the proof of 
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Theorem 7. After approximation by spectral theory, the proof of 
Lemma 5, in case ~ = ~ ( ~ f )  is essentially part  (a) of the proof given. 

Remark E. Applying Theorem 7 and then Lemma 5, we see that  
Lcmma 5 holds with "inner" deleted, ~ a C*-algebra and " ~ - "  replacing 
the second occurrence of "~" .  

Remark F. The following example shows that  the statement obtained 
from the first sentence of Theorem 7, upon replacing l I~- t i l  by the 
spectral radius of ~ - -  ~, is false even for yon Neumann algebras. 

'With ~ the (factor) group algebra of the free group on three genera- 
tors a, b, c, permuting these generators cyclically induces an auto- 
morphism a of ~ and a unitary operator U (of order three) with ¢(U) 
the third roots of unity- and implementing ~. By the reasoning used at 
the end of Remark B, ~ - - t  has spectral radius at most V3-. A shght 
extension of [6; Exercise 15, p. 308] shows that  ~ is an outer auto- 
morphism. Since ~ is weakly closed, a is not ~r-inner, hence (Lemmas 2 
and 6) does not he on a norm-continuous one-parameter subgroup of 

(~)  and cannot be implemented by a unitary operator having spectrum 
in the open right half-plane. I t  follows from Theorem 7 that  l{ ~ -  tn = 2 
(a fact that  can be verified directly: for lI(zc--t)(Ua)H = {[U~--u011 
= tl Ub-~--IlI = 2, since U b-~ ~ leaves the space of functions square 
summable on the group and vanishing on positive powers of a-lb in- 
variant, while U~'-,~ does not; so that  a(Ub-,~) is the entire unit circle 
and, in particular, - -2  is in a(Uh-,~ - -  I)). 

Since each norm- continuous representation of a connected topological 
group by  automorphisms of a C*-algebra 92 has range in ~, (92), we have: 

Corollary 8. Each norm.continuous representatiou o / a  connected topo- 
logical group by automorphisms o/ a C*.algebra has range consisting o/ 
zc-inner automorphisms. 

In  the case of yon Neumann algebras, we have: 
Corollary 9. I] 92 is a C*.algebra which has a ]aith]ul representation qD as 

a yon Neumann algebra then to (92) = y (92) = z~ (92) = tv (02) ; and each element 
o] y (9A) lies on some norm.continuous one.parameter subgroup o] o~(92). 

Remark G. Let  9A be a C*-algebra, (p a faithful representation of 9.1. 
I t  follows at once from Definition that  ~ (92) c= t~ (92) g ~ (92) C_ s¢ (92) _~ 

a(92). Theorem 7 provides the additional information that  ~(92)_~ 
=c ~r (92), and hence that  each of the groups listed above contains the open 
ball, with center t and radius 2, in ~(92). I t  follows that  each of these 
groups is open, hence dosed, and that  the quotient of any one of them by  
a smaUer one is discrete. 

The subgroups y (92) and ~ (92) of ~ (92) are normal. For suppose that  
E z¢(92) and fl E ~r(92). Given any faithful representation ~ of 92, 

to (z¢ fl z¢ -1) ~-I  = (yj ~) fi (y~ z¢)-~ and, since y~ z¢ is a faithful representation 
of 92, ~(~fla-~)~-~ is a weakly-inner automorphism of ( ~ )  (92) = ~(92). 
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Hence ~f i~-I  ~ z(91), so ~(91) is a normal subgroup of ~(91); the same 
is t rue of 7 (02) since i t  is the connected component of the identi ty in 
~(91). 

We now exhibit a C*-algebra 91 and a faithful representation ~ of 
91 for which the subgroups t~ (91), a~ (91) and ~¢ (91) of ~ (91) are not normal. 
For this purpose we make use of Example a, in which an automorphism 
fl of a C*-algebra ~ is produced, as well as faithful representations ~p and 
0 of ~ for which y~/~p-1 is weakly-inner while 0 fi0 -1 is not extendable. 
Let  91 be ~ $ ~ ,  ~ the faithful representation (B1, Be) --)- (~p(B~), O(Be) ) 
of 91, ~ ~ .d  ~ the a utomorp~sms of 91for w ~ e h  ~ ( ( B .  B~)) = (Z (B~), B~), 
y((B1, B~)) = (Be, B1). Then ?(91) = ~f(~) $ 0(~),  and since 
(yo:~ -~) ((B~, B2) ) = (Bx, fl(Be)), it  is readily verified that  W ~ - ~  is 
weakly-inner, while ~ ( 7 ~ 7 - 1 ) ~  -1 is not extendable. Thus ~ (L~(91), 
y ¢  y-1 ~ e~(91), whence the subgroups L~(92), g~(91) and e~(91) of ~(91) are 
not normal. 

For each C*-algebra 91 the subgroup ~v(91) of e~(91) is normal. With 
in t~(91), /~ in e~(91), U a unitary operator in ~(91)- which implements 

~ - 1  and 7 an automorphism of ~(91)- which extends ~ f l~ - l ,  y(U) is 
a unitary operator in ~(91)- which implements cf(fl~fl-~)q9 -~. Thus 
f i a f l - ~  t~(91) and t~(91) is a normal subgroup of e~(91). 

We now give an example in which 91 is an abelian C*-algebra with a 
~aith~ul representation ~(91) acting on a finite-dimensional Hilbert 
space, and the subgroup ~(91) of e~ (91) is not normal (of course, s~(91) 
= zt(91) in this case, since ~(91) is finite-dimensional and so weakly 
closed). Let  91 be the algebra of all complex 4 × 4 diagonal matrices of the 
form diag(a, a, b, c), F a representation in which 91 acts in the obvious 
way on a 4-dimensional tI_ilbert space. With ~ (respectively, o) the auto- 
morphism of 91 corresponding to interchange of a and b (respectively, b 
and c), it  is clear tha t  a ~ (~ (91). However, ~aa-1 is the automorphism of 

corresponding to interchange o~ a and c, and consideration of the multi- 
plicities of the eigenvalues of A tin 91) and of ( ~ - ~ )  (A) shows that  
~a~-~ ¢ ~(91). 

The group t o (91) of inner automorphisms of a general C*-algebra 91 is 
contained in z (91), and is a normal subgroup of ~ (91). For if fl is the inner 
automorphism implemented by a unitary element U of 91, and a ~ a (91), 
then a fl a-1 is the inner automorphism induced by ~(U). 

Suppose now that  91 is a C*-algebra hav~mg a faithful representation 
for which ~(91) is weakly closed. By  Corollary 9, y(91) = ~(91) = t~(91) 

= t. o (91), and of course sv(91) = ~ (91). Hence there are now only three 
(possibly) distinct groups under consideration, and to (91) ~= (~ (91) ~= ~ (91). 
We have already noted that  to (91) is a normal subgroup of z¢ (91), and the 
finite dimensional example described above shows that  the subgroup 
a~ (91) of a (91) is not necessarily normal. 
4 Commun. math. Phys., Vol. 4 
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IV. Special cases 

In  this section, we illustrate by example that  various possibilities 
not ruled out by the results of § 3 do occur. Notably, in the example 
which follows, we locate an automorphism wealdy-inncr in one faithful 
representation and not extendable in another --  completing the normality 
discussion of Remark G. Some examples taking advantage of special 
properties of the ideal of compact operators follow this; and examples, 
making use of the detailed knowledge of the higher connectivity proper- 
ties of certain compact spaces to allow us to compute, specifically, some 
automorphism subgroups, conclude this section. 

Example  a. W e  use the fermion algebra (cL [27] and [11]) to establish 
that  ~ (92) need not coincide with t~ (93) for some faithful representation 

of 93. Our algebra 93 is characterised as a C*-algebra by having a dense 
self-adjoint subalgebra which is the union of an ascending sequence of 
self-adjoint subalgebras J /n ,  n = 1, 2 . . . .  each isomorphic to the algebra 
of complex 2 n × 2 n matrices and all having the same unit. We shall 
exhibit an automorphism of 93 and two faithful representations of 93, in 
one of which the automorphism is weakly-inner and in the other of which 
it is not -- indeed in which it is not extendable. Both representations are 
irreducible. I t  follows that  this automorphism is not in the connected 
component of the identity y (93) in c¢ (93) ,since each element of y (2[) is 
weakly-inner in all faithful representations. For  this purpose, we choose 
m a t ~  units  {E~)}, :, ~ = 1 . . . . .  2~ in ~+~, with Z}?), : = 1 , . . . ,  2~, 
orthogonal projections and E ~  )* ---- E(~ ), such that  

E(n) bT(n--1) bT(n) 
2 : - - 1 1  ~ ~-~jl ~ 1 1  , 

for n = 1, 2 . . . .  and ] == 1 . . . . .  2.~-1 (dr, ° is the algebra of scalars and 
El o> is I). 

Let a be the automorphism of 93 which on each ~¢~n transposes a 
matrix about each diagonal, i.e. ,E(~)~ _ 7~(n) 1, so that  ~is the 0~( ~k ] - -  a:'~2n--~ q - 1 2 n - - k - b  

automorphism induced by the permutation matrix U n with entry I at 
each position on the secondary diagonal. Since Un+ ~ (in dr'n+1) induces 
the same automorphism on ~'n,  there is an automorphism on the union 
of the ~£n's defined by this process. Since the automorphism on each 
d/n is isometric it has a unique extension to 92 which is the desired auto- 
morphism ~. For our ~ s t  representation, let g :  be ~2(0,  1) relative to 
Lebesgue measure and let ~(n) be the isometric mapping of functions in 

z .<0,  outside of to those  anis g outside 

by translating (and, 
2 ' 2nJ 
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of course, consistent with E ~  ) being a partial isometry, let it map 

funetions vanishing on [ / ~ 1  , ~e]into0).inparticnlar E~)is theoperato r 

which multiplies functions in d~2(0, 1) by the characteristic function of 

, 2, ~ • Since each continuous function on [0, 1] is a uniform limit of 

finite linear combinations of such characteristic functions, the operators 
which are mtfltiplication by such functions lie in N. An operator com- 
muting with 9.1 commutes with mNtiplications by  continuous functions 
hence with multiplications by all bounded measurable functions and is, 
therefore, itseif multiplication by a bounded measurable function (such 
multiplications forming a maximal abelian algebra). With Mf multi- 
plication b y / ,  MfE}~ ) = E}~)My if and only if / is invariant under the 

, onto 2~ , , translates 

2n ~ 

onto [ k ~ l ,  2~_7] andleavesthe other points of [0, 1]fixed. For this to hold 

for all ],/~, n, / must be almost constant and My a scalar. In fact, denoting 
by  5 ~  ) the unitary operator EJ~ ) q- E(~ > q- I - -  EJ~ ) - -  E(~, UJ~ ) / =  / 
(note that  / is also in ~z(0,  1)). Let g~ be a continuous function on 

1 (in 5(f) and choose n such that  if ]p - -  p'] < 1/2" [0, 1] with ll/-g~]] < ~ -  

thentg~(P)--g~n(P')IK1---.Eachpermutationroftheintervals[ ] - 1  ~ ] 
m 2 a ~ 

== 1 . . . . .  2 n corresponds to a unitary operator U~ which is a product of 

theU~V(theseeorrespondtoatranspositionof[/-12~ , -~Jand[  i l r k - l ~  , ~ . ] ) ;  

so that  UJ =/. With S the (symmetric) group of all such permutations 

andA the operator ~ .~  U~, HAl] g 1 and A ] = ]. Thus H/-- A g~lJ < ---1 m - 
~mS 

Since U~Agm = A g~ and the oscillation of A gin over each interval 

"[J2" 1, -'~j is not greater than that of g .  over such intervals, A g .  differs 

from some constant C~ by  at most---I at each point of [0, 1]; and 
m 
2 HAg__ C,~] I _< 1 .  Thus l]]--C~H < - -  for each m and / is almost - m  m' 

constant. I t  follows that  9A' is the scMars and the given representation, 
which we refer to as the Lebesffue measure representation of 9.1, is irreducible. 

We note next that  ~ is weakly-inner in this representation. Let ]Jn) 
be the characteristic functi°n °f[Y ~. 1 ~] , . . Then 

= ( v .  
i + k = 2 ~ + l  

4* 
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for all m => n. Thus (U~) converges on all finite linear combinations of the 
]~n). Since such combinations lie dense in ~f2(0, 1) and If L~II = 1 for all 
m, the U~ converge strongly to some operator U on 5f .  Now U~ = I and 
multiplication is jointly continuous on bounded sets of operators in the 
strong-operator topology. Thus U S = I and since each U~ is isometric 
U is. I t  follows that  U is a unitary operator. Again, since TT ~(n)Um ~m~jk 

, ,  v(n) U - - 'E  (nh for all m .>- n and all ], k, n, UE}~ ) U ~: (E}~)) : U n a ' ~ ' i k  n - -  ~ ] k /  - -  

for all j, k, n. Thus g is induced by the unitary operator U in the Lebesgue 
measure representation of 91, and, since this is an irreducible representa- 
tion, a is weakly inner. I t  can be verified readily tha t  U is the unitary 
operator defined by (U/) (t) = / ( 1  - - t )  for each / in ~f~(0, 1). 

For our representation in which g is not extendable, we choose as our 
ttllberg space J/t°0 the space ~2([0,  1), #) where the measure # on [0, 1) 
is defined by assigning to each Borel subset the number of dyadic 
rational points it  contains. (In this way we make each dyadic rational 
point in [0, 1) an atom for/J  with measure 1.) The matrix units ~(n) ~jk are 
defined in precisely the same way as in the Lebesgue measure representa- 

tion except that  the half-open intervals [ ] - 1 ' z /are usedin place of the 

elosed intervals []  ; 1 ] ] . T h e  functions 1 at  a dyadic rational in [0,1) 

and 0 off it form an orthonormal basis for J~0, and the one-dimensional 
projections with these in their range are intersections of diagonal matrix 
units of 9,1 in the given representation. Moreover, the partial isometrics 
between these one-dimensional projections induced by mapping one 
dyadic rational onto another are the weak-operator limits of the matrix 
units mapping the ranges of these diagonal matrix units on to one 
another. I t  follows that  91 has weak-operator closure all bounded opera- 
tors in this representation and that  this representation is, accordingly, 
irreducible. Now a (E(~) = E(2n)2~ for each n; and while A ~(n)~ is the one- 

dimensional projection with the function 1 at 0 and 0 elsewhere in its 
range, N E(J)2, = 0 in this representation. Thus ~ is not extendable. 

In  the example which follows, we illustrate the fact tha t  there are 
automorphisms of C*-algebras which are g-inner without being actual 
inner automorphisms of the algebra. 

Example b. Let 91 be the C*-algebra of compact operators on sepa- 
rable tt i lbert space with the identity I adjoined, so that  each operator 
in ~1 has the form a I  + C with a some scalar and C a compact operator. 
The abstract C*-algebra associated with 91 has just two irreducible 
representations -- the given one through which we have defined 9.1 and 
the one-dimensionM representation, a I  + C --> a. Any other representa- 
tion ~0 of 9/is a direct sum of copies of these two representations, for if ~0 
is not faithful 9)(91) is the scalars. Thus, for general ~, there is a maximal 
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projection E'  in ~(02)' such that  ~ (~ )E '  = {hE'}; and each non-zero 
subprojection F '  of I - - E '  is such that  A -+ ~(A)F '  is a faithful re- 
presentation of 02. Combining this with the fact tha t  each faithful 
representation ~ of 92 has the faithful irreducible representation as a 
subrepresentation and using Zorn's lemma establishes the assertion 
about, ~v. For this, note tha t  ~p(E) is minimal in ~p(9.I)- since 
~p(E) yJ(A) ~p(E) = aE with a a scalar for all A in ~[ if E is a one-dimen- 
sional projection in 02, so that  ~v(92)' contains minimal projections. 
Choosing a maximal orthogonal family of such projections, if ~(O.l) 
restricts to scalars on each then the restriction of ~ (gA) to the complement 
of their union is faithful since ~p is; so that  this complement contains a 
minimal projection --  contradicting maximality of the family chosen. 
Thus ~p has the faithful irreducible representation of 9A as a subrepresenta- 
tion. 

I t  follows that  ~p (02)- has a central projection Q such that  F (92)- (I--Q) 
= { ~ ( I -  Q)} and ~f(oA)-Q acting on Q ( ~ l )  is a factor of type I~.  Since 
a state of y~ (0/)Q is normal if and only if it does not annihilate all the 
compact operators, each automorphism :¢ of y~(~) transforms normal 
states onto normal states and extends to an automorphism ~ of ~0 (~A)-. 
Of course, ~ maps ~p(oA)-Q, a factor of type I~, onto itself and 

(92)- (I - -  Q), scalars, onto itself, so that  ~ is inner. Now each unitary 
U on ~ f  induces an automorphism of ~ ;  and since OA acts irreducibly on 
gF, this automorphism is not inner unless U is in 92. Thus 92 admits non 
inner, permanentiy weakly-inner automorphisms. 

In  the example just discussed, with 92 in its faithful irreducible 
representation, each automorphism is induced by a unitary operator U 
and each unitary operator induces such an automorphism of 92. With 
U = exp iH,  the automorphism induced by  U lies on the one-parameter 
group of automorphisms of 9A induced by the unitary operators expitH, 
t real. Thus y (92) = ~ (OA), in this case. In the example to follow we discuss 
a C*-algebra which is not GCR (not "post-liminaire" e.f. [7; § 4.2, 4.3, 
pp. 86--87]) and use the results of Theorem 7 to produce ~-inner auto- 
morphisms that  are not inner in a situation where there are automorphisms 
tha t  are not ~-inner yet  weakly-inner in some faithful representation. 

Example c. Let  ~ be a factor of type I I  1 acting on a (separable) 
Hflbert space ~ f  and having coupling 1 (e.g. the yon Neumann algebra 
generated by  the left regular representation of the free group on two 
generators). Let  ~ be the algebra (ideal in ~ (gf)) of compact operators. 
Then the set {A + C: A in ~ ,  C in W} is a self-adjoint operator algebra. 
Moreover it is a C*-algebra 9A since it  is norm closed. We see this by 
noting that  the "angle" between the dosed linear subspaces ~ and ~ of 
~ ( ~ )  is greater than 0; for if A in ~ / h a s  norm 1, one of (A + A*)/2 
and ( A -  A*)[2i has norm at least 1/2. Let  e0 be a pure state of ~£ 
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1 
assigning a with ]a] > ~- to one of these operators and let @ be a pure 

state extension of @0 to ~ (Yf). Since no pure state of ~ (a I I  1 factor) is 
a vector state, @ is not a vector state;  and, therefore, annihilates q~. Thus, 

1 
for each C in ~ , y g  [@(A--C)[ = ]0(A)I-<-IIA--CII;  and ~ + ~  is 

closed. 
Since ~£, as represented, has coupling 1, each automorphism ¢ is 

implemented by  a unitary operator U; and ~o(A ÷ C) defined as 
U* (A + C) U makes go an automorphism of 9i (of course, weakly inner, 
since 02- = ~ ( ~ ) ) .  Now d / ~  is ~ ;  so that, the given representation of 

combined with this quotient mapping, provides a representation q of 
91 on ~f .  The faithful representation t $ ~ of ~ on 5¢ $ ~tf carries ~0 
on 91 onto the automorphism fl defined by  

fi({A -F- C, A}) = {¢0(A) ÷ ~o(C), ~o(A)}, 

for each A in ~/f and C in ~.  Since t and ~ are disjoint (t being irreducible 
has no proper subrepresentations and ~ being a I I  1 factor representation 
has no irreducible - -  indeed, no type I - -  subrepresentations), (t ¢ q) (~.l)- 
= ~ (J/F) @ J [ .  I f  fl (that is, ce 0 in the representation t (B ~) were weakly 
inner the unitary operator implementing it would have a (unitary) 
component in J /  which implements ~. For an example of an auto- 
morphism ~0 of 91 which, while weakly-inner in the given representation 
of 91, is not weakly-inner in tha t  given by  ~ $ ~, we have only to choose 
for a one of the (many) outer automorphisms of ~ (compare [6; Exercise 
15, p. 308]). 

To constr~act z-inner automorphisms of Od which are not inner, let 
U be a unitary operator on ~ f  in d~" with I] U ~ I [ I <  1 and U not a 
scalar. Then U induces an automorphism ~ of OA such tha t  1[~--t[] < 2; 
so tha t  ~ is 7~-inner (see Theorem 7). However ~ is not inner since 91 acts 
irreducibly and U is not in 91. For suppose U = A A- C is in ~, with A 
in J /  and C in <#. For each A' in~ / / ' ,  C A ' - - A ' C =  U A ' - - A ' U ,  so 
C A ' - - A ' C  is a compact operator in ~ '  and is therefore zero. Hence, 
U E ~ ~ ~£/' and U is a scalar, contrary to our choice of U. 

With some slight additional effort we can analyze a faithful represen- 
tat ion ~s of 0A sufficiently to establish tha t  each automorphism ~ of 9A 
which is the identi ty on ~ is ~r-inner. In  fact., as in Example  b, ~ (9A)- 
has minimal projections, so tha t  T(~A)' also has minim~l projections 
restrictions to which produce the faithful irreducible representation of 
91 (cf. [7; Corollary 4.1.10, p. 85]). Such ~ minimal projection E '  has 
central carrier Q, a minimal central projection. Now, restriction of 

(Og) to I -  Q cannot be a faithful representation of 91 for then, as just 
noted, i t  would have a faithful irreducible subrepresentation inequi- 
valent to cp(OA)E', since they are separated by  the orthogonal central 
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projections Q and I - - Q ,  contradicting the uniqueness of the faithful 
irreducible representation of ~.  Thus ~ (c#) ( I - -  Q) = (0), since ~ is the 
unique proper closed two sided ideal in 9I. Hence ~ ~ ?-1 is the identi ty 
on ~ (02) (I  - -  Q) after composition with restriction to I - - Q ;  and is 
induced by  the uni tary operator (in ~ (OA)-) which acts as the identi ty on 
( I - - Q ) ~ 0  and which induces the restriction of ~ a ~ - i  to ~(02)Q on 
Q ~ 0 ,  where ~ 0  is the representation space of ~. 

B y  use of Lemma 2 one can give a shorter proof of the same result. 
For  any automorphism ~ of ?A which is the identi ty on ~ is implemented 
by  a unitary operator U = exp iH ,  with H = H* in J£'. With ~ the 
automorphism induced on 91 by  expitH, t-~ ~ is a norm-continuous 
one-parameter group in ~(O,l) which contains ~, whence ~ is ~-inner 
(Lemma 2). 

In  the class of examples which follow, we exhibit instances in which 
all possible equalities and inequalities consistent with the inclusion 
y (02) <__ e0 (2[) <_- z (02) occur among the groups y (OA), t 0 (02), ~ (91) - -  the 
first inclusion being a special feature of this class of examples (c.f. 
Example  b and the remarks following). 

Example d. Throughout this discussion d is an abelian C*-algebra 
isomorphic to C (X) with X a compact-Hausdorff  space (the pure state 
space of d ) ;  ~ ' ~  is the algebra of operators (n × n complex matrices) 
acting on n-dimensional complex Hilber~ space and OA is the C*-algebra 
d @ J//n. There are two convenient ways of viewing ~,  as n × n matrices 
with entries in ~ '  (or C (X)) and as continuous functions on X with 
values in ~ .  The center ~ of ~ is the set of matrices whose only non- 
zero entries consist of a single A in ~ '  at  each diagonal position (equivent- 
ly, the continuous mappings of X into scalars in J/[~). We denote by  
~c (91) those automorphisms of OA which leave each element of W fixed. 

We prove first tha t  ~, (OA) and ~ (OA) coincide. Since in each faithful 
representation of OA an element of 7~ (?A) leaves the center of the weak 
operator closure of 02 and a ]ortiori ~ elementwise fixed, we have 

(91) =c ~, (0A). Suppose tha t  ~ is in ~, (91). With Ej k, ?',/c = 1 . . . . .  n matr ix  
units of ¢~/~ and ~ ( I ®  E j ~ ) =  B ~ ;  we have ~ ( Z ~ , ~ A ~ ®  E ~ )  
= Z~,~(A~ @ I)B¢~, since =(A ® I)  = A ® I .  Since mulViplication by  
B~ ~ and A~ ~ -> A~.~ ® I are strong-operator continuous; g (and, similarly, 
~-1) is strong-operator continuous, has an extension a to the weak- 
operator closure ~ -  ® J fn  of OA, and a is an automorphism of ?A-. For 
this we note tha t  the faithful representation of Og under consideration is 
unitarily equivalent to ~ ® ~ acting on the n-fold direct sum of a 
I~ iber t  space on which ~ / i s  represented faithfully. Now the commutant  
of 02- is ~ / '  ® I ,  and a (A ® I)  = A ® I for A in ~ -  since this is true for 
A in the strong operator dense subset ~ of ~4- and a is strong-operator 
continuous. Thus a leaves the center of 02- clementwise fixed, and a is 
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inner since 9/- is of type I .  I t  follows that  ~ is in ~ (9/). Hence 7~(9/) 
_~ a t  (9/), so t h a t  ~(9/) = ~ (9 / ) .  

With a in az(9/) and 0 a point of X (i.e. a pure state of d )  a homo- 
morphism ~% of d ® J/~ onto dfn is determined by ~ CA @ B) = 0 (A) B. 
With B in dr,, and a(~) (B) defined as ~oo(o:(I ® B)), a(0) is an isomor- 
phism of ~//. into ~ , ;  since ~e(~(I® I ) ) =  I and the closed 2-sided 
ideal generated by I ® B is 9/, if B 4 0. From the finite dimensionahty 
of ~£/., we conclude that  a(0) is an automorpbism of d/~ and that  all 
topological linear structures on the (bounded) linear operators over ~ n  
are equivalent. Thus, in order to establish the norm continuity of 
Q -+ ~ (~) it  suffices to establish the contimfity of ~ -+ ~ (Q) (B) for each 

fixed B in~¢~.  If  ~ ( I @ B ) =  ~ A ~ @ E j ~  with A ~  i u a / ,  then 
] , k = l  

~(0) (B) = ~ e(A~.~)Ej~; and the continuity in question follows from 
£ k = t  

the definition of the w*4opology on X. 

Conversely, if 0 -~ ~(0) is an arbitrary continuous mapping of X into 

~(~=),  with B in d4~ and ~ ( 0 ) ( B ) =  ~ Ajk(0)Ejk, we have 
j , / :=  1 

--> E ~ ( 0  ) ( B ) E ~  = Aj~(Q)Ej~ is continnous; so that  each A ~  is a 
continuous complex-valued function on X and corresponds to a (unique) 

operator A~.~ in a¢. Defining ~(A @ B) to be ~ A A ~  @ E0"~ determines 

an automorphism ~ of a¢ in :z(gA)(= ~,(9/)). The identity (~fl)(0) 
= ~(e)/~ (0) is v~lid, justifying the notation '~ (0)' and proving that  the 
correspondence between elements of ~(9/) and continuous mappings of 
X into ~ (~/~) is a group isomorphism when this second set is provided 
with pointwise multiplication through the group structure of ~(Jg~). 
Henceforth we pass from the elements of ~ (9/) to the continuous mappings 
of X into ~(Jt~) without comment. 

Since each antomorphism of a~'~ is inner and the only unitary opera- 
tors in ~//~ inducing the identity automorphism of #/s'~ are the scalars of 
modulus 1, ~(~'~)as U(n)/T~, where U(n) is the group of unitary 
operators in ~ '~ and T1, its center, is the circle group. Let p be the natural 
mapping of U(n) onto U(n)/T~. If ~ in ~(9/) is inner there is a unitary 
operator U in 9/which implements it. Let. 5(0) be 9e(U), an element of 
U(n). Again ~-+ c~(0 ) is a continuous mapping of X into U(n) and 
p~ = a. Conversely, if 5 is a continuous mapping of X into U(n), 

= T5 is a continuous mapping of X into U(n)/T~, i.e. an element of 
~z (9/), while 5is an element U of the unitary group of 9/which implements 
zc Thus to (9/) is the group of continuous mappings of X into the base 
space U(n)/T, which can be "lifted" to the bundle U(n) (with projection 
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p, fibre and group T1). From Theorem 7, each element y of the connected 
component of the identity ~ (91) of ~(02) is a product V ~ ' "  Ym where 
VJ = yj{1) and t-~ vi(t) is a norm continuous one-parameter group in 
a(OA). Thus, with F(e,  t) = (y~(t)) (e) . . . (y~(t)) (e), I ' i s  a homotopy of 
y and 9 -+ Y (~, 0) = T 1 . . .  T 1 = T 1, i.e. of y and the constant mapping 
of X onto the identity element of U(n)/T 1. Of course this constant 
mapping lifts to U(n); and the Covering Homotopy Theorem [29; 
Theorem 11.7, p. 54] tells us tha t  the homotopy under consideration 
can be covered by a homotopy of this lifted constant mapping in the 
bundle space U (n). This homotopy in the bundle provides a lifting of V 
from U(n)/T 1 to U(n). Thus y is in t0(~[) and ~(02)g ~0(02)=c 7~(02) 
= ~c(~). 

From this same argument, if ~ and fl in ~ (~d) are in the same cosct of 
y (02), say ~ = ~ F with y in y (gA), then a homotepy of y with the constant 
mapping of X onto T 1 in U (n)/T 1 provides a homotopy between ~ and ft. 
Conversely, if a and fl are homotopic and F : X × [0, 1] -> U(n)/T 1, 
F (  e, 0 ) =  a(e),  F (e ,  1 ) =  fl(e) is a homotopy, then f l - IF defined by 
(f l - lF)  (e, t) = f l -~(e)F(e ,  t) (group product in U(n)/T~) is a homotopy 
of f i - l~ with the constant mapping (onto T1). Hence fl-lc¢ lies in 7(0.I) 
(it is connected to the identity automorphism by the "arc"  which is the 
homotopy just described). Thus ~(02)/F(02) is the group of homotopy 
classes of mappings of X into U (n)/T~, the product of two such classes 
being formed by multiplying any two representatives pointwise using the 
multiplication in U(n)/T 1 and passing to the class of the result. Since 
y(OA) g t0(92), each y(0A)-coset of an element ~ of ~0(gA) consists of 
elements in t 0 (0A). From the foregoing, this coset is the class of mappings 
of X into U(n)/T~ homotopic to ~. Thus each fl homotopic to ~ lies in 
to {92) (can be lifted to U (n) --  the Covering Homotopy argument gives 
this same result directly), and t0(OA)/y(02 ) is the group of homotopy 
classes of continuous mappings of X into U(n)/T 1 which can be lifted to 
U (.). 

Applying these general topological identifications of y(P2), to(9.1), 
(0A) and their quotients to specific choices of X,  we note first that  if X 

is contractible (to a point) --  for example, if X is the unit ballin n-space -- 
then each continuous mapping of X is homotopic to a constant mapping, 
z(PA)/y(OA) has a single element, so that  y(OA), t0(0A ) and ~(0A) coincide 
in this case. Specifically, if d is C([0, 1]) and ~/ is d ®  dt'~, ~(02) 

= ~0 (~) = ~ ( ~ ) .  

At the other extreme, we show that  if ~4 is C(U(n)/T~) and OA is 
~ ®  J/~, then y (~) ~ ~0 (02) g g (gA). The last inequality is established 
by noting that  the identity mapping o~ U(n)/T~ onto U(n)/T~ cannot 
be lifted to U(n); in other words, the bundle {U(n), p, U(n)/T~, T~, T~} 
does not have a cross section. To see this note tha t  U(n) is homeo- 
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morphic to T~ × SU(n)  and has fundamental group 7q(U(n)) iso- 
morphic to Z ,  the additive group of integers [4; Proposition 7, p. 61], 
where S U (n) the special unitary group is the group of unitary operators 
in ~ n  having determinant 1. Since U (n) is T 1 ~J S U (n) and T 1 f~ S U (n) 
is Z n the group of multiples of I by n ta roots of unity, the second iso- 
morphism theorem of group theory tells us tha t  U(n)/T 1 is isomorphic 
(as a topological group) to S U (n)/Z~ (here, Z~ is the center of S U (n)). 
Now S U (n) is simply connected and Z~ is a discrete subgroup in (equal 
to) the center of S U (n). Thus 0 -> Z= -+ S U (n) -+ S U (n)/Z n ~ 0 is a 
covering mapping and ~I (SU(n) /Z~) (=  g l (U(n) /T I ) )~  Z~ (cf. [4; 
Proposition 7, p. 54 and Proposition 6, p. 60]). If our bundle admits a 
cross section then Z l ( U ( n ) ) ( ~ Z )  has a subgroup isomorphic to 
zI(U(n)/T~) (~  Zn) (cf. [29; 17.7, p. 92], actually ~ ( V ( n ) )  would be the 
direct sum of z~(U(n)/T~) and 7q(T1) since it  is abelian). Of course this 
is not the ease since Z has no torsion. Thus the identi ty mapping of 
U(n)/T 1 onto U(n)/T 1 does not lift and provides an element z¢ in 7~(OA) 
not in ~0 (92). 

We exhibit, next, an essential mapping ~ of U(n)/T 1 into U(n)/T~ 
which lifts to a mapping of U(n)/T 1 into U(n). Thus ~ is an element of 
t0(OA) not in. y(gA). To describe ~ we use the representation of U(n)/T 1 
as S U (n)/Z n and of U (n) as the product T 1 × S U (n) noted above. From 
the form of the representation T 1 × SU(n) ,  i: U-+ (1, U) is just the 
inclusion mapping of S U (n) into U (n). Let  q be the natural mapping of 
S U (n) onto S U (n)/Z,  and s: U -+ U ~ a mapping of S U (n) into S U (n). 
Since q is open ~nd s is continuous and maps Z ,  onto I,  the mapping 
r: UZn-+  U ~ of SU(n)/Z,~ into SU(n)  is well-defined, satisfies rq = s 
and is continuous. With t = ir mapping SU(n) /Zn  into U(n), t is con- 
tinuous and the diagram 

SU(n)/TZn "-Lt~ U(n) p ' U(n)/T 1 

S U ( n )  .... ~ ..... S U ( n )  

is commutative. We assert tha t  ~ (= pt) is an essential mapping (i.e. 
not homotopic to a constant mapping) of U (n)/T1 into U (n)/T 1. Suppose 
the contrary. With / a continuous mapping of X into Y, we denote by  
/ ,  the induced homomorphism of g~ (X) into z,~ (Y) (cf, [29 ; 15.5, p. 75]). 
Since pia = p t q and p t is inessential p ,  t ,  (=  (p t),) is 0 on ~ (8 U (n)/Z~); 
so that  p , i , s ,  (= p , t , q , )  is 0 on 7lm(SU(n)) (cf. [29; 15.6, 2 ° and 5 °, 
p. 76]). Let  / be a mapping of S a, the 3-sphere, into SU(n) .  Then 
s / ( =  fl0 is homotopic to n /  (in the sense of homotopy addition) [29; 
16.7, p. 88]. From [29; 17.8, p. 93, 25.1, p. 131 and 25.4, p. 132], 
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7Z ~. ~ra(U(n)) ~ ~ra(T1) + zr3(SU(n)) ~. ~ra(SU(n)). With I a represen- 
tative of a generator z of ~r 3 (S U (n)), n/and ,  hence, s I are representatives 
of nz (~=0 since =a(SU(n))~-. 7Z). But  s / i s  a representative of s,(z);  
so tha t  s , ( z ) =  nz  ~ O. On the other hand, i ,  is injective since it  is 
induced by a (trivial) bundle cross section [29; 17.7, p. 92, see the 
proof], and fl, is injective on ~ra (U (n)) from the exactness of the homotopy 
sequence of the bundle {U(n), p, U(n)/T 1, T 1, T1} as apphed to the por- 

tion • --> ~ra(T,)-+zra(U(n)) ~ zra(U(n)/T~) " . . . .  ~ ( T 1 ) ~ ' "  (noting 
that  ga(T1)= g2(T1)= 0 together with exactness shows that  p ,  is an 
isomorphism of z~3(U(n)) onto 7~a(U(n)/T~) ) [29; 17.3 and 17.4, p. 91]. 
Since i , s , ( z )  is a non-zero element of zl3(U(n)), p , i , s , ( z )  4:0 contra- 
dicting the earlier conclusion that  p , i , s ,  is 0 on each zr~(S U(n)). Thus 

(= pt) is essential and provides an element of t 0 (9A) (since it can be 
lifted to t) not in y(gA). 

For  our next  illustration, we take X to be T1 and ~ a continuous 
mapping of T~ into U (n)/T 1 ( ~  S U (n)/Z~) which represents a non-zero 
element in zq(U(n)/T~) (~  Z~). Then ~ is not  in 7(93). However each 
continuous mapping fi of T 1 into U (n)/T 1 can be lifted to U (n). To see 
this choose a fixed triangulation of U(n)/T 1 as a complex K. Since the 
fibre T 1 is arcwise connected, the bundle over the 1-skeleton K 1 of K has 
a cross section (d. [29; last statement, p. 148]), so that  each simplicial 
mapping of a space X into K ~ can be lifted. In  particular each simplieial 
mapping of T 1 into K can be lifted. Now fl is homotopie to a simplicial 
mapping of T~ into K (from the Simplieial Approximation Theorem) so 
tha t  the Covering Homotopy Theorem [29; 11.7 p. 54] guarantees a 
lifting of ~. We conclude that,  with ~¢ taken as C(T1) and ~[ as ~¢ ® J4~, 

(92) ~ t 0 (93) = ~ (9A). In Chis example t 0 (93)]V (gA) (=  g (9A)/7 (92)), the 
homotopy classes of mappings of X into U(n)/T 1 (= S U(n)/Z,~), is just, 
zc 1(S U (n)/Z~) which we have identified as isomorphic to Z~. 

To illustrate the possibility that  7(92)= t0(93) with t0(93) a proper 
subgroup of ~(93), we exhibit a compact space X and a (continuous) 
mapping of X into U(2)/T~ which cannot be li~ted to U(2), so that  this 
mapping is an element of z~(gA) not in to(gA); while each mapping of X 
into U(2) is inessential, hence (by projecting the homotopy) each 
mapping of X into U (2)/T~ which can be lifted to U (2) is inessential --  
from which, y(gA) = to(gA). Recall tha t  U(2)/T~ ~. SU(2) /Z~ and that  

each element U of S U (2) has the form b , where t a] 2 + ]b[ ~ = 1. The 

mapping U ---> (a, b) is a homeomorphism of S U (2) with the unit sphere 
in complex 2-space, i.e. with the 3-sphere S a in real 4-space. The natural 
mapping of S U(2) onto S U(2)/Z~ corresponds to the covering mapping 
of S a onto pa, projective 3-space, which identifies antipodal points of 
S a. Thus U(2)/T~ is (homeomorphic to) p a  Choose a ~riangula~ion of pa 
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and let X be its 2-skeletom Then, by  definition, H:(X, Z), the first 
cohomology group of X with integral coefficients, is Hz(P 3, Z). Since 
H:(P 3, Z) = 0 (cf. [13; Theorem 3.9.5, p. 135]), H:(X, Z) = 0, and each 
mapping of X into T: is inessential (cf. [13; pp. 72--73, Corollary 7.4.4, 
p. 302 and remarks following] - -  we are indebted to L~:F KRIST~:TSm: 
for drawing our attention to the identification of H~(K, G) with the 
homotopy classes of mappings of K into the Eitenberg-MacLane space 
K (G, m) which allowed us to complete the argument tha t  mappings of 
X into U(2) are inessential). Now U(2) is homeomorphic to T: × SU(2)  
hence to T: × S 8. Each mapping of X into U(2) yields, by  projection, a 
mapping into S 3 which is inessential (since X is a 2-complex) [14; 
Theorem VI  6, p. 88]. Covering the homotopy of this mapping of X into 
S ~ establishes tha t  the mapping of X into U (2) (i.e. T 1 × S 3) is homotopic 
to a mapping into T:. Having just noted tha t  mappings of X into T: are 
inessential, we conclude tha t  mappings of X into U (2) are inessential; so 
tha t  y (~) = to (T). 

We have noted tha t  p : U(2) -+ U(2)/T 1 has no cross section. I f  the 
identity mapping of X onto X could be lifted, this cross section over the 
2-skeleton X of U(2)/T 1 could be extended to a cross section for the 
total  bundle, since the fibre T: has ~2(T1) = 0 (el. [29; pp. 148--149]). 
Thus the identi ty mapping of X onto X cannot be lifted to U (2), and is 
an element of ~ (OA) not in to (0A). 

Let  us denote, now, by  ~ the C*-algebra o /~  ® ~ where d ~  is 
the algebra C(Sm), S m the m-sphere. Since U(n) is homeomorphic to 
T: × SU(n) and the natural  mapping of SU(n) onto SU(n)/Z~ 
(.~-- V(n)/T1) is a covering mapping 

#m (U (n)) ~ ~m (S U (n)) ~ 7~ (S U (n)/Z~) ~ z~ m (U (n)lT:) 

for m ~ 2 from [29; 17.8, p. 93, 21.2(2), p. 111, 17.6, p. 92]. Using 
Bot t ' s  Periodicity Theorem [2; Theorem 5, p. 51], we have ~,~ (U (n)/T:) 
(~  am(U(n))) is 0 for m even and Z for m odd =~1 when m < 2n, while 
~,~(U(n)/T:) ~ Zn~, a2n+:(U(n)/T:) is Z 2 for even n _->_-2 and 0 for 
odd n; ~n+t(U(n)/T:) ~ Z 2 + Z(n + :)l for even n ~ 4 and ~ Z(n+ 1)112 
for odd n >= 3 (el. [31; p. 103, p. 117]). We have noted tha t  

= (~.,n)/V (~mn) ~ =~ (U (n)/T:), 

so tha t  the list preceding identifies this quotient for the given m and n. 
In  particular, for even m < 2 n, = (OAm~)/y (0/m.) is 0, i.e. ~ (0A~) = Y (9.1~). 
Hence in this case, each mapping of S~n into U(n)/T: hits to U(n) a.nd 
=(OA~) = t0(OAmn) = y(92~).  For odd m ~= 1 and m < 2n, 

=(~mn)/~(~mn) ~ : ; 
so that ~(~mn)~ =(9~mn). We shall note that tO(~mn)= =(~mn) for 
m, n = 1, 2 . . . . .  by  universal bundle techniques. (We are indebted, 



Derivations and Automorphisms of Operator Algebras 61 

once again, $o L. K~IsTv, Nsv,~- for pointing out the use of universal 
bundle methods in providing a detailed description of mappings which 
lit .)  

W'e begin by identifying to(OA ) more carefully, with 9.t = d ® ~£~ and 
d = C (X). Suppose that  X is a (compact) k-dimensional complex. Let  
B be an m-universal bundle with base B 1 fibre and group T 1 and pro- 
jection q (cf. [29; 19.2, p. 101, 19.6, p. 103]), where m is taken very large 
relative to k and n. Note that  each simplicial mapping g of X into B is 
inessential, for G O defined on the subcomplex X x {0} ~J X x {1} of 
X x [0, 1] by  Go(x, 1) = b 0 (a fixed point of B) and Go(x, O) = g(x) can 
be extended to a homotopy G, mapping X x [0, 1] into B, of g with the 
constant mapping of X into b o, since the high connectivity of B (cf. [29; 
19.4, p. 102]) guarantees tha t  there is no obstruction to the stepwise 
extension of G o over a simplex of X x [0, 1 ] of a certain dimension from 
its value on the boundary of tha t  simplex in the skeleton of X x [0, 1 ] 
of one lower dimension. 

Since each mapping g of X into B is homotopic to a simplieial 
mapping (Simpticial Approximation Theorem [13; 1.7.10 to 1.8.1, p .  37]), 
g is inessential. Thus a mapping of X into B 1 which lifts to B is seen to 
be inessential by projecting the homotopy of the lifted mapping to a 
constant mapping into B. Conversely if a mapping of X into B 1 is in- 
essential the Covering I tomotopy Theorem [29; 11.7, p. 54] provides a 
lifting of it  to B; so that  the mappings of X into B 1 which can be lifted 
are precisely the inessential ones. 

From the universal property of B, there is a bundle mapping h of 
U(n) into B inducing a mapping ~ of U(n)/T 1 into B 1 (cf. [29; 2.5, p. 9]). 
Moreover [29; § 10, pp. 47--49] the bundle B' induced by  h over 
U(n)/T 1 is equivalent to U(n) over U(n)/T r Thus the possibility of 
lifting a mapping / from X into U(n)/T 1 to U(n) is equivalent to that  of 
lifting / from U(n)/T t to B'. blow B'  is the set of points (u, b) in 
(U(n)/T~) x B such that  h(u) = q(b) (cf. [29; 10.2, p. 47]); so that  if g is 
a lifting of hi  from B~ to B, then [ defined by [(x) = (](x), g(x)) is a 
lifting of ] from U(n)/T 1 to B'  since hi(x) = qg(x). Conversely, if [ lifts 
] from V(n)/T 1 to B', then ](x) = q(x), g(x)) for each x in Z and some 
mapping g of X into B, since the projection of B' onto U(n)/Tx is, by 
construction, projection onto the first coordinate; and g lifts ~ / f ro m  B 1 
to B since h/(x) = qg(x). Thus ] lifts to U(n) if and only if h] lifts to B, 
tha t  is, if and only if ~ / i s  homotopie to a constant mapping into B r 
With 92 = ~ / ®  ~ n  and % / =  C(X), to(~[) is the group (under pointwise 
multiplication in U (n)/T1) of mappings / of X into U (n)/T 1 such that  ~/ is  
inessential. In  particular, taking S ~ for X with k > 3, we see that  all 
mappings / lie in to(~[) (= t0(PA~)) for zk(B1) ~ ~k(B) = 0 (recall tha t  
B is m-universal, so, m - -  1 connected, with k < m), from the exactness 
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of the  bundle  h o m o t o p y  sequence [29; 17.4, p. 9 1 ] , . . . - ~ s ~ ( T 1 )  
-+z~(B)~z~(BI)->zI~_I(T1)  and  the  fac t  t h a t  ~ k _ I ( T 1 ) = ~ ( T ~ )  
--  ~ ( B )  = 0 wi th  /c >_- 3. Since z~(U(n)/T~) = 0 and  the  arcwise con- 
nectedness  of Tx allows us to  l if t  mapp ings  of a 1-complex in to  U(n)/T~ 
to  U (n) (as no ted  earl ier  when we discussed the  case X = T~), we see 
t h a t  ~o(02~) ---- z ( 9 2 ~ )  for al l  m, n = 1, 2 . . . . .  

W e  can show t h a t  e0(OA~n)= ~(~l~n ) w i thou t  un iversa l  bundle  
techniques  b y  a more  special  analysis .  F r o m  the  h o m o t o p y  sequence of 
the  bundle ,  

• . .  z~ (U(n ) ) - - -*  z~(U(n)/T~) ~ ~m-~ (T~) - ~ . . . ;  

so t h a t  p ,  is an  i somorphism of z~m(U(n)) onto  zm(U(n)/T~) for  m ~ 3. 
F o r  m = 2, 7~(U(n)/T~) --- 0 as no t ed  earlier.  F o r  m = 1, ~0(T~) = O, so 
t h a t  p ,  is sur jec t ive  for al l  m. Thus  each m a p p i n g  of S ~ in to  U(n)/T~ is 
homotop ic  to  ~he pro jec t ion  of some m a p p i n g  of S ~ into  U(n), i.e. 
homotop ic  to a mapp ing  which lifts, and  hence lifts itself. I t  follows t h a t  
to(PAm~ ) = z~(~[~) for all  m a n d  n. 

References 

[1] BLATT~,  R.: Au~morphie group representations. Pacific J. Math. 8, 
665--677 (1958). 

[2] BOTh, 1%.: The space of loops on a Lie group. Mich. Math. J. 5, 35--61 (1958). 
[3] BOgCHERS, H.:  Energy and momentum as observables in quantum field 

theory. Commun. Math. Phys. 2, 49--54 (1966). 
[4] C~VALLEY, C.: Lie Groups. Princeton: University Press 1946. 
[5] DELL'A~TO~IO, G.: On some groups of automorphisms of physical observables. 

Commum Math. Phys. 2, 384---397 (1966). 
[6] D I x ~ ,  J . :  Les alg~bres d'op6rateurs duns l'espaee hilbertiem Paris: 

Gauthier-Villars 1957. 
[7] - -  Les C*-alg~bres et leurs repr4sentations. Paris: Gauthier-Villars 1964. 
[8] D ~ o ~ D ,  Iq., and J. SC~V~TZ: Linear opera~ors, Part  I. New York: 1958. 
[9] GARDlCER, L. : An invariance theorem for representations of Ban~ch algebras. 

Proe. Am. Math. Soc. 16, 983--986 (1965). 
[10] G~L~AZqD, I., and M. NEVMA~K: On the imbedding of normed rings into the 

ring of operators in gi lber t  space, l%ee. Math. (mat. Sbornik) N.S. 12, 
197--213 (1943). 

[11] GLD~M, J. : On a certain class of operator algebras. Trans. Am. Math. Soc. 95, 
318--340 (1960). 

[12] - - ,  and R. K~DIso~: Unitary operators in C*-algebras. Pacific J. Math. 1O, 
547--556 (1960). 

[13] HILTOZ~, P., and S. W:cLI~: Homology theory. Cambridge: University Press 
1960. 

[14] HURnw~cz, W., and H. W~LMAZ~: Dimension theory. Princeton: University 
Press 1948. 

[15] KAI)ISON, R. : Unitary invariants Ior representations of operator algebras. 
Ann. of Math. 66, 394--379 (1957). 

[16] - -  Derivations of operator algebras. Ann. Math. 83, 280--293 (1966). 



Derivations and Automorphisms of Operator Algebras 63 

[17] - -  Transformations of states in operator theory and dynamics. Topology, 
8 Suppl. 2, 177--198 (1965). 

[18] - - ,  and J. RI~GROSE: Derivations of operator group algebras. Am. J. Math. 
88, 562--576 (1966). 

[19] - -  Automorphisms of operator algebras. Bull. Am. Math. Soc. (to appear). 
[20] IC~LA~SK¥, L : Modules over operator algebras. Am. J. Math. 75, 839--859 

(1953). 
[21] Km~l~, IvI., and D. MrLMA~: On the extreme points of regular convex sets. 

Studia Math. 9, 133--137 (1940). 
[22] Sax~u, S. : On topological properties of W*-algebras. Proe. Japan Acad. 33, 

439---444 (1957). 
[23] - -  On a conjecture of K~LA~SXY. T5hoku Math. J. 12, 31--33 (1960). 
[24] - -  Derivations of W*-algebras. Ann. Math. 88, 273--279 (1966). 
[25] SC~W~TZ, J.: Lectures on W*-algebras. NYU notes (mimeographed), 1964. 
[26] SEG~, I.: Irreducible representations of operator algebras. :Bull. Am. Math. 

Soc. 53, 73--88 (1947). 
[27] SHALE, D., and W. S~U~c~sPRr~G: States of the Clifford algebra. Ann. Math. 80, 

365--381 (1964). 
[28] SINc~, L : Automorphisms of finite factors. Am. J. Math. 77, 117--133 (1955). 
[29] ST]~CROD, N. : Fibre bundles. Princeton: University Press 1951. 
[30] SvzvKI, N. : A linear representation of a countably infinite group. Proc. Japan 

Acad. 84, 575--579 (1958). 
[31] ToDA, H. : A topologicM proof of theorems of :Bott and Borel-~rzebruch for 

homotopy groups of unitary groups. Mem. Coll. Sci. Univ. Kyoto Ser. A. 
Math. 8~, 103--119 (1959). 


