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Summary. Phagocytic leukocytes generate large 
amounts of reactive oxygen compounds during 
and after phagocytosis of micro-organisms. These 
compounds are essential for the killing of a wide 
variety of microbes. The enzyme responsible for 
this process is NADPH:02  oxidoreductase 
(NADPH oxidase), which utilizes the reduction 
equivalents of NADPH to reduce atmospheric ox- 
ygen to superoxide (O2=). Subsequently, superoxide 
is converted by the leukocytes to other reactive 
compounds, such as hydrogen peroxide (HzO2), 
hypochlorous acid (HOC1) and N-chloramines (R- 
NC1). Each of these compounds has potent micro- 
bicidal properties. Under resting, non-phagocytiz- 
ing conditions, phagocytes do not produce reactive 
oxygen compounds. However, within 15-30 sec 
after binding of micro-organisms to cell surface 
receptors, superoxide generation starts. This phe- 
nomenon is called the respiratory burst. The acti- 
vation of the NADPH oxidase is caused by the 
assembly of components of this enzyme into an 
active complex. Under resting conditions, at least 
three components reside in the cytoplasm and at 
least two are located in the plasma membrane. Ac- 
tivation of the NADPH oxidase results in translo- 
cation of cytosolic components to the plasma 
membrane and formation of an active enzymatic 
complex in the plasma membrane. 
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ygen radicals - Cytochrome bs58 - Chronic granu- 
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Abbreviations: C G D = c h r o n i c  granulomatous disease; R- 
NC1 = N-chloramines; SDS = sodium dodecylsulfate; Xb - = X- 
linked cytochrome bs s 8-negative; Ab = autosomal cytochrome 
bss8-negative; A b + = a u t o s o m a l  cytochrome bsss-positive; 
SOC = soluble oxidase component  

Phagocytic leukocytes (neutrophilic granulocytes, 
eosinophilic granulocytes, monocytes and macro- 
phages) are effector cells in our defense against 
microbial pathogens. Phagocytes kill various mi- 
cro-organisms (bacteria, fungi, yeasts, mycoplas- 
mata) by ingesting and attacking them intracellu- 
larly with hydrolytic enzymes and reactive oxygen 
products. This line of defense can be divided into 
several stages. 

For ingestion of micro-organisms, it is often 
necessary that this material is covered with specific 
antibodies and/or complement fragments. As a re- 
sult of attachment of opsonized micro-organisms 
to the phagocyte surface receptors, three processes 
are initiated: phagocytosis, degranulation and for- 
mation of reactive oxygen species. Phagocytosis 
proceeds by increased actin filament formation, 
leading to extension of pseudopods around the mi- 
cro-organism. In this way, an increasing number 
of receptors on the phagocyte surface can bind 
to opsonins on the micro-organisms (Fig. 1). When 
the pseudopods have completely folded around the 
micro-organism, they fuse and form a closed, 
membrane-surrounded vesicle (phagosome) inside 
the phagocyte. Killing of the micro-organism takes 
place within this phagosome. 

During the process of degranulation, the gran- 
ules in the phagocyte, which contain a large array 
of bactericidal proteins, fuse with the developing 
phagosome and deliver their contents in the small 
space between the micro-organism and the sur- 
rounding phagosome membrane. Thus, a high con- 
centration of these proteins is reached in the imme- 
diate vicinity of the micro-organism. Together with 
reactive oxygen species, these enzymes then kill 
and degrade the phagocytized micro-organism. 

The third process triggered by phagocyte recep- 
tor occupation is the generation of reactive oxygen 
metabolites. This reaction is mediated by an en- 
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Fig. 1. Schematic representation of phagocytosis, degranulation 
and generation of oxygen radicals. Micro-organisms opsonized 
with specific IgG antibodies and complement fragments C3b/ 
iC3b (*) attach to Fc-gamma receptors and complement recep- 
tors, respectively. This attachment induces phagocytosis, fusion 
of intracellular granules with the phagosome membrane and 
activation of the NADPH oxidase. Superoxide generated by 
the NADPH oxidase is spontaneously dismuted into hydrogen 
peroxide (H202). One of the enzymes released into the phago- 
some is myeloperoxidase (MPO), which catalyzes the formation 
of hypochlorous acid from hydrogen peroxide and chloride 
ions. Illustration from: D. Roos, The respiratory burst of pha- 
gocytic leukocytes. Drug Invest [Suppl 2] 3:48, 1991 

are allowed to co-ingest an artificial oxygen-radical 
producing system [4]. 

Because CGD is a rare disease (incidence about 
1 : 250 000), it has been remarked that more people 
study the disease than suffer from it. However, 
these studies have also greatly increased our gener- 
al knowledge about the working mechanisms of 
phagocytic leukocytes, knowledge that has proven 
of immense value for understanding and treating 
such seemingly unrelated clinical conditions as 
chronic inflammations, acute respiratory distress 
syndrome, septic shock, reperfusion injury after 
hypoxia and even ageing. 

One general lesson learned from these studies 
is the beneficial importance of oxygen radicals gen- 
erated by phagocytic leukocytes in our defence 
against microbial pathogens. Another lesson is the 
realization that overproduction of oxygen radicals 
may lead to severe tissue injury, and even contrib- 
ute to multi-organ failure and death. Thus, it is 
a major challenge to clinicians, laboratory scien- 
tists and pharmaceutical companies to devise ways 
and means to check overproduction of oxygen rad- 
icals without endangering the host defense against 
micro-organisms. 

zyme located in the plasma membrane of phago- 
cytes. It receives electrons from NADPH in the 
cytosol and transfers these to molecular oxygen 
on the other side of the membrane. Therefore, this 
enzyme is called NADPH:O2 oxidoreductase or 
- in short - NADPH oxidase. The primary product 
of  this enzyme is superoxide (02"), which is deliv- 
ered into the phagosome. Its bactericidal potential 
is low, but this is substantially increased by conver- 
sion of superoxide into other reactive oxygen com- 
pounds, such as hydrogen peroxide (H202), hy- 
pochlorous acid (HOC1) and N-chloramines (R- 
NC1). Inside microbial targets, hydroxyl radicals 
( .OH) may also be formed. 

N A D P H  Oxidase - Biological  Importance 

About 25 years ago it was discovered that the leuk- 
ocytes from patients with so-called chronic granu- 
lomatous disease (CGD), who suffer from recur- 
rent, often fatal bacterial infections, fail to con- 
sume oxygen [1] and generate superoxide [2, 3] 
during phagocytosis of  bacteria. Subsequently, it 
became clear that this failure to produce oxygen 
radicals is the cause of CGD : the defective leuko- 
cytes also fail to kill ingested bacteria, but this 
defect is corrected in vitro when the leukocytes 

Cytochrome bsss 

The CGD studies soon showed that different ge- 
netic patterns of transmission of this disease exist: 
X-linked as well as autosomal. This indicates that 
the NADPH oxidase may consist of  more than 
one component, encoded by genes located either 
at the X chromosome or at an autosome. Subse- 
quently, it was discovered that the X-linked form 
of CGD corresponded with the absence of a heme 
protein, called cytochrome bss8, in the phagocytes 
from these patients [5]. This protein has a low re- 
dox potential [6], and is therefore considered to 
be the NADPH oxidase component that donates 
electrons directly to molecular oxygen. The idea 
emerged that cytochrome bss8 is the X-chromo- 
some encoded component of the NADPH oxidase 
and that one or more other components might be 
autosome encoded. The truth proved to be more 
complicated. 

First, we discovered a family in which CGD 
was apparently transmitted in an autosomal fash- 
ion although the cells from the three affected chil- 
dren (one boy, two girls) were practically devoid 
of cytochrome bss8 [7]. Fusion of monocytes from 
these patients with those of  CGD patients with 
the X-linked or the (usual) autosomal, cytochrome 
bss8-positive form of the disease resulted in heter- 
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Cytochrome b558 in 
three CGD patients 
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chain of cytochrome bsss) [13] and autosomal, cy- 
tochrome b558-negative (Ab-) CGD by defects in 
the other subunit (the alpha chain) [17]. The fact 
that both peptides are missing in either form of 
CGD may be caused by decreased stability of sin- 
gle subunits as compared to the alpha-beta hetero- 
dimer. 

Fig. 2. Western blot of neutrophil extracts incubated with 
monoclonal antibodies against cytochrome b558 subunits. Neu- 
trophil extracts were loaded on an SDS-polyacrylamide gel and 
after electrophoresis blotted into nitro-cellulose membrane. 
Subsequently, the membrane was incubated with the monoclon- 
al antibodies and alkaline phosphatase conjugated goat-anti- 
mouse-immunoglobulin. Technical details can be found in ref. 
12. The picture shows that neutrophils from normal donors 
and from an Ab + CGD patient (who lacks p47-phox) contain 
both the alpha (23 kD) and the beta (75 93 kD) subunits cyto- 
chrome bsss. In contrast, neutrophils from an X-linked CGD 
patient and from an Ab-  CGD patient (both without cyto- 
chrome b558 heine spectrum) lack both subunits. The bands 
at about 40 kD and at 5~60  kD may be aggregates, precursors 
or degradation products of these subunits 

okaryons with restored NADPH oxidase activity. 
Monocytes from the latter two groups fused with 
each other also showed this NADPH oxidase com- 
plementation [8]. These studies proved that at least 
three different gene products are involved in 
NADPH oxidase activity. 

Subsequently, Segal [9] and Parkos et al. [10] 
discovered that cytochrome b558 is a protein com- 
posed of two different peptides, each of which is 
missing in X-linked as well as in autosomal, cyto- 
chrome bsss-negative CGD [11, 12] (Fig. 2). Both 
subunits have now been cloned and sequenced [13- 
16]. The sequence of these peptides does not pro- 
vide information which of the two subunits carries 
the heme. As expected, X-linked (Xb-) CGD is 
caused by defects in one of these subunits (the beta 

Cell-Free Activation System 

In resting, non-phagocytizing leukocytes, the 
NADPH oxidase is inactive: these cells do not gen- 
erate oxygen radicals. However, upon binding of 
opsonized micro-organisms to cell surface recep- 
tors, or upon activation of the cells with any of 
a number of soluble stimuli, the NADPH oxidase 
is rapidly (within 15-30 seconds) activated. In acti- 
vated phagocytes, the NADPH oxidase activity is 
confined to the (cell surface or phagosome) mem- 
brane-containing fraction [18]. Until a few years 
ago, this activation was only possible in intact pha- 
gocytes. An important step in the elucidation of 
the oxidase was made when it was discovered that 
fractions made from resting phagocytes could be 
induced to generate oxygen radicals by low concen- 
trations of sodium dodecylsulfate (SDS), arachi- 
donic acid or other amphiphilic agents. In particu- 
lar, this so-called cell-free activation system re- 
quired the presence of plasma membranes, cytosol, 
NADPH, GTP and an amphiphile [19-23]. 

When this system was applied to CGD cells, 
it was found that these cells did not display any 
activity, thus proving that this assay measures real, 
physiological NADPH oxidase activity [22]. More- 
over, Xb-  CGD and Ab-  CGD cells showed a 
defect in their membranes, whereas autosomal, cy- 
tochrome b55s-positive (Ab +) CGD cells had a de- 
fect in their cytosol [24] (Fig. 3). The membrane 
defect in Xb-  and Ab-  CGD can easily be ex- 
plained by the defect in the (membrane-bound) cy- 
tochrome b558. The cytosol defect in the third type 
of CGD indicated that a distinct cytosolic protein 
is involved in NADPH oxidase activity, either by 
confering activity to membrane-bound oxidase 
components, or by integrating with membrane 
components into an active enzyme complex. 

Cytosolic Components 

The value of the cell-free activation system is that 
it enables testing of various cytosol fractions for 
oxidase activity (e.g. oxygen consumption or su- 
peroxide production) in the presence of phagocyte 
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NADPH oxidase activity in reconstituted neutrophils 

in the presence of SDS 
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Fig. 3. NADPH oxidase activity in the cell-free activation sys- 
tem. A mixture of neutrophil membranes (2 x 106 cell equiva- 
lents), neutrophil cytosol (2x106 cell equivalents), SDS 
(100 ixM), NADPH (200 ixM) and GTP-gamma-S (10 gM) was 
incubated at 27 ~ C, and the oxygen consumption was measured. 
Membranes and cytosol were obtained from neutrophils of ei- 
ther healthy individuals (cent), Ab § CGD patients who lack 
p47-phox or Xb CGD patients who have a defect in gp91-phox 
synthesis (the beta-subunit of cytochrome bssB). Similar results 
as those shown with Xb-  CGD neutrophil fraction were ob- 
tained with neutrophil fractions from Ab CGD patients who 
have a defect in p22-phox synthesis (the alpha subunit of cyto- 
chrome bssB). Illustration from: Verhoeven AJ, Bolscher 
BGJM, Roos D (1991) The superoxide-generating enzyme in 
phagocytes: physiology, protein composition and mechanism 
of activation. In: Vigo-Pelfrey C (ed) Membrane lipid oxida- 
tion, vol II, CRC Press, Boca Raton, FL, USA, pp 41 63 

membranes, NADPH,  GTP and SDS. Several 
groups discovered that not one but several cytosol- 
ic proteins appeared to be necessary for NADPH 
oxidase activity [23, 25-28]. Fig. 4 shows an exam- 
ple from our own laboratory. 

At present, there is firm evidence for two cyto- 
solic oxidase proteins, because CGD patients with 
defects in these proteins are now known [25, 26, 
29]. These proteins have been cloned and se- 
quenced [30-32], and found to have a molecular 
mass of 47 and 67 kD, respectively. Unfortunately 
their sequence does not provide a clue as to their 
function. However, each of these proteins carries 
two regions 18-40% homologous with so-called 
A regions in non-receptor tyrosine kinases (e.g. 
src). Similar regions are present in non-erythroid 
alpha-spectrin, phospholipase C gamma, GTPase- 
activating protein and myosin I of  yeast. Because 
all of  these proteins are cytosolic proteins that 

Fractionation of neutrophil cytosol on CM-Sepharose 
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Fig. 4. Fractionation of neutrophil cytosol on carboxy-methyl 
Sepharose. Cytosol (equivalent of 3 x 109 neutrophils) was dia- 
lyzed and applied to a CM Sepharose column. Fractions of 
8.8 ml were collected. A linear gradient of 0 200 mM NaCI 
was applied after collection of fraction 10. Fractions were tested 
for cytosol oxidase activity as described in Fig. 3. �9 light ab- 
sorbance at 280 nm; e, NaC1 gradient; n, NADPH-dependent 
02 consumption of 75 gl of the fractions; �9 NADPH-depen- 
dent 02 consumption of 75 gl of  the fractions in the presence 
of 75 gl of fraction 4. Thus, NADPH oxidase activity is only 
obtained in the presence of both the flowthrough fraction and 
the eluate, indicating that at least two separate NADPH oxidase 
components are present in neutrophil cytosol, illustration from 
ref. 23 

move to the plasma membrane or cytoskeleton 
upon cell activation, these regions are regarded as 
important for binding to structural cell proteins. 
Indeed, it has been shown that both the 47-kD 
and the 67-kD component of the NADPH oxidase 
also translocate from the cytosol to the plasma 
membrane upon activation of intact phagocytes or 
upon amphiphile addition to the cell-free system 
[33, 34]. The (cytosolic) C-terminus of the cyto- 
chrome bss8 beta subunit is required for this trans- 
location [35]. Moreover, careful titration has 
shown that both proteins are needed in stoichio- 
metric amounts with cytochrome b558 for oxidase 
activity [23, 26]. Therefore, p47-phox and p67- 
phox 1 probably integrate with cytochrome b558 in 
the formation of an active NADPH oxidase com- 
plex. 

1 According to agreement among phagocyte investigators, the 
NADPH oxidase components are abbreviated as follows: cyto- 
chrome b558 alpha chain, p22-phox; cytochrome bss8 beta 
chain, gp91-phox; 47-kD protein, p47-phox; 67-kD protein, 
p67-phox. In this nomenclature, p = protein, gp = glycoprotein, 
phox = phagocyte oxidase 
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Phagocyte NADPH oxidase 
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Fig. 5. Schematic model of the phagocyte NADPH oxidase. 
In resting cells, p47-phox (47), p67-phox (67), SOC I (a small 
G protein?) and the NADPH-binding protein (N) are located 
in the cytosol. After NADPH oxidase activation, these compo- 
nents translocate to the plasma membrane and integrate with 
the membrane-bound components gp91-phox (91), p22-phox 
(22), rap-1 (a small G protein) and a flavoprotein (fp). This 
results in formation of an active NADPH oxidase complex, 
which accepts electrons from NADPH at the NADPH-binding 
protein and transmits these through the flavoprotein to cyto- 
chrome b558 (p22-phox+gp91-phox). At the other side of the 
plasma membrane, cytochrome bsss donates these electrons to 
molecular oxygen, thus generating superoxide 

Other Oxidase Components 

Most probably, the NADPH oxidase contains 
more than these three proteins. For instance, the 
NADPH-binding component has not yet been 
identified. Experiments with reagents that block 
NADPH-binding sites have provided strong evi- 
dence that this protein is located in the cytosol 
and also translocates to the plasma membrane 
upon phagocyte activation [37]. 

Another cytosolic protein needed for oxidase 
activity is called Soluble Oxidase Component 
(SOC) I or Sigma 1 [28, 33]. This protein needs 
GTP for its translocation to the plasma membrane, 
but apparently loses GTP requirement upon purifi- 
cation (E. Pick, personal communication). Its func- 
tion has not yet been elucidated. 

Kakinuma et al. [39] have provided evidence for 
the existence of a flavoprotein in neutrophil mem- 
branes that forms a semiquinone radical upon cell 
activation and has a redox potential in between 
that of NADPH/NADPH and O2/O s. Thus, this 
flavoprotein may be involved in electron transport 
from NADPH to oxygen, but the protein has not 
been characterized. 

Finally, it has been shown that a 22-kD ras-like 
G protein is intimately associated with the cyto- 
chrome bsss alpha-beta complex [40]. This small 
G protein, called rap-1 may also be needed for 
oxidase activity [41]. 

Taken together, Fig. 5 shows a schematic repre- 
sentation of the phagocyte NADPH oxidase com- 

plex. I speculate that p47-phox and p67-phox are 
needed to bring the cytosolic and membrane com- 
ponents together but do not take part in electron 
transfer themselves. The small G-proteins may 
have similar, activity-inducing properties. Electron 
flow may proceed via the cytosolic NADPH-bind- 
ing protein to the membrane-bound flavoprotein, 
from there to cytochrome b558 and finally to oxy- 
gen. In this complex, the two electrons derived 
from each NADPH must be delivered to two sepa- 
rate oxygen molecules. This may be achieved either 
in sequence or simultaneously to the two hemes 
that are probably located between the two subunits 
of cytochrome bsss. Evidently, much more bio- 
chemical studies are needed to fully analyze this 
important enzyme. 
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