
Formal Aspects of Computing (1991) 3:326-345
�9 1991 BCS Formal Aspects

of Computing

Context Induction: A Proof Principle for
Behavioural Abstractions and Algebraic
Implementations
Roll Hennicker
Fakultat ffir Mathematik und Informatik, Universit~it Passau, Postfach 2540, D-8390 Passau,
Germany

Keywords: Context induction; Behavioural specification; Behavioural
theorem; Behavioural implementation; FRI implementation

Abstract. An induction principle, called context induction, is presented which
is appropriate for the verification of behavioural properties of abstract data
types. The usefulness of the proof principle is documented by several
applications: the verification of behavioural theorems over a behavioural
specification, the verification of behavioural implementations and the verifica-
tion of "forget-restrict-identify" implementations.

In particular, it is shown that behavioural implementations and "forget-
restrict-identify" implementations (under certain assumptions) can be charac-
terised by the same condition on contexts, i.e. (under the given assumptions)
both concepts are equivalent. This leads to the suggestion to use context
induction as a uniform proof method for correctness proofs of algebraic
implementations.

1. Introduction

Induction proofs play an important role in the verification of properties of
programs and data types. Historically, one can distinguish computational and
structural induction methods which are based on different paradigms: while
computational induction works on an inductively defined set of functions (for
proving properties of least fixpoints) structural induction was suggested by
[Bur69] for proving properties of recursive programs by induction over the
(structure of the) arguments. More generally, induction proofs are appropriate
for the verification of assertions over any well founded domain (i.e. over any
set on which a Noetherian ordering is defined). Particularly important domains
are the (finitely generated) models of algebraic specifications where all objects

Correspondence and offprint requests to: Rolf Hennicker, Fakult~it fiir Mathematik und Infor-
matik, Universit~it Passau, Postfach 2540, D-8390 Passau, Germany.

Behavioural Abstractions and Algebraic Implementations 327

can be denoted by a ground term and hence properties of an abstract data type
can be proved by induction on the structure of ground terms (called "term
induction", cf. [PBB82]), or, more generally, by induction with respect to an
arbitrary Noetherian relation on ground terms. Algorithms for proving
inductive theorems over data types are implemented, for instance, by Boyer
and Moore's theorem prover (cf. [BoM88]) or by the Larch prover (cf.
[GaG88]).

This work presents an induction principle, called context induction, which is
appropriate for proving behavioural properties of data types. In contrast to the
classical concepts the principle is not based on the assumption that equations
(between terms) denote identities between objects rather interpreting equa-
tions as behavioural equivalences of objects as in the behavioural approaches
to algebraic specifications proposed by [Rei85], [NIO88] and others. The
motivation for this conception is given by the fact that from a software user's
point of view, internal data representations (of an implementation) are not
relevant if they induce the same observable effects, i.e. data objects can be
seen as equal if they cannot be distinguished by experiments with observable
result. In the framework of algebraic specifications such experiments can be
formally represented by contexts" of observable sort over the signature of a
specification where a distinguished subset of its sorts is specified as observable.
Thus to show that a certain property is valid for all observable experiments one
can formally show this property for all corresponding contexts of observable
sort. Since contexts are particular terms (over the signature of the specifica-
tion) the syntactic subterm ordering defines a Noetherian relation on the set of
observable contexts. Hence the proof principle of structural induction induces
a proof principle for properties of observable contexts which we call context
induction.

After introducing the principle of context induction (Section 3), one
important purpose of this paper is to present possible applications for this
proof technique. As a first application domain, in Section 4 behavioural
specifications in the sense of [Rei85] and [NIO88] are considered. In contrast
to the classical semantical concepts (initial, terminal, loose semantics) be-
havioural specifications admit a more abstract view of the semantics of a
specification since equations are interpreted as behavioural equivalences. It is
shown that for the behavioural analysis of a specification several properties,
like membership of an algebra to the behavioural models of a specification or
behavioural validity of theorems, can be expressed by corresponding pro-
perties on the set of observable contexts such that context induction provides
an appropriate verification method. As an example we consider a behavioural
specification of a small imperative programming language and prove by context
induction a criterion for the behavioural equivalence of programs which can be
easily applied to show particular equivalences.

For the application of formal specifications in the process of program
development (e.g. by stepwise refinement) one needs formal implementation
notions which describe correct transitions between different abstraction levels.
In order to be useful in practice, formal implementation concepts should be
supplied by proof methods which support the verification of correct program
development steps. A major point of this work is addressed to the develop-
ment of context criteria which allow the verification of implementation
relations by context induction.

In Section 5, an implementation notion for behavioural specifications is

328 Rolf Hennicker

defined which formalises the intuitive idea that an implementation is correct if
it produces correct observable output. Formally, a behavioural specification
SP1 is called behavioural implementation of SP if all behavioural models of SP1
(after appropriate restriction) are behavioural models of SP as well. It is shown
that the behavioural implementation relation can be characterised by a
property on the set of observable contexts and hence context induction can be
used for the verification of behavioural implementations. As a concrete
example an implementation of a specification of states (i.e. environments of a
set of identifiers with values in the natural numbers) by a "ful l -memory"
representation of states is proved by context induction.

Section 6 deals with the well-known "forget-restrict-identify" approach to
algebraic implementations (cf. e.g. [EKM82], [BMP86] and several others).
The main step in those concepts is the identification of "concre te" objects
which represent the same "abstract" objects e.g. by means of a congruence
relation or an abstraction function. Following the approach of [BMP86] it is
shown that also for "forget-restrict-identify" implementations ("FRI im-
plementations" for short) a context criterion can be formulated and hence
context induction provides an appropriate proof method also in this case. (This
is not surprising since the identification of concrete representations cor-
responds to the behavioural equivalence of objects). As a consequence of the
context criteria we show that under certain conditions FRI implementations
and behavioural implementations are equivalent which leads to the suggestion
to use context induction as a uniform proof technique for the verification of
implementation relations in the process of formal program development.

In Section 7, a general scheme for proofs by context induction is discussed
and finally, in Section 8, some further aspects are considered.

2. Basic Notions

In this section we briefly review the basic notions of algebraic specifications
(for more details see e.g. [EhM85]). A (many sorted) signature Y is a pair
(S, F) where S is a set of sorts and F is a set of function symbols. To every
function symbol f ~ F a functionality sl x . . - x Sn--*S with Sl, . . -, sn ~ S is
associated. If n = 0 then f is called constant of sort s.

A total Y-algebra A = ((As)s~s, (fa)f~F) consists of a family of carrier sets
(As)s~S and a family of (total) functions (fA)i~F such that fA: As1 • "" " • Ash ---~
As if f has functionality sl • �9 �9 �9 • Sn ~ S (if n = 0 then fA denotes a constant
object of As). In this presentation we assume that As 4~ ~3 for all s e S (for a
discussion of empty carrier sets see [GoM82], [PAW84]).

A total Y-algebra B is called X-subalgebra of A if Bs ~_ As for all s e S and
f z l 8 = f B for all function symbols f e F where fAIB denotes the restriction o f f A
to the elements of the carrier sets of B.

A signature Z' = (S' , F ') is called subsignature of Y if S ' ~ S and F ' ___ F.
The restriction of a total Z-algebra A to E' is the E'-algebra AIx, = ((As)s~S,,

The term algebra W~(X) over an S-sorted family X = (Xs)s~s of sets of
variables of sort s has as carriers the sets Wz(X)s of terms of sort s. For

wz(x) (f :s~ X . . . Xs~-- -~s)eF the corresponding function f is defined by
fw~(x)(t 1 t .) = d~e f (t l t~). If X = 0 then W~(Q) is denoted by Wz
and W~ is called ground term algebra.

Behavioural Abstractions and Algebraic Implementations 329

A substitution a: X---~ W=(X) is a family of mappings (as: Xs--~ W=(X)s)s~S.
For any term t �9 W~(X), the instantiation a(t) = dr t[a(xl) /xl , a(xn)/xn] is
defined by replacing all variables x ~ , . . . , xn �9 X occurring in t by the terms
o(x,), . . . , a(x,).

The interpretation of a ground term t e W~ in a Y~-algebra A is denoted by
t A. If all objects of A can b e denoted by a ground term then A is called term
generated (or finitely generated). The term generated subalgebra of a E-algebra
A is denoted by (A) .

If A and B are E-algebras then a Z-homomorphism dp: A--~ B is a family
of mappings (dps:As--~Bs)s~s such that for all f � 9 with functionality
s l x . . . x s ~ - - ~ s and for all a l e A s l , . . . , a ~ � 9 d p s (f A (a l , . . . , a n)) =
f B (~) s l (a l) , �9 �9 �9 , f f) s n (a n)) .

3. Context Induction
In this section we present the proof principle of context induction which has
proved to be a powerful tool for the verification of behavioural properties of
data structures and their specification. Roughly speaking, behavioural pro-
perties are obtained by forgetting unnecessary information of a data type. For
example one may derive behavioural identities if one abstracts from particular
data representations and identifies all objects which cannot be distinguished by
experiments with observable result. In the framework of algebraic specifica-
tions such experiments can be formally represented by contexts of observable
sort over the signature of the specification. Thus for showing that a certain
property is valid for all observable experiments one can formally reason about
all contexts of observable sort.

Definition 3.1. Let Z = (S, F) be a signature and let Z = {zs l s e S} be an
S-sorted set of variables. A term c e W~(Z) is called context over Z (or
Z-context), if c contains exactly one variable zs �9 Z. To indicate the variable
occurring in c we often write c[z,] instead of c. The application of a context
c[zs] to a term t �9 W~ of sort s is defined by the substitution of zs by t. Instead
of c[t/zs] we also write briefly c[t]. []

In the following we consider not all contexts over a given signature but restrict
to those contexts with result sort belonging to a distinguished subset So ~_ S
,of the sorts of the signature. Particularly important examples for the
subset So are the set of observable sorts of a behavioural specification or the set
of primitive sorts of a hierarchical specification (see next sections). The
contexts of observable sort, also called observable contexts, represent all
possible experiments with observable result.

Formally, let E = (S, F) be a signature and So ~_ S be a subset of its sorts.
The syntactic subterm ordering defines a Noetherian relation on the set of
contexts c �9 W~(Z) of sort s �9 So. Hence the principle of structural induction
(cf. [Bur69]) induces a proof principle for properties of contexts of sort s �9 So,
called context induction.

For showing that a property P(c) is valid for all contexts c �9 W~(Z) of sort
s �9 So it is sufficient to prove the following conditions:

1. P(zs) is valid for all sorts s �9 So.
2. For all contexts of the form f (t l ti-1, c, ti§ �9 �9 �9 tn) with

a function symbol f �9 F, f : s 1 • �9 �9 " • sn ~ s, s �9 So,
terms tl, �9 �9 �9 t, �9 W~ and

330 Roll Hennicker

a context c ~ W~(Z) of sort s i the following holds:
If P(c') is valid for all subcontexts c' of c with sort s~So, then
P(f (t l , te-1, c, ti+~ tn)) is valid. (In particular, the validity of
P(c) can be assumed if the sort si of c belongs to S0.)

Proposition 3.1 (context induction). Let Z = (S, F) be a signature and So ~_ S.
A property P(c) is valid for all contexts c ~ Wz(Z) of sort s cS0 if the
conditions (1) and (2) from above are satisfied.

Proof. The proof is a direct consequence of the principle of structural
induction. The ordering on the set of contexts is defined by the syntactic
subterm ordering. []

In the following sections we provide detailed examples for the application of
context induction.

4. Behavioural Validity

As a first example for an application domain of context induction we consider
the theory of behavioural specifications (cf. [Rei85] and [NIO88]). We show
that for a given behavioural specification certain properties can be expressed
by properties on the set of contexts of observable sort and hence context
induction provides an appropriate tool for the behavioural analysis of a
specification.

Following the approaches of [Rei85] and similarly of [NIO88] we first
briefly summarise the basic notions of behavioural specifications. A
behavioural specification SP = (Z, Obs, E) consists of a signature Z = (S, F), a
subset Obs ~_ S of observable sorts and a set E of axioms (here equations t = r
with terms t, r ~ W~-(X)). For example the following behavioural specification
STATE describes environments (also called states) of a set of identifiers with
values in the natural numbers where the sorts nat and bool are specified as
observable.

spec STATE = enrich BOOL, NAT, ID by
sorts: state
obs-sorts: nat, bool
functs: init'---> state

update: id x nat • state---~ state
lookup: id • state--> nat
ifstate �9 then �9 else �9 fi: bool • state x state--> state

axioms:
lookup(x, init) = 0
lookup(x, update(y, n, s)) = ifnat eq-id(x, y)
then n else lookup(x, s) fi
update(x, n, update(y, m, s)) = ifstate eq-id(x, y)
then update(x, n, s) else update(y, m, update(x, n, s)) fi
ifstate true then sl else s2 fi = sl
ifstate false then s~ else s2 fi = s~

(The constant init denotes the initial state, the operation update assigns a value
to an identifier and the operation lookup delivers the current value of an
identifier. The notation " e n r i c h . . - b y " means that STATE is a (syntactic)

Behavioural Abstractions and Algebraic Implementations 331

enrichment of given specifications ID for the identifiers (with equality test
eq-id), NAT for the natural numbers, and B O O L for the truth values.)

For the definition of the behavioural semantics of a specification [Rei85]
and [NIO88] use the notion of behavioural satisfaction which is based on the
idea that non-observable data objects are behaviourally equivalent if they
cannot be distinguished by operations with observable result. Formally, given a
signature E = (S, F) and a distinguished subset Obs ~_ S of observable sorts, a
term generated X-algebra A satisfies behaviourally an equation t = r (written
A ~Obs t = r) if and only if for all X-contexts c[zs] (where s is the sort of t) of
observable sort, A ~ c[t] = c[r] holds w.r.t, the usual satisfaction relation "~".
(Here only term generated algebras are considered. Hence the slight difference
in the definitions of [Rei85] and [NIO88] is not relevant here.)

As a standard example the characteristic set equations add(x, add(x, s)) = s
and add(x, add(y, s)) - - add(y , add(x, s)) (where x, y are variables for ele-
ments, s is a variable for sets and add is the operation which adds an element
to a set) are behaviourally satisfied but not identically satisfied by the algebra
of finite sequences if only the sort bool and hence all results of membership
tests x E s are observable.

The behaviour class Beh(SP) of a behavioural specification SP consists of
all behaoioural models of SP, i.e. of all term generated E-algebras which
behaviourally satisfy all axioms of SP. The behavioural theory BTh(SP) of SP
consists of all equations t = r which are behaviourally satisfied by all behaviou-
ral models of SP. From the definitions follows (see also Proposition 2.1.12 in
[NIO88]) that an equation t = r belongs to the behavioural theory BTh(SP) if
and only if for all observable Z-contexts c[z~] (where s is the sort of t) and for
all ground substitutions or: X--~W:~, SPFc[o(t)]=c[o(r)] holds (i.e. is
deducible from the axioms of SP by the axioms and rules of the equational
calculus, cf. [EhM85]). For example, the associativity law for the sequential
composition of programs is a behavioural theorem over the specification
PROG (cf. Example 4.1 below) but it is not a theorem over P R O G in the
classical sense.

The above discussion shows that in concrete examples the verification of
behavioural properties, like behavioural satisfaction, may be a non-trivial task
since (in general) one has to reason about infinitely many observable contexts,
In particular, we suggest that even the restriction of a behavioural theory to
ground equations is (in general) not recursively enumberable. Hence we are
interested in proof methods which support the solution e.g. of the following
standard problems:

1. Does a given E-algebra A behaviourally satisfy an equation t = r?
2. Is a given E-algebra A a behavioural model of a specification?
3. Does a given equation t = r belong to the behavioural theory of a

specification?

According to the above definitions and facts each of the three problems can be
formally expressed by the validity of a property P(c) for all contexts c of
observable sort:

Definition 4.1. Let SP = (E, Obs, E) be a behavioural specification, let A be a
E-algebra and let t, r ~ W~(X) be terms of the same sort. Then for any
E-context c[z~] we define:

1. PA,t=r(C) = truecz>oe~ if t is of sort s then A Pc[t] = c[r] holds,

332 Rolf Hennicker

2. PA,sp(C)=trueC:>deffor all (t = r) e E , if t is of sort s then A ~c[t] =c[r]
holds,

3. P,=,,sp(C)=trueC:>defif t is of sort s then for all ground substitutions
a: X---~ Wz, SP Fc[o(t)] = c[o(r)] holds. []

With these definitions we can formulate the following fact:

Fact 4.1. Let SP, A and t, r be as in Definition 4.1.

1. A ~Obs t = r iff for all Z-contexts c of observable sort PA,t=,(c) is valid.
2. A e Beh(SP) iff for all Z-contexts c of observable sort PA,sp(C) is valid.
3. (t = r) e BTh(SP) iff for all Z-contexts c of observable sort Pt=,,se(C) is

valid. []

For proving in concrete examples behavioural satisfaction, membership to a
behaviour class or membership to a behavioural theory the principle of context
induction (cf: Proposition 3.1) can be applied.

As an example we consider a behavioural specifcation P R O G of a simple
imperative programming language and give a criterion for the behavioural
equivalence of programs. The specification P R O G admits usual basic con-
structs for imperative programs: the empty statement nop, the sequential
composition " ; " of programs, the assignment " : = " of an expression to an
identifier, the conditional statement i f . then. else .fi, and the repetitive
statement for which repeats a statement n times (for some natural number n).
Based on the specification STATE from above the semantics of programs is
specified by the state transition function trans which determines for a program
p and an "old" state s the "new" state after execution o fp . The function value
computes for a given program p and a (result) expression e the evaluation of e
under the final state after execution of the program. The results of such
evaluations are observable since nat is an observable sort (of S TA TE and
hence also of PROG) .

spec P R O G = enrich EXP by
sorts: prog
functs: nop : --~ prog

.;. :prog x prog---~ prog
. :=. :id x exp---~ prog

if . then . else. f i :exp x prog x prog--~ prog
for: nat x prog---~ prog

trans : prog x state ~ state
value : prog x exp--~ nat

axioms:
trans(nop, s) = s
trans(pa;p2, s) = trans(p2, t rans(pl , s))
trans(x := e, s) = update(x, eval(e, s), s)
trans(if e then Pl else p~ fi, s) = ifstate(eval(e, s) = 0)
then trans(pl , s) else trans(p2, s) fi
trans(for(n, p) , s) -- trans(if natexp(n) then hop
else p; for(n - 1, p) fi, s)
value(p, e) = eval(e, trans(p, init))

Behavioural Abstractions and Algebraic Implementations 333

spec EXP = enrich STATE by
sorts: exp
functs: natexp : nat---~ exp

idexp: id ~ exp
plus : exp • exp ~ exp
mult: exp • exp ~ exp
eval : exp • state--~ nat

where

axioms:
eval(natexp(n), s) = n
eval(idexp(x), s) = lookup(x, s)
eval(plus(el, e2), s) = eval(el, s) + eval(e2, s)
eval(mult(el, e2), s) = eval(el, s) * eval(e2, s)

P R O G gives a behavioural specification of our simple imperative programming
language where the effects of a program p w.r.t, a (result) expression e can be
observed by the evaluation function value. Programs p and q have the same
behaviour (are behaviouraUy equivalent) if they induce the same observable
effects. Formally this means that the equation p = q belongs to the behavioural
theory of PROG. Hence for studying behavioural equivalences of programs
we can apply Fact 4.1(3) which tells us that two programs p and q are
behaviourally equivalent iff the property Pp=q,PRo0(C) is valid for all contexts
over P R O G of observable sort nat or bool. For the verification of Pp=q,PRo6(C)
context induction provides an appropriate proof technique. We will apply this
technique for the proof of a criterion for the behavioural equivalence of
programs which can easily be applied for showing particular equivalences.

Lemma 4.1. For all ground terms p, q �9 WpROG of sort prog holds:
If P R O G t-trans(p, s t)= trans(q, st) for all ground terms st �9 WpROG of sort
state then (p = q) � 9 BTh(PROG) . (WpRo~ denotes the set of ground terms
over the signature of PROG.)

P r o o f by context induction. Let p, q �9 WpRoG be arbitrary ground terms of sort
prog such that P R O G ~-trans(p, s t) = trans(q, st) holds for all "states" st. By
Fact 4.2(3) we have to show that for all contexts c[zs] (over the signature of
PROG) of observable sort nat or bool the property Pp=q,PROG(C) (for short
P(c)) is valid where:

P(c) = true r S = prog then P R O G ~-c[p] = c[q] holds.

The validity of P(c) is proved by context induction. By Proposition 3.1 one has
to show that the conditions (1) and (2) (cf. Section 3) are satisfied where
So = {bool, nat}.

1. Let c -= Zna t or c ~ Zbool be the trivial context consisting of the variable Zna t
or Zbool. Then P(znat) and P(Zbool) are trivially satisfied.

2. For the induction step one has to consider all contexts (over the signature of
P R OG) of the form f (. . . . c[zs]) where f has result sort bool or nat.
If the context c[zs] is of sort bool or nat then the induction step is trivial
since (if s = p r o g) in this case from the induction hypothesis
P R O G ~- c[p] = c[q] immediately follows

P R O G ~-f(. . . , c[p], . . .) = f (. . . . c[q], . . .)

334 Rolf Hennicker

If f ~ eq-id then P (f (. . . . c[zs])) is valid since no context for programs
with result sort id exists and hence s 4: prog.

It remains to consider contexts of the form

eval(c[zs], st), value(p1, c[zs]) with a context C[Zs] of sort exp, a ground term st
of sort state and a ground term Pl of sort prog,
value(c[zs], e) with a context c[z~] of sort prog and a ground term e of sort exp,
lookup(x, c[zs]), eval(e, c[z~]) with a context c[z~] of sort state, a ground term x
of sort id and a ground term e of sort exp.

In the first case (contexts of the form eval(c[Zs], st), value(p1, C[Zs])) one can
easily show (e.g. again by context induction) that for all contexts c[zJ of sort
exp holds:

(*) s--/:prog or c[z~] contains a subcontext of the form natexp(c'[z~]) with
some context c'[zs] of sort nat.

Hence, if s = p r o g from the induction hypothesis PROG~-c '[p]=c'[q]
immediately follows that P R O G k c[p] = c[q] holds and therefore

P R O G t- eval(c[p], st) = eval(c[q], st) and

P R O G }- value(p1, c[p]) = value(p1, c[q])

In the second case (contexts of the form value(c[z~],e)), since
PROGkvalue(C[Zs], e) = eval(e, trans(c[z~], init)) holds, it is enough to show
that for all contexts c[z~] of sort prog the following (more general) property
Q(c) is valid:

Q (c) = true r if s = prog then P R O G ~- trans(c[p], st) = trans(c[q], st)

holds for all ground terms st of sort state.

In the third case (contexts of the form lookup(x, c[zs]), eval(e, c[z~])) one
can easily show (e.g. again by context induction) that for all contexts c[zs] of
sort state holds:

(**) s --/=prog or C[Zs] contains a subcontext of sort s ~ {id, nat, bool} or c[z~]
contains a subcontext of the form trans(c'[z~], st) with some context c'[zs]
of sort prog and some ground term st of sort state.

Hence the third case is also an immediate consequence of Q(c).

We now show the validity of Q(c) by a new (nested) context induction over
all contexts C[Zs] of sort prog:

l. Let c =- Zprog be the trivial context consisting of the variable Zprog. Q(Zprog) is
valid since it is assumed that P R O G k trans(p, st) = trans(q, st) holds for all
ground terms st of sort state.

2. For the induction step one has to consider all contexts (over the signature of
PROG) of the form f (. . . , c[z~], . . .) where f has result sort prog. For
example we consider contexts of the form
c[z~]; Pl with a context c[zs] of sort prog and a ground term Pl of sort prog,
x := c[zs] with a context C[Zs] of sort exp and a ground term x of sort id,
for(n, c[z~]) with a context c[zs] of sort prog and a ground term n of sort nat.
(The induction steps for the remaining cases of contexts of sort prog are
simple variants of the induction steps for the first and for the second case.)

Behavioural Abstractions and Algebraic Implementations 335

In the first case (contents of the form c[zs];pl), if s =prog from the
induction hypothesis

P R O G k trans(c[p], st) = trans(c[q], st) follows that
P R O G k trans(c[p]; Pl, st) = trans(pl , trans(c[p], st)) =

trans(pl , trans(c[q], s t))= trans(c[q];pl, st)

In the second case (contents of the form x := c[zs]) we use (*) and conclude
as above that if s = prog then

P R O G ~- c[p] = c[q] holds and hence

P R O G k trans(x := c[p], st) = trans(x := c[q], st)

The third case (contexts of the form for(n, c[zs])) is shown by induction on
the structure of n (using the fact that all ground terms of sort nat can be
reduced by the axioms of P R O G to a normal form " succ (. . . s u c c (0) . . .) "
and using the induction hypothesis for Q(c)):

Case i (n = 0):

P R O G k trans(for(0, c[p]), st) =
trans(if natexp(0) then nop else c[p]; for(0-1, c[p]) fi, st) = . . .
(since P R O G k (eval(natexp(0), st) = 0) = true)
trans(nop, st) = . . . -- trans(for(0, c[q]), st)

Case 2 (n ---~ succ(n)):

P R O G I- trans(for(succ(n), c[p]), st) =
trans(if natexp(succ(n)) then nop else c[p]; for(n, c[p]) fi, st) =

(since P R O G k (eval(natexp(succ(n)), st) = 0) = false)
trans(c[p]; for(n, c[p]) , s t) =
trans(for(n, c[p]), trans(c[p], st)) =
(by induction hypothesis for Q(c))
trans(for(n, c[p]), trans(c[q], st)) =
(by induction hypothesis for n)
trans(for(n, c[q]), trans(c[q], s t)) = . . . =
trans(for (succ(n), c[q]), st)

This completes the proof of Q (c) and hence the context induction for the proof
of P(c) is accomplished. []

As it can be seen in the proof often a generalisation of the actual assertion is
necessary which is sufficient to finish the proof without further (iterated)
context induction. This is the case in all standard examples of behavioural
theorems and behavioural implementations (see next section) which have been
proved by the author, as e.g. the implementation of stacks by arrays with
pointers, the implementation of sets by lists, the implementation of states by
sequences of pairs, etc.

Example 4.1. The associativity law for the sequential composition is a
behavioural theorem of P R O G , i.e. p ~; (P2; P3) = (P ~; P2); Ps �9 B T h (P R O G)

Proof. It is straightforward to show (using the axioms of P R O G) that for all
"states" st, P R O G t- trans(pl; (P2; P3), st) = trans((p~;p2); P3, st) holds. Now
use Lemma 4.1. []

336 Roll Hennicker

5. Behavioural Implementations

Formal implementation notions for specifications are a necessary prerequisite
for proving the correctness of programs. To be useful in practice, formal
implementation concepts should be supplied by proof methods which support
the verification of correct program development steps. In this section we show
that context induction provides a powerful proof technique for the verification
of implementations of behavioural specifications.

One main motivation for dealing with behavioural specifications is given by
the fact that in general concrete realisations of software systems do not satisfy
all properties of a requirement specification but nevertheless are considered to
be correct since they produce correct observable output. Hence from the
observational point of view a specification should allow to abstract from non
observable properties of data structures which in the approaches of [Rei85]
and [NIO88] is expressed by constructing the behaviour class of a specification.
This more abstract view induces a simple notion of implementation for
behavioural specifications which formalises the intuitive idea that an im-
plementation is correct if it preserves the observable properties of a require-
ment specification:

A behavioural specification SP1 is a behavioural implementation of SP if the
behaviour class of SP1 (after appropriate restriction) is a subclass of the
behaviour class of SP.

In order to rule out trivial implementations we assume in the following that
each specification contains the specification BOOL with the observable sort
bool and restrict the behaviour class of a specification to those algebras which
satisfy true 4: false. Then we obtain the following formal definition of be-
havioural implementations:

Definition 5.1. Let SP1 = (Z1, Obsl, E l) and SP = (X, Obs, E) be behaviour-
al specifications such that X ~ X l and Obs__Obsl. Moreover, let
Beh(SP1) 4:Q. SP1 is called behavioural implementation of SP if for all
behavioural models B e Beh(SP1),

(B]x) e Beh(SP) holds.

((BIx) denotes the term generated E-algebra which is obtained from B by first
forgetting all sorts and operations of E1 not belonging to X and then restricting
to those elements which are generated by the operations of X, cf. Section
2.) []

Remark 5.1. The definition of behavioural implementation is a variant of the
implementation concept of [Hen91a] adopted to the theory of behavioural
specifications as discussed in the last section. In order to simplify the approach
we have not used here conditional axioms and we have assumed that the
behaviour class of an implementing specification is not empty. []

As already mentioned above a crucial point for the usefulness of formal
implementation notions is the availability of proof methods which can be
applied in practical examples. For behavioural implementations we obtain the
following characterization by a condition on observable contexts which is the
basis for implementation proofs by context induction (cf. also [Hen91a] for a

Behavioural Abstractions and Algebraic Implementations 337

context criterion for "observational implementations"):

Proposition 5.1. Let SP1 = (Z1, Obsl , E l) and SP = (Z, Obs, E) be as in
Definition 5.1. SP1 is a behavioural implementation of SP if and only if for all
Z-contexts c[zs] of observable sort So ~ Obs the following property Psel,sp(C) is
valid:

Psm,sp(C) = trueC:>de, for all axioms (t = r) 6 E and for all ground

substitutions a: X---~ W~,

if t is of sort s then SP1 f- c[a(t)] = c[a(r)] holds.

Proof. " ~ ": Let Ps~,l,sp(C) be valid for all Z-contexts c of observable sort of
SP and let B ~ Beh(SP1) be an arbitrary behavioural model of SP1. It has to
be shown that (Blz) e Beh(SP). By definition, (Blz) c Beh(SP) iff (BIz) ~Obs
t = r for all axioms (t = r) e E, i.e. iff for all (t = r) e E and for all Z-contexts
c[zs] (where s is the sort of t) of observable sort s0E Obs, (B[~)~c[t] =c [r]
holds. Since (BJz) is term generated over Z it is enough to consider instan-
tiations or(t) and tx(r) by ground substitutions o: X----~ Wz.

Now, let c[z~] be an arbitrary Z-context of observable sort So ~ Obs, let
(t = r) be an axiom of SP (such that t, r are of sort s) and let o: X--~ Wz be an
arbitrary ground substitution. Then, by assumption, SP1 f-c[cr(t)] = c[o(r)].
Since Obs~_Obsl , c is also an observable context of SP1 and hence the
equation c[o(t)] = c[tr(r)] is (identically) satisfied by all behavioural models of
SPI. In particular, B ~c[o(t)] = c[~r(r)] and hence (B[z) ~c[a(t)] = c[o(r)]
holds, i.e. (B[z) c Beh(SP).

" ~ " : Proof by contradiction. Assume that there exists a Z-context c[z~] of
observable sort of SP and an axiom (t = r) ~ E (with t, r of sort s) such that
SPl~c[o(t)]=c[tr(r)] for some ground substitution o:X----~Wz. Then the
equation c[o(t)] = c[o(r)] is not satisfied by the initial model I of SP1 (in the
usual sense) and hence, since c is of observable sort, it is also not behaviourally
satisfied by L Therefore (/Ix) is not a behavioural model of SP. On the other
hand I satisfies true ~e false (since it is assumed that Beh(SP1) :~ O and bool is
an observable sort) and therefore I e Beh(SP1) holds. Hence SP1 is not a
behavioural implementation of SP. []

Proposition 5.1 characterises behavioural implementation relations by a
property on the set of observable contexts. Hence for proving behavioural
implementations in concrete cases the proof technique of context induction can
be applied. This will be demonstrated by an example:

Example 5.1. We give a behavioural implementation of the specification
STATE (see Section 4) by a specification H I S T O R Y which implements states
by sequences of pairs consisting of an identifier and its associated value (for
simplicity we have omitted here all sequence operations which are not
necessary for the example). In contrast to the abstract specification of states
each sequence stores not only the current value of an indentifier x but also all
previous values of x. Such implementations of states are particularly useful if
one wants to retrieve old states of a system or, more concretely, of one wants
to test and to analyze the state transitions performed by the execution of an
imperative program.

The specification H I S T O R Y comprises a usual specification N A T S E Q of
finite sequences of natural numbers. The function history computes for a given

338 Rolf Hennicker

identifier x and some state s the his tory of all env i ronmen t s of x, i.e. the
sequence of all p rev ious values of x.

spec H I S T O R Y = enrich B O O L , N A T , I D , N A T S E Q by
sorts: state
obs-sorts: nat, boo l
fnncts: init: ~ state

(. , .) : id • nat---~ s tate
.0.: s ta te x state---> s tate
update : id • nat x state--> state
lookup: id • state---> nat
history: id x state---> natseq
ifstate �9 then �9 else �9 fi: boo l x s tate x state---> s tate

axioms:
s o init = init o s = s
(so t) oH = s o (tou)
upda te (x , n, s) = (x, n) o s
lookup(x , init) = 0
lookup(x , (y, n) o s) = ifnat eq-id(x, y)
then n else lookup(x , s) fi
history(x, init) = (0)
history(x, (y, n) o s) = i fnatseq eq-id(x, y)
then (n) Onatseq history(x, s) else history(x, s) fi
ifstate t rue then sl else s2 fi = Sl
ifstate false then sl else s~ fi = Se

Fact 5.1. His to ry is a behav ioura l i m p l e m e n t a t i o n of S T A T E .

Informal ly , this fact is clear since using the opera t ions of the s ignature of
S T A T E the behav iou r of s tates can only be obse rved via the lookup-opera t ion
which gives the same cur ren t values independen t ly whe the r a s tate s tores " o l d "
values or not. Formal ly , the behav ioura l imp lemen ta t i on re la t ion can be
p roved by context induct ion.

P r o o f o f the fact. By propos i t ion 5.1 one has to show tha t for all contexts c[zs]
over the s ignature of S T A T E of obse rvab le sort nat or bool the p rope r ty
PHISTORY,STATE(C) (for shor t P(c)) is valid where:

P(c) = trueC:>aef for all ax ioms t = r of S T A T E

and for all g round subst i tut ions

o': X---~ WSTATE, if t is of sort s then

H I S T O R Y F c[a(t)] = c[a(r)] holds.

The validity of P(c) is p r o v e d by context induction:

1. Le t c --- Znat or C =-- Zbool be the trivial context consist ing of the var iable Zna t
or Zbool. P(znat) and P(zbool) are valid since it is easy to see tha t H I S T O R Y
satisfies all ax ioms t = r of S T A T E with t, r o f sort nat or bool.

2. For the induct ion step one has to consider all contexts (over the s ignature of
S T A T E) of the fo rm f (. . . . c[zs]) where f has result sort bool or nat.
I f the context c[z~] is of sort bool or nat then the induct ion s tep is trivial
since in this case f r o m the induct ion hypothes is H I S T O R Y Fc[a(t)] =
c[a(r)] immedia te ly follows

H I S T O R Y F f (. . . . c[a(t)], . . .) = f (. . . . c[a(r)] )

Behavioural Abstractions and Algebraic Implementations 339

for all axioms t = r of STATE (where t is of sort s) and for all ground
substitutions tr: X---~ WSTATE. Hence it is enough to consider contexts of the
form lookup(x, c[zs]) with a context c[zs] of sort state and a ground term x
of sort id.

In this case one has to show that for all contexts c[z~] of sort state the
following property Q(c) is valid:

Q(c) = trueC:>def for all axioms t = r of STATE and for all

ground substitutions or: X--~ WSTATE,
if t is of sort s then

H I S T O R Y k lookup(x, c[~r(t)]) =

lookup(x, c[~r(r)]) holds.

The proof of Q(c) is done by a new (nested) context induction over all contexts
C[Zs] of sort state.

1. Let c --= Zstate be the trivial context consisting of the variable Zstate. Then we
have to consider the (three) axioms t = r of S TA TE where t, r are of sort
state. Since the two axioms for the auxiliary function " i f s t a t e . . . " belong to
the axioms of HISTORY as well it remains to show that (for ground terms
x ' , y of sort id and n, m of sort nat):

HIS TOR Y k lookup(x, update(x ' , n, update(y, m, s))) =

lookup(x, ifstate eq-id(x' , y) then update(x ' , n, s)

else update(y, m, update(x ' , n, s)) fi)

The proof is straightforward by distinguishing all possible cases for the
values of eq-id(x, x ') , eq-id(x' , y) and eq-id(x, y) (it is assumed that ID is
sufficiently complete over B O O L such that eq-id(t, t ') reduces to true or
false for all ground terms t, t ' of sort id).

2. For the induction step one has to consider all contexts (over the signature of
STATE) of the form f (. . . . C[Zs], �9 �9 .) where f has result sort state. If c is of
sort nat or bool we are ready by the overall induction hypothesis for P(c)
since in this case H I S T O R Y k c[cr(t)] = c[o(r)] implies

HI S TOR Y k f(..., . , c [a (t)] , . . .) = f (. . . . c [c r (r)] , . . .)

Hence it is enough to consider contexts of the form

update(x ' , n, c[zs]) with a context c[z~] of sort state and ground terms x ' , n
of sort id, nat resp.,
ifstate b then c[z~] else st fi with a context c[z~] of sort state and ground
terms b, st of sort bool, state resp.

In the first case we distinguish whether eq-id(x, x ') reduces to true or to
false. If e.g. eq-id(x, x ') reduces to false then for each axiom t = r of S TA TE
(with appropriate sort) and for each ground substitution a: X---~ WSTATE:

H I S T O R Y k lookup(x, update(x ' , n, c [o (t)]))=
lookup(x, (x ' , n} o c[o(t)]) =
ifnat eq-id(x, x ') then n else lookup(x, c[cr(t)l) fi =

340 Rolf Hennicker

ifnat false then n else lookup(x, c[a(t)]) fi =
lookup(x, c[o(t)]) =
(by induction hypothesis forQ(c)) =
lookup(x, c[~r(r)])
lookup(x, update(x', n, c[o(r)]))

In the second case (contexts of the form "ifstate b then c[zs] else st fi") the
induction step follows analogously from the induction hypothesis and from the
fact that HISTORY is sufficiently complete over BOOL.

This completes the proof of Q(c) and hence the context induction for the
proof of P(c) is accomplished. In summary we have shown that HISTORY is a
behavioural implementation of the specification STATE. []

6. FRI Implementations

In the last section we considered behavioural implementation relations and
their verification by context induction. Important alternative approaches to
formal implementations are based on the "forget-restrict-identify" concept
which requires to connect the model(s) of a "concrete" specification with the
model(s) of an "abstract" specification e.g. by means of an abstraction
function or a congruence relation (cf. e.g. [EKM82] for the initial semantics
approach, [SAW82], [BMP86] for the loose semantics approach). Following the
loose approach of [BMP86] in this section we give a context criterion for
"forget-restrict-identify" (FRI) implementations which implies that context
induction is also an appropriate proof method for FRI implementations.
Moreover, as a consequence of the context criterion, we obtain that under
certain conditions FRI implementations and behavioural implementations are
equivalent. This leads to the suggestion to use context induction as a uniform
proof technique for the verification of implementation relations.

Before we give the definition of FRI implementation the underlying notions
of hierarchical specifications used in [BMP86] are briefly summarised. (In
contrast to [BMP86] the definitions are restricted here to the case of equational
axioms and total Z-algebras.)

Definition 6.1 ([BMP86]). An (equational) hierarchical specification SP =
(Z, E, P) consists of a signature Z, a set E of equations (called axioms) and a
primitive type P = (Yp, Ee) where Y~e-~ Z, Ep ~ E. It is assumed that any
primitive type P contains the specification BOOL of the truth values.

A Z-algebra A is called model of a hierarchical specification SP if A is term
generated, A ~ t = r for all axioms (t = r) ~ E, A ~ true 4= false and A[z~ is a
model of P (in particular Alz~ is term generated over Y~p.) The model class of
SP is denoted by Mod(SP). A specification is called monomorphic if it admits
(up to isomorphism) only one model.

A hierarchical specification is called sufficiently complete if for all terms
t c Wz of primitive sort there exists a primitive term p ~ Wz~ such that
SPF t = p . []

Based on hierarchical specifications the notion of FRI implementation is
defined. (Note that in [BMP86], FRI implementations are called "algebraic
implementations". In order to distinguish more clearly between the be-
havioural and the forget-restrict-identify approach we have changed this
terminology.)

Behavioural Abstractions and Algebraic Implementations 341

Definition 6.2 ([BMP86]). Let SP1 = (El , E l , P) and SP = (Z, E, P) be
hierarchical specifications with the same primitive type P and with Z ~_Z1.
Moreover, let SP1 be consistent, i.e. Mod(SP1) 4: 0 .

SP1 is called FRI implementation of SP ifo for all models B �9 Mod(SP1)
there exists a model A ~ Mod(SP) and a Z-homomorphism q~: (B L) - - ~ A (see
Definition 5.1 for the notation (BIx)). []

As in the case of behavioural implementations also for the applicability of the
notion of FRI implementation in practical examples the availability of
appropriate proof methods is important. In the following we show that FRI
implementations can be verified by using a modified version of the context
criterion for behavioural implementations (cf. Proposition 5.1), where instead
of observable contexts, all contexts of primitive sort are considered.

Proposition 6.1. Let SP1 -- (El, E l , P) and SP = (Z, E, P) be as in Definition
6.2 and let Sp be the set of primitive sorts (i.e. sorts of P).
SP1 is an FRI implementation of SP if for all Z-contexts c[zs] of primitive sort
so e Sp the property PsPt.sp(C) defined in Proposition 5.1 is valid.

Proof. Let PSP1,sp(C) be satisfied for all Z-contexts c of primitive sort and let
B ~ Mod(SP1) be an arbitrary model of SP1. It has to be shown that there
exists a model A c Mod(SP) and a Z-homomorphism qS: (BIx)--~A.
Let A =de~ (B { ~) / ~ be the quotient of (B{~) w.r.t, the following congruence
relation on (B [z) :

a - b r all Z-contexts c[zs] (where s is the sort of a and b)

of primitive sort, c[a/zs] B = c[b /zs] B holds.

Obviously, - is a congruence relation. Then the canonical epimorphism
defines a Z-homomorphism q~: (B[s)---~A. It remains to show that A is a
model of SP. Since B satisfies true :;a false, A satisfies true 4= false as well and
since the restriction of B to the primitive signature Zp is term generated by Zp
the same is true for A. Then, since A is term generated by Z, it is enough to
show that for all axioms (t = r) e E and for all ground substitutions o: X---~ Wz,
a ~ o(t) = o(r) holds (i.e. O (t) A ~ O(r)A), or equivalently c[o(t)] B = c[o(r)] 8
for all Z-contexts c[z~] of primitive sort (if t is of sort s). But the latter
condition is satisfied since B is a model of SP1 and it is assumed that for all
Z-contexts c[z~] of primitive sort PsPl,sp(C) is valid, Le. SP1 t- c[o(t)] = c[o(r)]
holds (if t is of sort s). []

Remark 6.1. The condition of Proposition 6.1 on contexts is not sufficient if
FRI implementations are based on the initial algebra semantics (cf. [EKM82])
since if B is the initial algebra of SP1 then the algebra A which is constructed
in the proof of Proposition 6.1 is not necessarily the initial algebra of SP. []

Proposition 6.1 gives a criterion for FRI implementations by a property on the
set of contexts of primitive sorts. Hence, as for behavioural implementations,
for the verification of FRI implementations context induction is an appropriate
proof technique. For example, we can show by the same context induction as
in the proof of Fact 5.1 that HISTORY is an FRI implementation of STATE
if the subspecification NAT of the natural numbers is designated as primitive
type.

More generally, as a particular consequence of the context characterisation
of behavioural implementations and of the context criterion for FRI im-

342 Rolf Hennicker

plementations, one obtains that if for two behavioural specifications SP1 and
SPa common subspecification can be identified with all sorts observable, then
SP1 is an FRI implementation of SP if it is a behavioural implementation of
SP.

An interesting question is under which conditions also the reverse direction
is true, i.e. when FRI implementations are behavioural implementations? An
answer can be given by the following proposition which sharpens the context
criterion of Proposition 6.1 to a characterisation of FRI implementations:

Proposition 6.2. Let SP1 = (Z1, El , P) and SP = (Z, E, P) be as in Definition
6.2. Moreover, let SP1 be suff• complete and let P be monomorphic.
Then the validity of Psel,se(C) for all Z-contexts c[zs] of primitive sort is a
necessary condition for SP1 to be an FRI implementation of SP.

Proof. The proof is done by contradiction: Assume there exists a context c[zs]
of primitive sort such that Psel,se(C) is not valid. Then there exists an axiom
(t=r)eE (of sort s) and a ground substitution a:X---~Wx such that
SPl~-c[o(t)]=c[cr(r)]. Since SP1 is sufficiently complete and consistent an
initial model I ~ Mod(SP1) exists and, by assumption, I ~c[cr(t)] = c[tr(r)]. If
SP1 is an FRI implementation of S P a model A e Mod(SP) exists and a
Y-homomorphism q~: (/Ix)---~A. Since P is monomorphic and c is of primitive
sort, (p(c[~r(t)] 1) ~ q~(c[cr(r)]'), i.e. C[O(t)] m 5 t: c[o(r)] A. Consequently, A does
not satisfy the axiom t=r of E and hence A is not a model of SP
(contradiction!) []

Proposition 6.2 and Proposition 5.1 use the same context property PsPl,sv(C)
for the characterisation of FRI implementations and behavioural implementa-
tions. Hence, under the assumption of Proposition 6.2 both implementation
concepts are equivalent:

Corollary 6.1. Let SP1 and SP be hierarchical specifications with monomor-
phic primitive type P and let SP1 be sufficiently complete. Then SP1 is an FRI
implementation of SP if and only if SP1 is a behavioural implementation of SP
where exactly the primitive sorts are specified as observable.

Proof. By Proposition 6.2 and Proposition 5.1. []

The above result is not surprising since observability concepts are historically
founded in concepts considering data type extensions where already abstrac-
tions from non-primitive values w.r.t, the operations with primitive result were
studied (cf. e.g. [GGM76], [Kam83], [BPW84]). Behavioural approaches
perform the consequent next step by giving a more general definition of the
semantics of specifications which includes not only the models of a specification
but also all behavioural equivalent data structures. This leads to an intuitively
clear and simple notion of implementation which was the basis for the
development of the context criterion.

7. A General Scheme for Proofs by Context Induction

The context induction proofs in the examples show that many steps of the
induction can be carried out schematically. In particular, when proving a
property P(c) (for all contexts c of sort s cS0) the induction assertions
P(f (. . . , c)) can be generated automatically for all possible cases of f

Behavioural Abstractions and Algebraic Implementations 343

(where f is a function symbol with result sort s �9 So, c is a context of sort, say s'
and the dots . . . stand for arbitrary (ground) terms for the remaining argu-
ments of f). For the proof of each assertion P (f (. . . , c , . . .)) we suggest to
proceed as follows:

1. If the sort s' of the context c belongs to So then prove P(f(. . . . c)) by
use of the induction hypothesis (which in all our examples works quite
simple or is even trivial).

2. If the sort s' of c does not belong to So then find a property Q(c) which
implies P(f(. . . . c , . . .)) and prove Q(c) by a new (nested) context
induction over all contexts of sort s'. (In the simplest case Q(c)=
P(f(. . . . c)) as e.g. in the proof of Fact 5.1). Obviously, the choice of
an appropriate property Q(c) (which is general enough to finish the proof
without a further iteration of context induction) requires real brainwork
and can in general not be automated. In some cases the proof of the
induction assertion P (f (. . . , c , . . .)) can be simplified by analysing the
form of the possible subcontexts of c (cf. e.g. the conditions (*) and (**) in
the proof of Lemma 4.1).

A recursive (semi-)algorithm which implements the above proof strategy for
the particular case of implementation proofs is given in [Hen91b]. Of course
the final aim would be the construction of a system which allows (interactive)
context induction proofs by machine.

8. Concluding Remarks

The present study shows that context induction provides an appropriate proof
method for the verification of behavioural abstractions, as e.g. the behavioural
validity of equations and the correctness of behavioural implementations. In
particular, it has been shown that context induction is well suited for the
verification of FRI implementations as well. Hence we suggest to use context
induction as a uniform proof principle in the process of formal program
development.

As a further possible application context induction can be used for proving
identities which are valid in the terminal (final) algebra of a specification (cf.
[Wan79]). In contrast to initial algebras, terminal algebras identify as much
elements as possible without violating the properties of an underlying primitive
data type. Hence terminal validity corresponds to behavioural validity if
observable sorts and primitive sorts are identified. A formal characterisation of
terminal models by contexts of primitive sort is given in [BPW84] which shows
that context induction can be applied for proving terminal validities.

This approach is restricted to the case of term generated algebras. An
interesting question is whether context induction is also an appropriate proof
technique if non term generated algebras are considered. Then, following
the approach of [NIO88], one has to reason about observable contexts which
possibly contain variables of observable sort. It is obvious that the principle of
context induction is also valid for contexts with variables. Since for non term
generated algebras the problems 1-3 of Section 4 can be characterised by
conditions for contexts with variables context induction can be applied also in
these cases. For example, due to the Proposition 2.1.12 in [NIO88], an

344 Rolf Hennicker

equation t = r belongs to the behavioural theorems of a specification SP
(admitting non term generated models) if and only if for all observable
contexts c with variables x CXobs and for all substitutions cr:X---~W~(Xobs)
(where Xobs is a family of variables of observable sort), SP ~- c[a(t)] = c[a(r)]
holds. Hence for showing that an equation t = r is a behavioural theorem
context induction is appropriate. But note, since in this more general case the
condition for behavioural theorems is stronger than in the term generated case
we obtain in general less behavioural theorems as before. For example, the
associativity law for the sequential composition of programs (cf. Example 4.1)
is not a behavioural theorem of PROG if non term generated (behavioural)
models are considered (e.g. the "observable" equation value(for(x, pl ;
(P2;P3)), e) = value(for(x, (Pl;P2);P3), e) with a variable x of observable sort
nat is not deducible from the axioms of PROG). It should be remarked that
the equation P l; (P2;P3)= (P1;P2); P3 satisfies the assumption of Lemma 4.1
(also if non ground terms are considered) which shows that Lemma 4.1 is not
more true in the non term generated case.

Concerning behavioural implementations the definition of the implementa-
tion relation is not influenced if the behaviour class of a specification is
extended to non term generated algebras as long as we are interested in
executable implementations (where all data objects are finitely representable).
Then in any case we restrict the behavioural models B of an implementing
specification SP1 to those elements which are generated by the operations of
the more abstract specification SP and therefore the context characterisation of
behavioural implementations (of Proposition 5.1) and all examples remain
valid.

Acknowledgements
This work has been partially sponsored by the ESPRIT Project 1550
D R A G O N and by the Basic Research Working Group 3264 COMPASS. It is a
revised and extended version of [Hen90].

I gratefully acknowledge many helpful comments of Martin Wirsing and
Peter Padawitz.

References

[BoM88]

[BMP86]

[BPW84]

[Bur69]

[EhM851

[EKM82]

[GAGS81

Boyer, R. S. and Moore, J. S.: A Computational Logic Handbook. Academic Press,
1988.
Broy, M., M611er, B., Pepper, P. and Wirsing, M.: Algebraic Implementations
Preserve Program Correctness. Science of Computer Programming, 7(1), 35-54
(1986).
Broy, M., Pair, C. and Wirsing, M.: A Systematic Study of Models of Abstract Data
Types. Theoretical Computer Science, 33, 139-174 (1984).
Burstall, R. M.: Proving Properties of Programs by Structural Induction. Computer
Journal, 12, 41-48 (1969).
Ehrig, H. and Mahr, B.: Fundamentals of Algebraic Specification 1. EATCS
Monographs on Theoretical Computer Science, Vo. 6, Springer-Verlag, 1985.
Ehrig, H., Kreowski, H. J., Mahr, B. and Padawitz, P.: Algebraic Implementation
of Abstract Data Types. Theoretical Computer Science, 20, 209-263 (1982).
Garland, S. J. and Guttag, J. V.: Inductive Methods for Reasoning about Abstract
Data Types. Proc. POPL'88, pp. 219-228, 1988.

Behavioural Abstractions and Algebraic Implementations 345

[GGM76]

[GoM82]

[Hen90]

[Hen91a]

[Hen91b]

[Kam83]

[NIO88]

[PAW84]

[PBB82]

[Rei85]

[SAW82]

[Wan79]

Giarratana, V., Gimona, F. and Montanari, U.: Observability Concepts in Abstract
Data Type Specification. In: Proc. MFCS '76, 5th Int. Symp. on Mathematical
Foundations of Computer Science, A. Mazurkiewicz (ed.), Lecture Notes in
Computer Science 45, Springer-Verlag, pp. 576-587, 1976.
Goguen, J. A. and Meseguer, J.: Completeness of Many-Sorted Equational Logic.
ACM SIGPLAN Notices, 16(7), 24-32 (1981); 17(1), 9-17 (1982).
Hennicker, R.: Context Induction: a Proof Principle for Behavioural Abstractions.
In: Proc. DISCO '90, Int. Symp. on Design and Implementation of Symbolic
Computation Systems, A. Miola (ed.), Capri, April 1990, Lecture Notes in
Computer Science 429, Springer -Verlag, pp. 101-110, 1990.
Hennicker, R.: Observational Implementation of Algebraic Specifications. Acta
Informatica, 28(3), 187-230 (1991).
Hennicker, R.: A Semi-Algorithm for Algebraic Implementation Proofs. Technische
Berichte der Fakult~it ffir Mathematik und Informatik, Universit~it Pasau, MIP-
9108, 1991.
Kamin, S.: Final Data Types and Their Specification. ACM TOPLASS, 5(1), 97-121
(1983).
Nivela, M a P. and Orejas, F.: Initial Behaviour Semantics for Algebraic Specifica-
tions. In: Proc. 5th Workshop on Algebraic Specifications of Abstract Data Types,
D. T. Sannella and A. Tarlecki (eds), Lecture Notes in Computer Science 332,
Springer-Verlag, pp. 184-207, 1988.
Padawitz, P. and Wirsing, M.: Completeness of Many-Sorted Equational Logic
Revisited. Bulletin EA TCS, 24, 88-94 (1984).
Pepper, P., Broy, M., Bauer, F. L., Partsch, H., Dosch, W. and Wirsing, M.:
Abstrakte Datentypen: Die algebraische Spezifikation von Rechenstrukturen.
lnformatik-Spektrum, 5, 107-119 (1982).
Reichel, H.: Initial Restrictions of Behaviour. IFIP Working Conference, The role of
Abstract Models in Information Processing, 1985.
Sannella, D. T. and Wirsing, M.: Implementation of Parameterized Specifications.
In: Proc. ICALP '82, 9th Coll. on Automata, Languages and Programming, M.
Nielsen and E. M. Schmidt (eds), Lecture Notes in Computer Science 140,
Springer-Verlag, pp. 473-488, 1982.
Wand, M.: Final Algebra Semantics and Data Type Extensions. Journal of
Computer and System Sciences, 19, 27-44 (1979).

Received April 1990
Accepted in revised form December 1990 by E. Astesiano

