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Abstract. An induction principle, called context induction, is presented which 
is appropriate for the verification of behavioural properties of abstract data 
types. The usefulness of the proof principle is documented by several 
applications: the verification of behavioural theorems over a behavioural 
specification, the verification of behavioural implementations and the verifica- 
tion of "forget-restrict-identify" implementations. 

In particular, it is shown that behavioural implementations and "forget- 
restrict-identify" implementations (under certain assumptions) can be charac- 
terised by the same condition on contexts, i.e. (under the given assumptions) 
both concepts are equivalent. This leads to the suggestion to use context 
induction as a uniform proof method for correctness proofs of algebraic 
implementations. 

1. Introduction 

Induction proofs play an important role in the verification of properties of 
programs and data types. Historically, one can distinguish computational and 
structural induction methods which are based on different paradigms: while 
computational induction works on an inductively defined set of functions (for 
proving properties of least fixpoints) structural induction was suggested by 
[Bur69] for proving properties of recursive programs by induction over the 
(structure of the) arguments. More generally, induction proofs are appropriate 
for the verification of assertions over any well founded domain (i.e. over any 
set on which a Noetherian ordering is defined). Particularly important domains 
are the (finitely generated) models of algebraic specifications where all objects 
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can be denoted by a ground term and hence properties of an abstract data type 
can be proved by induction on the structure of ground terms (called "term 
induction", cf. [PBB82]), or, more generally, by induction with respect to an 
arbitrary Noetherian relation on ground terms. Algorithms for proving 
inductive theorems over data types are implemented, for instance, by Boyer 
and Moore's theorem prover (cf. [BoM88]) or by the Larch prover (cf. 
[GaG88]). 

This work presents an induction principle, called context induction, which is 
appropriate for proving behavioural properties of data types. In contrast to the 
classical concepts the principle is not  based on the assumption that equations 
(between terms) denote identities between objects rather interpreting equa- 
tions as behavioural equivalences of objects as in the behavioural approaches 
to algebraic specifications proposed by [Rei85], [NIO88] and others. The 
motivation for this conception is given by the fact that from a software user's 
point of view, internal data representations (of an implementation) are not 
relevant if they induce the same observable effects, i.e. data objects can be 
seen as equal if they cannot be distinguished by experiments with observable 
result. In the framework of algebraic specifications such experiments can be 
formally represented by contexts" of observable sort over the signature of a 
specification where a distinguished subset of its sorts is specified as observable. 
Thus to show that a certain property is valid for all observable experiments one 
can formally show this property for all corresponding contexts of observable 
sort. Since contexts are particular terms (over the signature of the specifica- 
tion) the syntactic subterm ordering defines a Noetherian relation on the set of 
observable contexts. Hence the proof principle of structural induction induces 
a proof principle for properties of observable contexts which we call context 
induction. 

After introducing the principle of context induction (Section 3), one 
important purpose of this paper is to present possible applications for this 
proof technique. As a first application domain, in Section 4 behavioural 
specifications in the sense of [Rei85] and [NIO88] are considered. In contrast 
to the classical semantical concepts (initial, terminal, loose semantics) be- 
havioural specifications admit a more abstract view of the semantics of a 
specification since equations are interpreted as behavioural equivalences. It is 
shown that for the behavioural analysis of a specification several properties, 
like membership of an algebra to the behavioural models of a specification or 
behavioural validity of theorems, can be expressed by corresponding pro- 
perties on the set of observable contexts such that context induction provides 
an appropriate verification method. As an example we consider a behavioural 
specification of a small imperative programming language and prove by context 
induction a criterion for the behavioural equivalence of programs which can be 
easily applied to show particular equivalences. 

For the application of formal specifications in the process of program 
development (e.g. by stepwise refinement) one needs formal implementation 
notions which describe correct transitions between different abstraction levels. 
In order to be useful in practice, formal implementation concepts should be 
supplied by proof methods which support the verification of correct program 
development steps. A major point of this work is addressed to the develop- 
ment of context criteria which allow the verification of implementation 
relations by context induction. 

In Section 5, an implementation notion for behavioural specifications is 
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defined which formalises the intuitive idea that an implementation is correct if 
it produces correct observable output. Formally, a behavioural specification 
SP1 is called behavioural implementation of SP if all behavioural models of SP1 
(after appropriate restriction) are behavioural models of SP as well. It is shown 
that the behavioural implementation relation can be characterised by a 
property on the set of observable contexts and hence context induction can be 
used for the verification of behavioural implementations. As a concrete 
example an implementation of a specification of states (i.e. environments of a 
set of identifiers with values in the natural numbers) by a "ful l -memory" 
representation of states is proved by context induction. 

Section 6 deals with the well-known "forget-restrict-identify" approach to 
algebraic implementations (cf. e.g. [EKM82], [BMP86] and several others). 
The main step in those concepts is the identification of "concre te"  objects 
which represent the same "abstract"  objects e.g. by means of a congruence 
relation or an abstraction function. Following the approach of [BMP86] it is 
shown that also for "forget-restrict-identify" implementations ( "FRI  im- 
plementations" for short) a context criterion can be formulated and hence 
context induction provides an appropriate proof  method also in this case. (This 
is not surprising since the identification of concrete representations cor- 
responds to the behavioural equivalence of objects). As a consequence of the 
context criteria we show that under certain conditions FRI implementations 
and behavioural implementations are equivalent which leads to the suggestion 
to use context induction as a uniform proof  technique for the verification of 
implementation relations in the process of formal program development.  

In Section 7, a general scheme for proofs by context induction is discussed 
and finally, in Section 8, some further aspects are considered. 

2. Basic Notions 

In this section we briefly review the basic notions of algebraic specifications 
(for more details see e.g. [EhM85]). A (many sorted) signature Y is a pair 
(S, F)  where S is a set of sorts and F is a set of function symbols. To every 
function symbol f ~ F a functionality sl x . . -  x Sn--*S with Sl, . .  -, sn ~ S is 
associated. If n = 0 then f is called constant of sort s. 

A total Y-algebra A = ((As)s~s, (fa)f~F) consists of a family of carrier sets 
(As)s~S and a family of (total) functions (fA)i~F such that fA: As1 • "" " • Ash ---~ 
As if f has functionality sl • �9 �9 �9 • Sn ~ S (if n = 0 then fA  denotes a constant 
object of As). In this presentation we assume that As 4~ ~3 for all s e S (for a 
discussion of empty carrier sets see [GoM82], [PAW84]). 

A total Y-algebra B is called X-subalgebra of A if Bs ~_ As for all s e S and 
f z l 8  = f B  for all function symbols f e F where fAIB denotes the restriction o f f  A 
to the elements of the carrier sets of B. 

A signature Z'  = (S' ,  F ' )  is called subsignature of Y if S '  ~ S and F '  ___ F. 
The restriction of a total Z-algebra A to E'  is the E'-algebra AIx, = ((As)s~S,, 

The term algebra W~(X)  over an S-sorted family X = (Xs)s~s of sets of 
variables of sort s has as carriers the sets Wz(X)s of terms of sort s. For  

wz(x) ( f :s~ X . . .  Xs~-- -~s)eF the corresponding function f is defined by 
fw~(x)(t 1 . . . . .  t .)  = d~e f ( t l  . . . . .  t~). If X = 0 then W~(Q) is denoted by Wz 
and W~ is called ground term algebra. 
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A substitution a: X---~ W=(X) is a family of mappings (as: Xs--~ W=(X)s)s~S. 
For any term t �9 W~(X), the instantiation a(t) = dr t[a(xl) /xl  . . . .  , a(xn)/xn] is 
defined by replacing all variables x ~ , . . . ,  xn �9 X occurring in t by the terms 
o(x,), . . . ,  a(x,). 

The interpretation of a ground term t e W~ in a Y~-algebra A is denoted by 
t A. If all objects of A can b e  denoted by a ground term then A is called term 
generated (or finitely generated). The term generated subalgebra of a E-algebra 
A is denoted by (A) .  

If A and B are E-algebras then a Z-homomorphism dp: A--~ B is a family 
of mappings (dps:As--~Bs)s~s such that for all f � 9  with functionality 
s l x . . . x s ~ - - ~ s  and for all a l e A s l , . . . , a ~ � 9  d p s ( f A ( a l , . . . , a n ) ) =  
f B ( ~ ) s l ( a l ) ,  �9 �9 �9 , f f ) s n ( a n ) ) .  

3. Context Induction 
In this section we present the proof principle of context induction which has 
proved to be a powerful tool for the verification of behavioural properties of 
data structures and their specification. Roughly speaking, behavioural pro- 
perties are obtained by forgetting unnecessary information of a data type. For 
example one may derive behavioural identities if one abstracts from particular 
data representations and identifies all objects which cannot be distinguished by 
experiments with observable result. In the framework of algebraic specifica- 
tions such experiments can be formally represented by contexts of observable 
sort over the signature of the specification. Thus for showing that a certain 
property is valid for all observable experiments one can formally reason about 
all contexts of observable sort. 

Definition 3.1. Let  Z = (S, F)  be a signature and let Z = {zs l s  e S} be an 
S-sorted set of variables. A term c e W~(Z) is called context over Z (or 
Z-context), if c contains exactly one variable zs �9 Z. To indicate the variable 
occurring in c we often write c[z,] instead of c. The application of a context 
c[zs] to a term t �9 W~ of sort s is defined by the substitution of zs by t. Instead 
of c[t/zs] we also write briefly c[t]. [] 

In the following we consider not all contexts over a given signature but restrict 
to those contexts with result sort belonging to a distinguished subset So ~_ S 
,of the sorts of the signature. Particularly important  examples for the 
subset So are the set of observable sorts of a behavioural specification or the set 
of primitive sorts of a hierarchical specification (see next sections). The 
contexts of observable sort, also called observable contexts, represent all 
possible experiments with observable result. 

Formally, let E = (S, F)  be a signature and So ~_ S be a subset of its sorts. 
The syntactic subterm ordering defines a Noetherian relation on the set of 
contexts c �9 W~(Z) of sort s �9 So. Hence the principle of structural induction 
(cf. [Bur69]) induces a proof principle for properties of contexts of sort s �9 So, 
called context induction. 

For showing that a property P(c) is valid for all contexts c �9 W~(Z) of sort 
s �9 So it is sufficient to prove the following conditions: 

1. P(zs) is valid for all sorts s �9 So. 
2. For all contexts of the form f ( t l  . . . . .  ti-1, c, ti§ �9 �9 �9 tn) with 

a function symbol f �9 F, f :  s 1 • �9 �9 " • sn ~ s, s �9 So, 
terms tl, �9 �9 �9 t, �9 W~ and 
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a context c ~ W~(Z) of sort s i the following holds: 
If P(c')  is valid for all subcontexts c'  of c with sort s~So,  then 
P( f ( t l  . . . .  , te-1, c, ti+~ . . . . .  tn)) is valid. (In particular, the validity of 
P(c) can be assumed if the sort si of c belongs to S0.) 

Proposition 3.1 (context induction). Let Z = (S, F)  be a signature and So ~_ S. 
A property P(c) is valid for all contexts c ~ Wz(Z)  of sort s cS0 if the 
conditions (1) and (2) from above are satisfied. 

Proof. The proof is a direct consequence of the principle of structural 
induction. The ordering on the set of contexts is defined by the syntactic 
subterm ordering. [] 

In the following sections we provide detailed examples for the application of 
context induction. 

4. Behavioural Validity 

As a first example for an application domain of context induction we consider 
the theory of behavioural specifications (cf. [Rei85] and [NIO88]). We show 
that for a given behavioural specification certain properties can be expressed 
by properties on the set of contexts of observable sort and hence context 
induction provides an appropriate tool for the behavioural analysis of a 
specification. 

Following the approaches of [Rei85] and similarly of [NIO88] we first 
briefly summarise the basic notions of behavioural specifications. A 
behavioural specification SP = (Z, Obs, E)  consists of a signature Z = (S, F),  a 
subset Obs ~_ S of observable sorts and a set E of axioms (here equations t = r 
with terms t, r ~ W~-(X)). For example the following behavioural specification 
STATE describes environments (also called states) of a set of identifiers with 
values in the natural numbers where the sorts nat and bool are specified as 
observable. 

spec STATE = enrich BOOL,  NAT,  ID by 
sorts: state 
obs-sorts: nat, bool 
functs: init'---> state 

update: id x nat • state---~ state 
lookup: id • state--> nat 
ifstate �9 then �9 else �9 fi: bool • state x state--> state 

axioms: 
lookup(x, init) = 0 
lookup(x, update(y,  n, s)) = ifnat eq-id(x, y) 
then n else lookup(x, s) fi 
update(x, n, update(y,  m, s)) = ifstate eq-id(x, y) 
then update(x, n, s) else update(y,  m, update(x, n, s)) fi 
ifstate true then sl else s2 fi = sl 
ifstate false then s~ else s2 fi = s~ 

(The constant init denotes the initial state, the operation update assigns a value 
to an identifier and the operation lookup delivers the current value of an 
identifier. The notation " e n r i c h . . - b y "  means that STATE is a (syntactic) 
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enrichment of given specifications ID for the identifiers (with equality test 
eq-id), NAT for the natural numbers, and B O O L  for the truth values.) 

For the definition of the behavioural semantics of a specification [Rei85] 
and [NIO88] use the notion of behavioural satisfaction which is based on the 
idea that non-observable data objects are behaviourally equivalent if they 
cannot be distinguished by operations with observable result. Formally, given a 
signature E = (S, F) and a distinguished subset Obs ~_ S of observable sorts, a 
term generated X-algebra A satisfies behaviourally an equation t = r (written 
A ~Obs t = r) if and only if for all X-contexts c[zs] (where s is the sort of t) of 
observable sort, A ~ c[t] = c[r] holds w.r.t, the usual satisfaction relation "~". 
(Here only term generated algebras are considered. Hence the slight difference 
in the definitions of [Rei85] and [NIO88] is not relevant here.) 

As a standard example the characteristic set equations add(x, add(x, s)) = s 
and add(x, add(y, s ) ) - - add(y ,  add(x, s)) (where x, y are variables for ele- 
ments, s is a variable for sets and add is the operation which adds an element 
to a set) are behaviourally satisfied but not identically satisfied by the algebra 
of finite sequences if only the sort bool and hence all results of membership 
tests x E s are observable. 

The behaviour class Beh(SP) of a behavioural specification SP consists of 
all behaoioural models of SP, i.e. of all term generated E-algebras which 
behaviourally satisfy all axioms of SP. The behavioural theory BTh(SP) of SP 
consists of all equations t = r which are behaviourally satisfied by all behaviou- 
ral models of SP. From the definitions follows (see also Proposition 2.1.12 in 
[NIO88]) that an equation t = r belongs to the behavioural theory BTh(SP) if 
and only if for all observable Z-contexts c[z~] (where s is the sort of t) and for 
all ground substitutions or: X--~W:~, SPFc[o( t )]=c[o(r)]  holds (i.e. is 
deducible from the axioms of SP by the axioms and rules of the equational 
calculus, cf. [EhM85]). For example, the associativity law for the sequential 
composition of programs is a behavioural theorem over the specification 
PROG (cf. Example 4.1 below) but it is not a theorem over P R O G  in the 
classical sense. 

The above discussion shows that in concrete examples the verification of 
behavioural properties, like behavioural satisfaction, may be a non-trivial task 
since (in general) one has to reason about infinitely many observable contexts, 
In particular, we suggest that even the restriction of a behavioural theory to 
ground equations is (in general) not recursively enumberable. Hence we are 
interested in proof methods which support the solution e.g. of the following 
standard problems: 

1. Does a given E-algebra A behaviourally satisfy an equation t = r? 
2. Is a given E-algebra A a behavioural model of a specification? 
3. Does a given equation t = r  belong to the behavioural theory of a 

specification? 

According to the above definitions and facts each of the three problems can be 
formally expressed by the validity of a property P(c) for all contexts c of 
observable sort: 

Definition 4.1. Let SP = (E, Obs, E) be a behavioural specification, let A be a 
E-algebra and let t, r ~ W~(X) be terms of the same sort. Then for any 
E-context c[z~] we define: 

1. PA,t=r(C) = truecz>oe~ if t is of sort s then A Pc[t] = c[r] holds, 
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2. PA,sp(C)=trueC:>deffor all ( t = r ) e E ,  if t is of sort s then A ~c[t] =c[ r ]  
holds, 

3. P,=,,sp(C)=trueC:>defif t is of sort s then for all ground substitutions 
a: X---~ Wz, SP Fc[o(t)] = c[o(r)] holds. [] 

With these definitions we can formulate the following fact: 

Fact 4.1. Let SP, A and t, r be as in Definition 4.1. 

1. A ~Obs t = r iff for all Z-contexts c of observable sort PA,t=,(c) is valid. 
2. A e Beh(SP) iff for all Z-contexts c of observable sort PA,sp(C) is valid. 
3. (t = r ) e  BTh(SP) iff for all Z-contexts c of observable sort Pt=,,se(C) is 

valid. [] 

For proving in concrete examples behavioural satisfaction, membership to a 
behaviour class or membership to a behavioural theory the principle of context 
induction (cf: Proposition 3.1) can be applied. 

As an example we consider a behavioural specifcation P R O G  of a simple 
imperative programming language and give a criterion for the behavioural 
equivalence of programs. The specification P R O G  admits usual basic con- 
structs for imperative programs: the empty statement nop, the sequential 
composition " ; "  of programs, the assignment " : = "  of an expression to an 
identifier, the conditional statement i f .  then. else .fi, and the repetitive 
statement for which repeats a statement n times (for some natural number n). 
Based on the specification STATE from above the semantics of programs is 
specified by the state transition function trans which determines for a program 
p and an "old"  state s the "new" state after execution o fp .  The function value 
computes for a given program p and a (result) expression e the evaluation of e 
under the final state after execution of the program. The results of such 
evaluations are observable since nat is an observable sort (of S TA TE and 
hence also of PROG) .  

spec P R O G  = enrich EXP by 
sorts: prog 
functs: nop : --~ prog 

.;. :prog x prog---~ prog 
. :=.  :id x exp---~ prog 

if .  then .  else.  f i :exp x prog x prog--~ prog 
for:  nat x prog---~ prog 

trans : prog x state ~ state 
value : prog x exp--~ nat 

axioms: 
trans(nop, s) = s 
trans(pa;p2, s) = trans(p2, t rans(pl ,  s)) 
trans(x := e, s) = update(x, eval(e, s), s) 
trans(if e then Pl  else p~ fi, s) = ifstate(eval(e, s) = 0) 
then trans(pl ,  s) else trans(p2, s) fi 
trans(for(n, p) ,  s) -- trans(if natexp(n) then hop 
else p;  for(n - 1, p)  fi, s) 
value(p, e) = eval(e, trans(p, init)) 
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spec EXP = enrich STATE by 
sorts: exp 
functs: natexp : nat---~ exp 

idexp: id ~ exp 
plus : exp • exp ~ exp 
mult:  exp • exp ~ exp 
eval : exp • state--~ nat 

where 

axioms: 
eval(natexp(n),  s) = n 
eval(idexp(x), s) = lookup(x, s) 
eval(plus(el, e2), s) = eval(el, s) + eval(e2, s) 
eval(mult(el,  e2), s) = eval(el, s)  * eval(e2, s)  

P R O G  gives a behavioural specification of our simple imperative programming 
language where the effects of a program p w.r.t, a (result) expression e can be 
observed by the evaluation function value. Programs p and q have the same 
behaviour (are behaviouraUy equivalent) if they induce the same observable 
effects. Formally this means that the equation p = q belongs to the behavioural 
theory of PROG.  Hence for studying behavioural equivalences of programs 
we can apply Fact 4.1(3) which tells us that two programs p and q are 
behaviourally equivalent iff the property Pp=q,PRo0(C) is valid for all contexts 
over P R O G  of observable sort nat or bool. For the verification of Pp=q,PRo6(C) 
context induction provides an appropriate proof technique. We will apply this 
technique for the proof  of a criterion for the behavioural equivalence of 
programs which can easily be applied for showing particular equivalences. 

Lemma 4.1. For all ground terms p, q �9 WpROG of sort prog  holds: 
If P R O G  t-trans(p, s t )=  trans(q, st) for all ground terms st �9 WpROG of sort 
state then (p = q ) � 9  BTh(PROG) .  (WpRo~ denotes the set of ground terms 
over the signature of PROG. )  

P r o o f  by context  induction. Let p, q �9 WpRoG be arbitrary ground terms of sort 
prog such that P R O G  ~-trans(p, s t ) =  trans(q, st) holds for all "states" st. By 
Fact 4.2(3) we have to show that for all contexts c[zs] (over the signature of 
PROG)  of observable sort nat or bool  the property Pp=q,PROG(C) (for short 
P(c ) )  is valid where: 

P(c)  = true r S = prog then P R O G  ~-c[p] = c[q] holds. 

The validity of P(c)  is proved by context  induction. By Proposition 3.1 one has 
to show that the conditions (1) and (2) (cf. Section 3) are satisfied where 
So = {bool, nat}.  

1. Let  c -= Zna t or c ~ Zbool be the trivial context consisting of the variable Zna t 
or Zbool. Then P(znat) and P(Zbool) are trivially satisfied. 

2. For the induction step one has to consider all contexts (over the signature of 
P R OG)  of the form f (  . . . .  c[zs] . . . .  ) where f has result sort bool  or nat. 
If the context c[zs] is of sort bool  or nat then the induction step is trivial 
since (if s = p r o g )  in this case from the induction hypothesis 
P R O G  ~- c[p] = c[q] immediately follows 

P R O G  ~-f(. . . , c[p],  . . . ) = f (  . . . .  c[q], . . .) 
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If f ~  eq-id then P ( f (  . . . .  c[zs] . . . .  )) is valid since no context for programs 
with result sort id exists and hence s 4: prog. 

It remains to consider contexts of the form 

eval(c[zs], st), value(p1, c[zs]) with a context C[Zs] of sort exp, a ground term st 
of sort state and a ground term Pl of sort prog, 
value(c[zs], e) with a context c[z~] of sort prog and a ground term e of sort exp, 
lookup(x, c[zs]), eval(e, c[z~]) with a context c[z~] of sort state, a ground term x 
of sort id and a ground term e of sort exp. 

In the first case (contexts of the form eval(c[Zs], st), value(p1, C[Zs])) one can 
easily show (e.g. again by context induction) that for all contexts c[zJ of sort 
exp holds: 

(*) s--/:prog or c[z~] contains a subcontext of the form natexp(c'[z~]) with 
some context c'[zs] of sort nat. 

Hence, if s = p r o g  from the induction hypothesis PROG~-c '[p]=c'[q]  
immediately follows that P R O G  k c[p] = c[q] holds and therefore 

P R O G  t- eval(c[p], st) = eval(c[q], st) and 

P R O G  }- value(p1, c[p]) = value(p1, c[q]) 

In the second case (contexts of the form value(c[z~],e)), since 
PROGkvalue(C[Zs], e ) =  eval(e, trans(c[z~], init)) holds, it is enough to show 
that for all contexts c[z~] of sort prog the following (more general) property 
Q(c) is valid: 

Q (c) = true r if s = prog then P R O G  ~- trans(c[p], st) = trans(c[q], st) 

holds for all ground terms st of sort state. 

In the third case (contexts of the form lookup(x, c[zs]), eval(e, c[z~])) one 
can easily show (e.g. again by context induction) that for all contexts c[zs] of 
sort state holds: 

(**) s --/=prog or C[Zs] contains a subcontext of sort s ~ {id, nat, bool} or c[z~] 
contains a subcontext of the form trans(c'[z~], st) with some context c'[zs] 
of sort prog and some ground term st of sort state. 

Hence the third case is also an immediate consequence of Q(c). 

We now show the validity of Q(c) by a new (nested) context induction over 
all contexts C[Zs] of sort prog: 

l. Let  c =- Zprog be the trivial context consisting of the variable Zprog. Q(Zprog ) is 
valid since it is assumed that P R O G  k trans(p, st) = trans(q, st) holds for all 
ground terms st of sort state. 

2. For the induction step one has to consider all contexts (over the signature of 
PROG)  of the form f ( . . . ,  c[z~], . . . )  where f has result sort prog. For 
example we consider contexts of the form 
c[z~]; Pl  with a context c[zs] of sort prog and a ground term Pl of sort prog, 
x := c[zs] with a context C[Zs] of sort exp and a ground term x of sort id, 
for(n, c[z~]) with a context c[zs] of sort prog and a ground term n of sort nat. 
(The induction steps for the remaining cases of contexts of sort prog are 
simple variants of the induction steps for the first and for the second case.) 
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In the first case (contents of the form c[zs];pl), if s =prog from the 
induction hypothesis 

P R O G  k trans(c[p], st) = trans(c[q], st) follows that 
P R O G  k trans(c[p]; Pl,  st) = trans(pl ,  trans(c[p], st)) = 

trans(pl ,  trans(c[q], s t ) )=  trans(c[q];pl, st) 

In the second case (contents of the form x := c[zs]) we use (*) and conclude 
as above that if s = prog then 

P R O G  ~- c[p] = c[q] holds and hence 

P R O G  k trans(x := c[p], st) = trans(x := c[q], st) 

The third case (contexts of the form for(n, c[zs])) is shown by induction on 
the structure of n (using the fact that all ground terms of sort nat can be 
reduced by the axioms of P R O G  to a normal form " succ ( . . .  s u c c ( 0 ) . . . ) "  
and using the induction hypothesis for Q(c)):  

Case i (n = 0): 

P R O G  k trans(for(0, c[p]),  st) = 
trans(if natexp(0) then nop else c[p];  for(0-1,  c[p]) fi, st) = . . .  
(since P R O G  k (eval(natexp(0), st) = 0) = true) 
trans(nop, st) = . . .  -- trans(for(0, c[q]), st) 

Case 2 (n ---~ succ(n)): 

P R O G  I- trans(for(succ(n), c[p]),  st) = 
trans(if natexp(succ(n)) then nop else c[p]; for(n, c[p])  fi, st) = 

(since P R O G  k (eval(natexp(succ(n)), st) = 0) = false) 
trans(c[p]; for(n, c[p]) ,  s t ) =  
trans(for(n, c[p]),  trans(c[p], st)) = 
(by induction hypothesis for Q(c)) 
trans(for(n, c[p]),  trans(c[q], st)) = 
(by induction hypothesis for n) 
trans(for(n, c[q]), trans(c[q], s t ) ) = . . . =  
trans(for (succ(n), c[q]), st) 

This completes the proof of Q (c) and hence the context induction for the proof  
of P(c) is accomplished. [] 

As it can be seen in the proof often a generalisation of the actual assertion is 
necessary which is sufficient to finish the proof without further (iterated) 
context induction. This is the case in all standard examples of behavioural 
theorems and behavioural implementations (see next section) which have been 
proved by the author, as e.g. the implementation of stacks by arrays with 
pointers, the implementation of sets by lists, the implementation of states by 
sequences of pairs, etc. 

Example 4.1. The associativity law for the sequential composition is a 
behavioural theorem of P R O G ,  i.e. p ~; (P2; P3) = (P ~; P2); Ps �9 B T h ( P R O G )  

Proof. It is straightforward to show (using the axioms of P R O G )  that for all 
"states" st, P R O G  t- trans(pl;  (P2; P3), st) = trans((p~;p2); P3, st) holds. Now 
use Lemma 4.1. [] 
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5. Behavioural Implementations 

Formal implementation notions for specifications are a necessary prerequisite 
for proving the correctness of programs. To be useful in practice, formal 
implementation concepts should be supplied by proof methods which support 
the verification of correct program development steps. In this section we show 
that context induction provides a powerful proof technique for the verification 
of implementations of behavioural specifications. 

One main motivation for dealing with behavioural specifications is given by 
the fact that in general concrete realisations of software systems do not satisfy 
all properties of a requirement specification but nevertheless are considered to 
be correct since they produce correct observable output. Hence from the 
observational point of view a specification should allow to abstract from non 
observable properties of data structures which in the approaches of [Rei85] 
and [NIO88] is expressed by constructing the behaviour class of a specification. 
This more abstract view induces a simple notion of implementation for 
behavioural specifications which formalises the intuitive idea that an im- 
plementation is correct if it preserves the observable properties of a require- 
ment specification: 

A behavioural specification SP1 is a behavioural implementation of SP if the 
behaviour class of SP1 (after appropriate restriction) is a subclass of the 
behaviour class of SP. 

In order to rule out trivial implementations we assume in the following that 
each specification contains the specification BOOL with the observable sort 
bool and restrict the behaviour class of a specification to those algebras which 
satisfy true 4: false. Then we obtain the following formal definition of be- 
havioural implementations: 

Definition 5.1. Let SP1 = (Z1, Obsl,  E l )  and SP = (X, Obs, E) be behaviour- 
al specifications such that X ~ X l  and Obs__Obsl.  Moreover, let 
Beh(SP1) 4:Q. SP1 is called behavioural implementation of SP if for all 
behavioural models B e Beh(SP1), 

(B]x) e Beh(SP) holds. 

((BIx) denotes the term generated E-algebra which is obtained from B by first 
forgetting all sorts and operations of E1 not belonging to X and then restricting 
to those elements which are generated by the operations of X, cf. Section 
2.) [] 

Remark 5.1. The definition of behavioural implementation is a variant of the 
implementation concept of [Hen91a] adopted to the theory of behavioural 
specifications as discussed in the last section. In order to simplify the approach 
we have not used here conditional axioms and we have assumed that the 
behaviour class of an implementing specification is not empty. [] 

As already mentioned above a crucial point for the usefulness of formal 
implementation notions is the availability of proof methods which can be 
applied in practical examples. For behavioural implementations we obtain the 
following characterization by a condition on observable contexts which is the 
basis for implementation proofs by context induction (cf. also [Hen91a] for a 
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context criterion for "observational implementations"):  

Proposition 5.1. Let  SP1 = (Z1, Obsl ,  E l )  and SP = (Z, Obs, E)  be as in 
Definition 5.1. SP1 is a behavioural implementation of SP if and only if for all 
Z-contexts c[zs] of observable sort So ~ Obs the following property Psel,sp(C) is 
valid: 

Psm,sp(C) = trueC:>de, for all axioms (t = r) 6 E and for all ground 

substitutions a: X---~ W~, 

if t is of sort s then SP1 f- c[a(t)] = c[a(r)] holds. 

Proof. " ~  ": Let  Ps~,l,sp(C) be valid for all Z-contexts c of observable sort of 
SP and let B ~ Beh(SP1) be an arbitrary behavioural model of SP1. It has to 
be shown that (Blz)  e Beh(SP).  By definition, (Blz)  c Beh(SP) iff (BIz)  ~Obs 
t = r for all axioms (t = r) e E, i.e. iff for all (t = r) e E and for all Z-contexts 
c[zs] (where s is the sort of t) of  observable sort s0E Obs, (B[~)~c[ t ]  =c [ r ]  
holds. Since (BJz) is term generated over  Z it is enough to consider instan- 
tiations or(t) and tx(r) by ground substitutions o: X----~ Wz. 

Now, let c[z~] be an arbitrary Z-context of observable sort So ~ Obs, let 
(t = r) be an axiom of SP (such that t, r are of sort s) and let o: X--~ Wz be an 
arbitrary ground substitution. Then,  by assumption, SP1 f-c[cr(t)] = c[o(r)]. 
Since Obs~_Obsl ,  c is also an observable context of SP1 and hence the 
equation c[o(t)] = c[tr(r)] is (identically) satisfied by all behavioural models of 
SPI. In particular, B ~c[o(t)] = c[~r(r)] and hence (B[z)  ~c[a(t)] = c[o(r)]  
holds, i.e. (B[z)  c Beh(SP). 

" ~ " :  Proof by contradiction. Assume that there exists a Z-context c[z~] of 
observable sort of SP and an axiom (t = r) ~ E (with t, r of  sort s) such that 
SPl~c[o(t)]=c[tr(r)] for some ground substitution o:X----~Wz. Then the 
equation c[o(t)] = c[o(r)] is not satisfied by the initial model I of SP1 (in the 
usual sense) and hence, since c is of observable sort, it is also not behaviourally 
satisfied by L Therefore  ( /Ix) is not a behavioural model of SP. On the other  
hand I satisfies true ~e false (since it is assumed that Beh(SP1) :~ O and bool is 
an observable sort) and therefore I e Beh(SP1) holds. Hence SP1 is not a 
behavioural implementation of SP. [] 

Proposition 5.1 characterises behavioural implementation relations by a 
property on the set of observable contexts. Hence for proving behavioural 
implementations in concrete cases the proof  technique of context induction can 
be applied. This will be demonstrated by an example: 

Example 5.1. We give a behavioural implementation of the specification 
STATE (see Section 4) by a specification H I S T O R Y  which implements states 
by sequences of pairs consisting of an identifier and its associated value (for 
simplicity we have omitted here  all sequence operations which are not 
necessary for the example). In contrast to the abstract specification of states 
each sequence stores not only the current value of an indentifier x but also all 
previous values of x. Such implementations of states are particularly useful if 
one wants to retrieve old states of a system or, more concretely, of one wants 
to test and to analyze the state transitions performed by the execution of an 
imperative program. 

The specification H I S T O R Y  comprises a usual specification N A T S E Q  of 
finite sequences of natural numbers. The function history computes for a given 
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identifier x and some  state  s the his tory of  all env i ronmen t s  of  x,  i.e. the 
sequence  of  all p rev ious  values of  x. 

spec H I S T O R Y  = enrich B O O L ,  N A T ,  I D ,  N A T S E Q  by 
sorts: state 
obs-sorts: nat,  boo l  
fnncts: init: ~ state 

(. , . ) :  id • nat---~ s tate  
.0.: s ta te  x state---> s tate  
update :  id • nat  x state--> state 
lookup:  id • state---> nat  
history: id x state---> natseq  
ifstate �9 then  �9 else �9 fi: boo l  x s tate  x state---> s tate  

axioms: 
s o init = init o s = s 
( so t )  oH = s o  ( tou)  
upda te (x ,  n, s) = (x,  n ) o s 
lookup(x ,  init) = 0 
lookup(x ,  (y,  n )  o s) = ifnat eq-id(x,  y )  
then  n else lookup(x ,  s)  fi 
history(x,  init) = (0 )  
history(x,  (y,  n )  o s)  = i fnatseq eq-id(x,  y )  
then  ( n )  Onatseq history(x,  s) else history(x,  s)  fi 
ifstate t rue  then  sl  else s2 fi = Sl 
ifstate false then  sl  else s~ fi = Se 

Fact  5.1. His to ry  is a behav ioura l  i m p l e m e n t a t i o n  of  S T A T E .  

Informal ly ,  this fact is clear  since using the opera t ions  of  the s ignature  of  
S T A T E  the behav iou r  of  s tates can only be  obse rved  via the lookup-opera t ion  
which gives the same  cur ren t  values  independen t ly  whe the r  a s tate  s tores  " o l d "  
values or  not.  Formal ly ,  the behav ioura l  imp lemen ta t i on  re la t ion can be  
p roved  by context  induct ion.  

P r o o f  o f  the fact. By propos i t ion  5.1 one  has to show tha t  for  all contexts  c[zs] 
over  the s ignature  of  S T A T E  of  obse rvab le  sort  nat or bool  the p rope r ty  
PHISTORY,STATE(C) (for  shor t  P(c ) )  is valid where:  

P(c)  = trueC:>aef for  all ax ioms t = r of  S T A T E  

and for  all g round  subst i tut ions 

o': X---~ WSTATE, if t is of  sort  s then  

H I S T O R Y  F c[a(t)] = c[a(r)]  holds.  

The  validity of  P(c )  is p r o v e d  by context  induction:  

1. Le t  c --- Znat or  C =-- Zbool be the trivial context  consist ing of  the  var iable  Zna t 
or  Zbool. P(znat) and P(zbool) are valid since it is easy  to see tha t  H I S T O R Y  
satisfies all ax ioms t = r of  S T A T E  with t, r o f  sort  nat  or  bool. 

2. For  the induct ion step one  has to consider  all contexts  (over  the  s ignature  of  
S T A T E )  of  the fo rm f (  . . . .  c[zs] . . . .  ) where  f has result  sort  bool  or  nat. 
I f  the context  c[z~] is of  sort  bool  or  nat then  the induct ion s tep is trivial 
since in this case f r o m  the induct ion hypothes is  H I S T O R Y  Fc[a(t)]  = 
c[a(r)] immedia te ly  follows 

H I S T O R Y  F f (  . . . .  c[a(t)],  . . . ) = f (  . . . .  c[a(r)]  . . . .  ) 
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for all axioms t = r  of STATE (where t is of sort s) and for all ground 
substitutions tr: X---~ WSTATE. Hence it is enough to consider contexts of the 
form lookup(x, c[zs]) with a context c[zs] of sort state and a ground term x 
of sort id. 

In this case one has to show that for all contexts c[z~] of sort state the 
following property Q(c)  is valid: 

Q(c)  = trueC:>def for all axioms t = r of STATE and for all 

ground substitutions or: X--~ WSTATE, 
if t is of sort s then 

H I S T O R Y  k lookup(x, c[~r(t)]) = 

lookup(x, c[~r(r)]) holds. 

The proof of Q(c )  is done by a new (nested) context induction over all contexts 
C[Zs] of sort state. 

1. Let  c --= Zstate be the trivial context consisting of the variable Zstate. Then we 
have to consider the (three) axioms t = r of S TA TE where t, r are of sort 
state. Since the two axioms for the auxiliary function " i f s t a t e . . . "  belong to 
the axioms of HISTORY as well it remains to show that (for ground terms 
x ' ,  y of sort id and n, m of sort nat): 

HIS TOR Y k lookup(x, update(x ' ,  n, update(y,  m, s))) = 

lookup(x, ifstate eq-id(x' ,  y)  then update(x ' ,  n, s) 

else update(y,  m, update(x ' ,  n, s)) fi) 

The proof  is straightforward by distinguishing all possible cases for the 
values of eq-id(x, x ' ) ,  eq-id(x' ,  y)  and eq-id(x, y) (it is assumed that ID is 
sufficiently complete over  B O O L  such that eq-id(t, t ')  reduces to true or 
false for all ground terms t, t '  of sort id). 

2. For the induction step one has to consider all contexts (over the signature of 
STATE)  of the form f (  . . . .  C[Zs], �9 �9 .) where f has result sort state. If c is of 
sort nat or bool  we are ready by the overall induction hypothesis for P(c )  
since in this case H I S T O R Y  k c[cr(t)] = c[o(r)]  implies 

HI S TOR Y k f(..., . ,  c [ a ( t ) ] , . . . )  = f (  . . . .  c [ c r ( r ) ] , . . . )  

Hence it is enough to consider contexts of the form 

update(x ' ,  n, c[zs]) with a context c[z~] of sort state and ground terms x ' ,  n 
of sort id, nat resp., 
ifstate b then c[z~] else st fi with a context c[z~] of sort state and ground 
terms b, st of sort bool, state resp. 

In the first case we distinguish whether  eq-id(x, x ' )  reduces to true or to 
false. If e.g. eq-id(x, x ' )  reduces to false then for each axiom t = r of S TA TE 
(with appropriate sort) and for each ground substitution a: X---~ WSTATE: 

H I S T O R Y  k lookup(x, update(x ' ,  n, c [o ( t ) ] ) )=  
lookup(x, (x ' ,  n}  o c[o(t)]) = 
ifnat eq-id(x, x ' )  then n else lookup(x, c[cr(t)l) fi = 
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ifnat false then n else lookup(x, c[a(t)]) fi = 
lookup(x, c[o(t)]) = 
(by induction hypothesis forQ(c)) = 
lookup(x, c[~r(r)]) . . . . .  
lookup(x, update(x', n, c[o(r)])) 

In the second case (contexts of the form "ifstate b then c[zs] else st fi") the 
induction step follows analogously from the induction hypothesis and from the 
fact that HISTORY is sufficiently complete over BOOL. 

This completes the proof of Q(c) and hence the context induction for the 
proof of P(c) is accomplished. In summary we have shown that HISTORY is a 
behavioural implementation of the specification STATE. [] 

6. FRI Implementations 

In the last section we considered behavioural implementation relations and 
their verification by context induction. Important alternative approaches to 
formal implementations are based on the "forget-restrict-identify" concept 
which requires to connect the model(s) of a "concrete" specification with the 
model(s) of an "abstract" specification e.g. by means of an abstraction 
function or a congruence relation (cf. e.g. [EKM82] for the initial semantics 
approach, [SAW82], [BMP86] for the loose semantics approach). Following the 
loose approach of [BMP86] in this section we give a context criterion for 
"forget-restrict-identify" (FRI) implementations which implies that context 
induction is also an appropriate proof method for FRI implementations. 
Moreover, as a consequence of the context criterion, we obtain that under 
certain conditions FRI implementations and behavioural implementations are 
equivalent. This leads to the suggestion to use context induction as a uniform 
proof technique for the verification of implementation relations. 

Before we give the definition of FRI implementation the underlying notions 
of hierarchical specifications used in [BMP86] are briefly summarised. (In 
contrast to [BMP86] the definitions are restricted here to the case of equational 
axioms and total Z-algebras.) 

Definition 6.1 ([BMP86]). An (equational) hierarchical specification SP = 
(Z, E, P) consists of a signature Z, a set E of equations (called axioms) and a 
primitive type P = (Yp, Ee) where Y~e-~ Z, Ep ~ E. It is assumed that any 
primitive type P contains the specification BOOL of the truth values. 

A Z-algebra A is called model of a hierarchical specification SP if A is term 
generated, A ~ t = r for all axioms (t = r) ~ E, A ~ true 4= false and A[z~ is a 
model of P (in particular Alz~ is term generated over Y~p.) The model class of 
SP is denoted by Mod(SP). A specification is called monomorphic if it admits 
(up to isomorphism) only one model. 

A hierarchical specification is called sufficiently complete if for all terms 
t c Wz of primitive sort there exists a primitive term p ~ Wz~ such that 
SPF t = p .  [] 

Based on hierarchical specifications the notion of FRI implementation is 
defined. (Note that in [BMP86], FRI implementations are called "algebraic 
implementations". In order to distinguish more clearly between the be- 
havioural and the forget-restrict-identify approach we have changed this 
terminology.) 
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Definition 6.2 ([BMP86]). Let SP1 = (El ,  E l ,  P) and SP = (Z, E, P) be 
hierarchical specifications with the same primitive type P and with Z ~_Z1. 
Moreover, let SP1 be consistent, i.e. Mod(SP1) 4: 0 .  

SP1 is called FRI  implementation of SP ifo for all models B �9 Mod(SP1) 
there exists a model A ~ Mod(SP) and a Z-homomorphism q~: ( B L ) - - ~ A  (see 
Definition 5.1 for the notation (BIx)). [] 

As in the case of behavioural implementations also for the applicability of the 
notion of FRI implementation in practical examples the availability of 
appropriate proof methods is important. In the following we show that FRI 
implementations can be verified by using a modified version of the context 
criterion for behavioural implementations (cf. Proposition 5.1), where instead 
of observable contexts, all contexts of primitive sort are considered. 

Proposition 6.1. Let SP1 -- (El,  E l ,  P) and SP = (Z, E, P) be as in Definition 
6.2 and let Sp be the set of primitive sorts (i.e. sorts of P). 
SP1 is an FRI implementation of SP if for all Z-contexts c[zs] of primitive sort 
so e Sp the property PsPt.sp(C) defined in Proposition 5.1 is valid. 

Proof. Let PSP1,sp(C) be satisfied for all Z-contexts c of primitive sort and let 
B ~ Mod(SP1) be an arbitrary model of SP1. It has to be shown that there 
exists a model A c Mod(SP) and a Z-homomorphism qS: (BIx)--~A. 
Let A =de~ ( B { ~ ) / ~  be the quotient of (B{~) w.r.t, the following congruence 
relation on (B [z) : 

a - b r all Z-contexts c[zs] (where s is the sort of a and b) 

of primitive sort, c[a/zs] B = c[b /zs] B holds. 

Obviously, - is a congruence relation. Then the canonical epimorphism 
defines a Z-homomorphism q~: (B[s)---~A. It remains to show that A is a 
model of SP. Since B satisfies true :;a false, A satisfies true 4= false as well and 
since the restriction of B to the primitive signature Zp is term generated by Zp 
the same is true for A. Then, since A is term generated by Z, it is enough to 
show that for all axioms (t = r) e E and for all ground substitutions o: X---~ Wz, 
a ~ o(t) = o(r) holds (i.e. O ( t )  A ~ O(r)A), or equivalently c[o(t)] B = c[o(r)] 8 
for all Z-contexts c[z~] of primitive sort (if t is of sort s). But the latter 
condition is satisfied since B is a model of SP1 and it is assumed that for all 
Z-contexts c[z~] of primitive sort PsPl,sp(C) is valid, Le. SP1 t- c[o(t)] = c[o(r)] 
holds (if t is of sort s). [] 

Remark 6.1. The condition of Proposition 6.1 on contexts is not sufficient if 
FRI implementations are based on the initial algebra semantics (cf. [EKM82]) 
since if B is the initial algebra of SP1 then the algebra A which is constructed 
in the proof of Proposition 6.1 is not necessarily the initial algebra of SP. [] 

Proposition 6.1 gives a criterion for FRI implementations by a property on the 
set of contexts of primitive sorts. Hence, as for behavioural implementations, 
for the verification of FRI implementations context induction is an appropriate 
proof technique. For example, we can show by the same context induction as 
in the proof of Fact 5.1 that HISTORY is an FRI implementation of STATE 
if the subspecification NAT of the natural numbers is designated as primitive 
type. 

More generally, as a particular consequence of the context characterisation 
of behavioural implementations and of the context criterion for FRI im- 
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plementations, one obtains that if for two behavioural specifications SP1 and 
SPa  common subspecification can be identified with all sorts observable, then 
SP1 is an FRI implementation of SP if it is a behavioural implementation of 
SP. 

An interesting question is under which conditions also the reverse direction 
is true, i.e. when FRI implementations are behavioural implementations? An 
answer can be given by the following proposition which sharpens the context 
criterion of Proposition 6.1 to a characterisation of FRI implementations: 

Proposition 6.2. Let SP1 = (Z1, El ,  P) and SP = (Z, E, P) be as in Definition 
6.2. Moreover, let SP1 be suff• complete and let P be monomorphic. 
Then the validity of Psel,se(C) for all Z-contexts c[zs] of primitive sort is a 
necessary condition for SP1 to be an FRI implementation of SP. 

Proof. The proof is done by contradiction: Assume there exists a context c[zs] 
of primitive sort such that Psel,se(C) is not valid. Then there exists an axiom 
( t=r )eE  (of sort s) and a ground substitution a:X---~Wx such that 
SPl~-c[o(t)]=c[cr(r)]. Since SP1 is sufficiently complete and consistent an 
initial model I ~  Mod(SP1) exists and, by assumption, I ~c[cr(t)] = c[tr(r)]. If 
SP1 is an FRI implementation of S P a  model A e Mod(SP) exists and a 
Y-homomorphism q~: (/Ix)---~A. Since P is monomorphic and c is of primitive 
sort, (p(c[~r(t)] 1) ~ q~(c[cr(r)]'), i.e. C[O(t)] m 5 t: c[o(r)]  A. Consequently, A does 
not satisfy the axiom t=r  of E and hence A is not a model of SP 
(contradiction!) [] 

Proposition 6.2 and Proposition 5.1 use the same context property PsPl,sv(C) 
for the characterisation of FRI implementations and behavioural implementa- 
tions. Hence, under the assumption of Proposition 6.2 both implementation 
concepts are equivalent: 

Corollary 6.1. Let SP1 and SP be hierarchical specifications with monomor- 
phic primitive type P and let SP1 be sufficiently complete. Then SP1 is an FRI 
implementation of SP if and only if SP1 is a behavioural implementation of SP 
where exactly the primitive sorts are specified as observable. 

Proof. By Proposition 6.2 and Proposition 5.1. [] 

The above result is not surprising since observability concepts are historically 
founded in concepts considering data type extensions where already abstrac- 
tions from non-primitive values w.r.t, the operations with primitive result were 
studied (cf. e.g. [GGM76], [Kam83], [BPW84]). Behavioural approaches 
perform the consequent next step by giving a more general definition of the 
semantics of specifications which includes not only the models of a specification 
but also all behavioural equivalent data structures. This leads to an intuitively 
clear and simple notion of implementation which was the basis for the 
development of the context criterion. 

7. A General Scheme for Proofs by Context Induction 

The context induction proofs in the examples show that many steps of the 
induction can be carried out schematically. In particular, when proving a 
property P(c) (for all contexts c of sort s cS0) the induction assertions 
P( f ( . . . ,  c . . . .  )) can be generated automatically for all possible cases of f 
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(where f is a function symbol with result sort s �9 So, c is a context of sort, say s' 
and the dots . . .  stand for arbitrary (ground) terms for the remaining argu- 
ments of f).  For the proof of each assertion P ( f ( . . . ,  c , . . . ) )  we suggest to 
proceed as follows: 

1. If the sort s' of the context c belongs to So then prove P(f(  . . . .  c . . . .  )) by 
use of the induction hypothesis (which in all our examples works quite 
simple or is even trivial). 

2. If the sort s' of c does not belong to So then find a property Q(c) which 
implies P(f( . . . .  c , . . . ) )  and prove Q(c) by a new (nested) context 
induction over all contexts of sort s'. (In the simplest case Q(c)=  
P(f(  . . . .  c . . . .  )) as e.g. in the proof of Fact 5.1). Obviously, the choice of 
an appropriate property Q(c) (which is general enough to finish the proof 
without a further iteration of context induction) requires real brainwork 
and can in general not be automated. In some cases the proof of the 
induction assertion P ( f ( . . . ,  c , . . . ) )  can be simplified by analysing the 
form of the possible subcontexts of c (cf. e.g. the conditions (*) and (**) in 
the proof of Lemma 4.1). 

A recursive (semi-)algorithm which implements the above proof strategy for 
the particular case of implementation proofs is given in [Hen91b]. Of course 
the final aim would be the construction of a system which allows (interactive) 
context induction proofs by machine. 

8. Concluding Remarks 

The present study shows that context induction provides an appropriate proof 
method for the verification of behavioural abstractions, as e.g. the behavioural 
validity of equations and the correctness of behavioural implementations. In 
particular, it has been shown that context induction is well suited for the 
verification of FRI implementations as well. Hence we suggest to use context 
induction as a uniform proof principle in the process of formal program 
development. 

As a further possible application context induction can be used for proving 
identities which are valid in the terminal (final) algebra of a specification (cf. 
[Wan79]). In contrast to initial algebras, terminal algebras identify as much 
elements as possible without violating the properties of an underlying primitive 
data type. Hence terminal validity corresponds to behavioural validity if 
observable sorts and primitive sorts are identified. A formal characterisation of 
terminal models by contexts of primitive sort is given in [BPW84] which shows 
that context induction can be applied for proving terminal validities. 

This approach is restricted to the case of term generated algebras. An 
interesting question is whether context induction is also an appropriate proof 
technique if non term generated algebras are considered. Then, following 
the approach of [NIO88], one has to reason about observable contexts which 
possibly contain variables of observable sort. It is obvious that the principle of 
context induction is also valid for contexts with variables. Since for non term 
generated algebras the problems 1-3 of Section 4 can be characterised by 
conditions for contexts with variables context induction can be applied also in 
these cases. For example, due to the Proposition 2.1.12 in [NIO88], an 
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equation t = r belongs to the behavioural theorems of a specification SP 
(admitting non term generated models) if and only if for all observable 
contexts c with variables x CXobs and for all substitutions cr:X---~W~(Xobs) 
(where Xobs is a family of variables of observable sort), SP ~- c[a(t)] = c[a(r)] 
holds. Hence for showing that an equation t = r is a behavioural theorem 
context induction is appropriate. But note, since in this more general case the 
condition for behavioural theorems is stronger than in the term generated case 
we obtain in general less behavioural theorems as before. For example, the 
associativity law for the sequential composition of programs (cf. Example 4.1) 
is not a behavioural theorem of PROG if non term generated (behavioural) 
models are considered (e.g. the "observable" equation value(for(x, pl ;  
(P2;P3)), e ) =  value(for(x, (Pl;P2);P3), e) with a variable x of observable sort 
nat is not deducible from the axioms of PROG).  It should be remarked that 
the equation P l; (P2;P3)= (P1;P2); P3 satisfies the assumption of Lemma 4.1 
(also if non ground terms are considered) which shows that Lemma 4.1 is not 
more true in the non term generated case. 

Concerning behavioural implementations the definition of the implementa- 
tion relation is not influenced if the behaviour class of a specification is 
extended to non term generated algebras as long as we are interested in 
executable implementations (where all data objects are finitely representable). 
Then in any case we restrict the behavioural models B of an implementing 
specification SP1 to those elements which are generated by the operations of 
the more abstract specification SP and therefore the context characterisation of 
behavioural implementations (of Proposition 5.1) and all examples remain 
valid. 
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