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Abstract. We compare plane-wave, coordinate-space and 
moment methods for evaluating operator-product expan- 
sion (OPE) coefficients of the light-quark and gluon con- 
densates. Equivalence of these methods for quark conden- 
sate contributions is proven to all orders in the quark 
mass parameter m. The three methods are also shown to 
yield equivalent gluon condensate contributions to two- 
current correlation functions, regardless of the gauge 
chosen for external gluon fields in the coordinate space 
approach. An improved method for evaluating quark- 
condensate OPE coefficients is presented for several (two- 
current) correlation functions. Gauge-dependent Green 
functions are also discussed. It is shown that contradic- 
tory expressions for the gluon-condensate contribution to 
the quark propagator occurring from the plane-wave and 
coordinate-space approaches yield identical relations be- 
tween the heavy-quark and gluon condensates, as anticip- 
ated from the gauge invariance of the heavy-quark expan- 
sion. 

1 Introduction 

QCD condensates, which characterize the non-pertur- 
bative content of the QCD vacuum, are an essential ele- 
ment in determining hadronic properties through sum- 
rule methods [1-3]. In this approach, each condensate 
makes a distinct contribution to the operator-product 
expansion (OPE) of a two-current correlation function. 

There are several different techniques that have been 
developed to evaluate the contribution of a particular 
condensate in any process [1-6]. The plane-wave method 
begins with Wilson's operator identity [7] where the co- 
efficients are perturbatively calculable at sufficiently large 
momentum. After forming a vacuum expectation value 
(vev) of the operator relation, the resulting condensates 
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then describe the nonperturbative content of the vacuum. 
In the plane-wave method [1, 2] the operator identity is 
"sandwiched" with appropriately chosen states to single 
out the contribution of a given operator (condensate). 

In contrast, the coordinate-space method does not 
begin with the operator identity [2, 4, 5]. Instead, the 
Wick expansion is applied to the Green function of inter- 
est leading to two contributions: purely perturbative 
propagators, and residual normal-ordered terms which 
are non-trivial because of the (nonperturbative) properties 
of the vacuum. The residual normal ordered terms are 
then expanded in a coordinate space series containing 
local vevs of composite operators, namely the conden- 
sates. Another way of viewing this process is through 
background (or external) fields. Although the end result of 
this process is that condensates are contributing to a given 
correlation function, there is no direct connection with the 
operator identity in the plane-wave method. 

Yet another method favoured by Lavelle and co- 
workers is the moment technique [6]. In this approach 
a Green function is written in terms of two-point functions 
(propagators) which consist of a sum of perturbative and 
nonperturbative contributions. The Green function is 
then arranged as moments of the non-perturbative por- 
tion of the propagator, and these moments are each iden- 
tified with appropriate condensates via gap equations. 

It is clear that these three techniques have profoundly 
different conceptual formulations of how nonperturbative 
effects arise, and it is certainly not evident that the three 
approaches should lead to identical results. Since each 
method has been extensively applied, it is important to 
establish that the three approaches are fundamentally 
identical, consolidating the progress that has been ob- 
tained through sum-rule applications. 

The gluon condensate in particular illustrates the tech- 
nical issues that can arise when comparing the above 
methods. In coordinate-space techniques, the fixed-point 
gauge [8] is used to evaluate the two-gluon non-local vev. 
However, this gauge violates translation invariance, and 
could in principle conflict with the covariant gauge used 
to formulate QCD. This is a serious issue which can only 
be resolved by demonstrating that the coordinate space 
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(fixed-point gauge) method is identical to the other tech- 
niques, and thus no adverse effect of the gauge choice 
would remain. It is also important to demonstrate that 
other gauge choices for the non-local gluon vev [20] do 
not affect the result for the gluon condensate OPE coeffic- 
ient. Indeed there is an example in the literature where 
(fixed-point) coordinate-space and plane wave results for 
the gluon condensate contributions to the quark propaga- 
tor are in disagreement [5, 11, 14]. The question as to 
whether this is a reflection of gauge dependence or a fun- 
damental difference between the techniques further moti- 
vates our investigation. 

Gluon condensate calculations also illustrate that the 
(quark mass) chiral limit of the OPE coefficients is non- 
trivial. With coordinate space methods, if the gluon con- 
densate contribution is calculated directly for m = 0, then 
the result disagrees with the m-*0 limit [13]. This problem 
can only be resolved by computing the quark condensate 
coefficient with arbitrary quark mass dependence and 
then taking the m-40 limit weighted by the eff(12rcm) 
factor from the heavy quark expansion. Thus there is 
a "misplaced" gluon condensate contribution that cannot 
be found in an expansion about the chiral limit, but must 
be obtained from the mass dependence of the quark con- 
densate contribution. The dependence of the OPE coeffi- 
cients on the light quark mass is also of importance for 
their infrared behaviour because of potentially large log- 
arithmic contributions for light quarks. 

However, complications arise in all methods when the 
mass dependence of the light quark condensate (c]q) 
effects are considered. In coordinate space techniques, the 
(~q)  OPE coefficient is determined as a power series in 
m2/p 2 (p is the external momentum), and the resulting 
series must be summed and analytically continued 
[9, 10, 13]. A similar difficulty arises in plane-wave 
methods where it becomes necessary to average over mo- 
mentum directions by expanding propagator factors in 
a series and then re-summing to obtain a final result 
[11, 13]. Moment techniques are typically applied to 
lowest order in the quark mass [6], and so they must be 
extended to higher orders. The behaviour of the (c]q) 
contributions is not only important for the infrared and 
chiral limiting properties as discussed above, but also for 
the formulation of Laplace sum-rules as contour integrals 
in the momentum plane [12]. These technical problems 
associated with existing coordinate-space, plane-wave and 
moment methods suggest the desirability of an all-orders 
analytic approach towards the evaluation of quark con- 
densate contributions to OPE coefficients. 

To summarize, the purpose of the present paper is to 
study the relation between plane-wave, coordinate space, 
and moment methods for evaluating the quark and gluon 
condensate OPE coefficients. We also develop an im- 
proved analytic approach, as opposed to the order-by- 
order series techniques discussed above, for the evaluation 
of the OPE coefficients of the quark condensate. 

In Sect. 2, we demonstrate the equivalence of existing 
methods for evaluating the quark condensate OPE coef- 
ficient of gauge invariant correlation functions. This ana- 
lysis leads naturally to an efficient analytic approach for 
evaluating quark condensate effects to all orders in the 
quark mass. This new approach, which can be phrased in 

the language of a new Feynman rule, is applied in Sect. 
3 to correlation functions of scalar, vector and axial vector 
currents, illustrating the method and confirming the re- 
sults of previous calculations. In Appendix A we illustrate 
how this method is applied to one-loop divergent integrals 
as would appear in a typical baryonic correlation func- 
tion. Appendix B extends the calculations of Sect. 3 to the 
case of off-diagonal currents. 

In Sect. 4, we demonstrate the equivalence of all tech- 
niques for the gluon condensate OPE coefficient for gauge 
invariant correlation functions. For coordinate-space 
techniques, we show that the value of the OPE coefficients 
is insensitive to the gauge chosen for the external gluon 
fields, an important property since in principle the gauge 
for the non-local vev could conflict with the covariant 
gauge used to formulate QCD. We also consider a differ- 
ent approach to the non-local two-gluon vev that main- 
tains translation invariance. 

Finally, Sect. 5 will consider some applications to the 
quark p ro p ag a to r - a  gauge dependent Green func- 
t i o n - in  order to address some controversies about coor- 
dinate-space and plane-wave approaches. For  the quark 
condensate contribution, plane-wave calculations find 
a (physical momentum) "freeze-out" [11] that does not 
occur in the coordinate space approach [14]. We demon- 
strate that the new technique developed in Sect. 3 leads to 
the same freeze-out effect. Furthermore, contradictory 
fixed-point and covariant gauge expressions for the gluon 
condensate contribution to the quark propagator (respec- 
tively applicable to standard coefficient-space and plane- 
wave approaches) are nevertheless seen to yield the same 
gauge invariant relationship between the heavy-quark 
and gluon condensate. To our knowledge, this is the first 
instance that the heavy quark expansion has been derived 
outside of the (plane-wave) operator mixing approach 
[1, 2]. This calculation demonstrates how gauge depend- 
ence at an intermediate stage of a calculation does not 
affect a genuinely gauge invariant quantity, and illustrates 
that the discrepancy is a reflection of the propagator's 
gauge dependent nature rather than a failure of one of the 
methods. 

2 Equivalence of OPE techniques for the quark condensate 

To examine the relation between plane-wave, coordinate- 
space and moment approaches, it is first necessary to 
review each method. 

Coordinate space methods [2,4, 5] begin with the 
Wick expansion of a time-ordered product of currents. 
The time-ordered product is expanded in a perturbation 
series, and then the non-perturbative vacuum If2) is used 
to obtain the correlation function. Since the vacuum is 
non-perturbative, residual normal-ordered contributions 
to the Wick expansion of a time-ordered product of cur- 
rents can have a non-zero vev. Consequently, correlation 
functions are expressed in terms of non-local vevs of 
fundamental quark and gluon fields, which are then ex- 
panded in a coordinate-space series whose coefficients are 
the local composite operators known as QCD condensates. 

A given non-local vev can only generate certain con- 
densates in its coordinate space expansion. If only quark 



condensate effects are of interest, then the only non-local 
vev that needs to be considered [14] is (f21: ~(z)~O(y): I f2), 
where the normal ordering refers to the perturbative 
vacuum. 

It has been shown elsewhere [9, 13, 14] that the quark 
condensate projection of the two-quark non-local vev is 

<O[:ffe(z)~0"(y):{O> 

6"r ~ (--im)Z"(Y--Z)an 

~=o n . (n+ 1).4 

6"r ~ (--im)Z"+lY'(Y--z)(Y--Z)2" 
+-~- (qq)  2(n+2)!n!4,+ 1 , (1) 

n = 0  

where {, q represent colour indices and m is the quark 
mass parameter. Denoting x = ( y - z ) ,  the above expres- 
sion is merely a series representation of Bessel functions: 

<O I: q~r (z) ~O"(y):l Q> 

= 6--~ (0q)  J l ( m x / x ~ ) - - - ~ d z ( m x / / ~ )  

=6m 2 (qq)  (ir w / ~  j .  (2) 

An important property of the quark condensate projec- 
tion of the two-quark vev is that it satisfies the free 
equation of motion 

( i~-  m) (f21: fie (0) 0(x): ] f2) = 0. (3) 

This property allows a simple method for obtaining a D- 
dimensional version of (2) simply by seeking the solution 
of the equation of motion which reduces to (qq)/12 at 
x =0. The result is 

(f21: ~r 0" (Y): If2) = 6 Cn F (0/2) 2 ~ ' (qq)  (i~ + m) 
12m 

• ] (4) 

The functional form (2) has not previously been used in 
coordinate space methods, but the series (1) allows an 
evaluation of quark condensate effects as a series in m2/p 2. 

The apparent free-field nature of the non-local vev is 
initially perplexing. A priori it appears unlikely that 
a coordinate-space approach based upon (2) would lead to 
the same OPE coefficient as in the plane-wave method 
delineated below. On further reflection however, it is im- 
portant not to ascribe too much physical meaning to (4), 
since it is simply used to extract OPE coefficients of the 
quark condensate. Since the OPE coefficients are pertur- 
batively calculable, any amplitude used for this purpose 
will be a perturbative expansion containing free-field 
propagators and by analogy, it appears reasonable that 
the free-field expression should occur for the non-local 
vev. All the infrared nature of the OPE will then be 
contained in the condensates themselves, although this 
factorization of low-energy effects is difficult to establish 
[15, 16]. The equivalence of the various OPE methods, as 
will be shown below, supports this interpretation of the 
non-local vev. 
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Thus the coordinate-space approach for obtaining 
quark condensate effects consists of retaining residual 
normal-ordered terms (f2 ] : qJ(z) ~k (y) :] f2) from the Wick 
expansion of a given amplitude and then utilizing (1) for 
the (qq)  projection of this non-local vev. 

The plane-wave method will now be reviewed for the 
particular example of a scalar current correlation func- 
tion. This allows the relation between plane-wave and 
coordinate-space methods to be explored without the 
complication of non-trivial Lorentz and Dirac structures. 

Consider the OPE for the correlation function of two 
scalar currents j (x) (e.g. j(x) = ~ (x) ~ (x)), 

i S d#xe ip'x T(j(x)j(O)) 

=y(p)+~O(p) :~@:  + ... +~t(p):t~D2t~9 : + ... 

+o~(p)p . . . . .  p~2.:~g D~l ... D~2 D21@:+ ... 

+(gt,(p)p ~ . . . .  p~2"+':~D~, D Dzldt'+ " . .  

" ' "  ~ 2 n + l ~  Y "  

+ equation of motion operators + BRS variations 

+ operators not leading to ( i lq) ,  (5) 

where D, is the gauge covariant derivative. The OPE must 
have this form, since for a product of BRS invariant 
currents, only gauge invariant operators appear apart 
from the trivial contributions from BRS variations and 
equations of motion [-17]. Perturbative contributions to 
(5) are contained in J(p),  and operators which contain 
anything but two quark fields have been neglected since 
they do not ultimately contribute to the (qq)  effects in the 
correlation function. Non-trivial Dirac structures such 
as:t~y ~' ... y~-~9: have also been neglected since they are 
not independent objects after a vev is formed, thereby 
contributing in a similar fashion as the operators already 
considered. 

A correlation function is now formed form (5) by 
evaluating an expectation value in the non-perturbative 
vacuum: 

/7 (p2) = i S d4 x e iv'" (Y21 T(j  (x)j (0))1 (2) 

= J ( p ) +  ... +~t(p)(f2]:~tD2t~:[f2)+ ... 

+ g~(p)p~q ... p,2, ((2]:~D,, ... D,2 D2tO: ](2) 

+ ... +(gt,(p)p ~a .. .p ..... 

x (f21 :~D~x ... D .. . . .  DZt~b : [f2)+ ..- 

+ 0 (equation of motion, BRS variation) 

+ operators not leading to (Etq) . (6) 

Since we are dealing with a scalar current the vevs in the 
above expression can be simplified (the symmetrization of 
indices imposed by contraction into products with mo- 
menta is important): 

(g2{: ~,D,1 ... D . . . .  1D21~/:1(2)=0 (7a) 

(#21: ~D~,...  D,202t:}#2) 

=S~1 ..... .  (~2l:~D2(t+n)~:l f2) 

+operators not leading to (qq ) ,  (7b) 

where S~1 .... 2, is a completely symmetric tensor nor- 
malized so that S~ . . . , ,  . 
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If attention is restricted to the (4q)  contribution to 
H(p 2) then the equation of motion 

D2O=(~'Dy " D--(i/2)auvG,~)~ 

= -- m E ~ + irrelevant operators = -- m z ~ (8) 

can be used, since the neglected gauge-field contributions 
from the complete equation of motion do not generate the 
quark condensate [14]. After vacuum averaging, the (4q)  
component of/ /(p2) is thus given by 

H(p 2) = i f d4xeiV'x(f2[T(j(x)j(O))lf2) 

= ( q q )  [ "'" +N,,(P)(--m2)"+ "'" 

+ 8,~(p)(- m2)" +~p . . . . .  p=~. S,~...,2. ] 

___ Cg(p2) (~q) .  (9) 

The plane-wave method is designed to single out the 
quark condensate effects and to simulate the effect of 
vacuum averaging. If a matrix element of (5) is formed 
between on-shell one-quark states [k, s )  where k is the 
quark momentum and s represents the spin state, then 
only operators with two quark fields will be non-zero (in 
particular D~ can be replaced with ~), and since the states 
are on-shell the equation of motion operators will not 
contribute. Consequently, we find that 

i f  d4 xe  ip'~ (k, sl T(j(x)j(O))lk, s)  

= D ~  s ) +  ... 

+ ~ ' ( p ) ( k ,  s l :~az 'O :lk, s ) +  ... 

+ g ~ p "  ... p'="(k, sl:~(?~l ... 0==.Ozl:[ k, s ) +  ... 

+(gl,(p) ffq ... p . . . . .  (k, s I: ~c~, ... ~o~2.+, cOi*O:lk, s> + . . . .  

(lOa) 

i f  d4x e ip'x ( k, s lT(j(x)j(O))[k, s)  

= ~ ~  s l :OO:lk ,  s ) +  ... 

+~'(p)(--k2) ~ (k, s]:l}~:lk, s) + -.. 

+N~(p) ( - ip"  k)2"(- k2) l (k, s[: ~0:  Ik, s) + .-. 

+ (9,l(p)( - ip" k )2"+l( -k2) t (k ,  sl:t}r [k, s) + .- . .  

(10b) 

Averaging over the momentum directions/~ simulates the 
effect of the vacuum as illustrated by the following identi- 
ties: 

I dfck=~.., k=~. =(k2)nSa, . . ' = 2 . -  (11) 

An identical plane-wave approach is to average over the 
external momentum p, an option which is more conveni- 
ent for the gluon condensate [13]. 

Since the quark states are on-shell, k 2 is replaced with 
m z after averaging, and a sum over spin states (and impli- 
citly a colour trace) is performed, thereby leading to the 

plane-wave determination of the (~q)  OPE coefficient 
~(p2): 

r  [~O(p). . .  + ~ . ( p ) ( _ m ~ ) n +  ... 

+ 8~(p)(--m2)"+t p . . . . .  p~" S~,~ ...... ] 

- 6 - 1 f d 4 x e ' P ' X ~ d l ~ @ , s l r ( j ( x ) j ( O ) ) l k ,  s)  . (12) 
s 

At this point it should be remarked that no distinction 
between bare and renormalized fields has been made, 
implicitly assuming that we are working to leading order. 
The only modification that occurs in higher-loop calcu- 
lations is the effects of renormalizing the composite oper- 
ators that appear in the OPE. One then identifies the 
next-to-leading contribution to the OPE coefficient of the 
renormalized composite operators as a combination of 
a next-to-leading amplitude and the leading amplitude 
with a renormalization effect (see [16] for details of this 
procedure for a particular calculation). This would occur 
in an identical fashion both for plane-wave and coordi- 
nate-space methods. The only complication that can oc- 
cur is the failure in infrared singularities to cancel from the 
OPE coefficients [15]; a property which, if desired, can be 
explicitly verified at the relevant order [16]. Thus our 
analysis applies to higher loop effects provided that the 
appropriate renormalization factors are taken into ac- 
count. 

Before reviewing moment techniques, we will now 
demonstrate the equivalence of plane-wave and coordi- 
nate-space techniques. To obtain the connection between 
these methods, consider the possible contributions from 
the Wick expansion of the final line of (12). Clearly only 
terms containing two (normal-ordered) quark fields: 
t}(z)O(y): can contribute to the matrix element with 
(k, s]. All other terms will either be disconnected pro- 
cesses or will have a zero matrix element because of their 
field content. Focussing upon a single term of this type 
occurring in the final line of (12) leads us to consider the 
following contribution: 

f dE Z (k, s I ~;"(z) ~,~(y): I k, s >, (13) 
S 

where t /and ~ are colour indices. Since the Wick expan- 
sion is a perturbative expansion of free fields, this matrix 
element can be easily evaluated by expanding the quark 
fields in terms of their free-particle solutions. 

~f d; Z <k, sl~"(z)0qy):lk, s> 
$ 

= 12m f d/~(~ + m) e -ik'~y-~) 

6,r 
= ( i~+m)fd l~e  -ik'x, x ~ y - z .  (14) 

12m 

The only remaining complication is the averaging process 
over k, which is facilitated through utilization of the D 
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dimensional partial wave expansion [4] 

D 

\ , / ~  / J.+o/e-~ (,/UT~). (is) 

The RHS of (14) is then evaluated utilizing the ortho- 
gonality of the Gegenbauer polynomials and the kZ= m e 
mass-shell conditions: 

1 idl~ E (k, sl:~"(z)Or s) 
8 

=F (O/2)2o,e-, a ~" (i~.4_mi ~ Jo/e-l(rnx/~) ~ 
1 2 m ' ~ -  " [ ~ ~ U ~ - J  (16a) 

a "~ (ir 
=6m2 L x / ~  , D=4 .  (166) 

Equation (16b) is identical to the coordinate space repres- 
entation for the two-quark non-local vev (4), apart from 
the (qq) factor absorbed into the definition (9) of cg (p2), 
thereby demonstrating the equivalence of plane-wave and 
coordinate-space methods for evaluating the (qq)  OPE 
coefficient. 

We now consider the connection between coordinate- 
space and moment methods. Moment techniques [6] 
begin with a separation of the full quark propagator S(k) 
into a perturbative and non-perturbative portion. 

Sr~P (k) = S(k)- SV (k) . (17) 

To interpret this relation, consider the definition of the 
quantities on the RHS of the previous equation 

iS NP (k) = S d~ x e ik'x ( t? [ T(I~ (x) t/7(O) ) [ t? ) 

- < o I~(~, (x) ~7(o)) I o >. (18) 

But the Wick expansion 

T(O(x)~(O))=fOlT(q,(x)~(O))lO)+:O(x)~(O):, (19) 

applied to the RHS of (18) for a normalized vacuum It?) 
yields 

iS Nv (k)= ~ d ~ x e i*x (t'/I : 0 (x)~(0): I t'l) 

. dOk 
(t?l: @ (x) ~7(0):} t?) = J ~ e-it.,, iS NP (k). (20) 

Moment methods [6] then relate the local condensate 
(qq)  to integrals of the non-perturbative propagator 
SNP(k) in a fashion similar to a gap equation: 

d~ (qq)  (21) S ~ iTr [SNe(k)] = 12 

The Dirac structures of SNV(k) have moments which are 
related to the quark condensate. In particular, with the 

help of the ~ = m equation of motion we see that 

SNP (k) = ~ 2 (k e) + ~(k e) 

D_~2 ~ ~ S (~n)odDk kZ A(ke)= S roB(k2) = m(qq)12 (22a) 

Moreover, the (qq)  component of higher order moments 
is found by having each additional integrand factor of k e 
correspond to multiplying the RHS of (22a) by an extra 
factor of me: 

d~ d ~  ~ 
(ke)~+l A(k2)-- j " ~ m (ke)~ B(k e) 

= _(mey m(qq) (22b) 
12 

It is now straightforward to extract the non-local version 
of the two-quark vev by returning to (20): 

(t?l:0(x)~7(0): It?) 
, tDk 

i S ~ e-ik.x r e) +/~(k 2) 

dDk -ik.x ~ 2 ." dDk 
=ir I (~)De Atk )+,j  (-~)oe-'k"B(ke). (23) 

The partial wave expansion (15) is then used to evaluate 
the angular integrals in (23), and we find that 

(t?l: O(x)qT(0): It?5 
dDk f 2 ']~ 

(24) 

One can use the series representation of the Bessel func- 
tions in (24) in conjunction with (226) in order to find the 
result 

(ol:r ) 

F(D/2) 2 o/e-1 (qq)ti~+m) F JD/e- ~ (m'/xe) ] (25) 

identical to the coordinate-space expression (4). 
Consequently we have demonstrated the equivalence 

of plane-wave, coordinate-space and moment methods for 
evaluating the (qq)  OPE coefficients. In the next section, 
a new analytic method for evaluating OPE coefficients to 
all orders in m will be applied to several examples. 

3 Momentum space approach to coordinate space methods 

Scalar current correlation function 

Coordinate space methods generally involve calculating 
configuration space integrals over each term in the series 
(1). In this section, we utilize the full functional form of the 
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two-quark non-local vev (2) to obtain a momentum space 
integral for the lowest order (c]q) contribution to the 
scalar current correlation function: 

H(p 2) -= i S d 4 xe ~ ((21 T(j(x)j(O))[f2), 

j(x)=- ~(x) O(x). (26) 

The quark condensate component of H(p 2) is obtained by 
retaining a two-quark vev from the Wick expansion of the 
correlation function 

//(p2) = _ 2i ~ d 4 x e ip'~ Tr [ ( O  I r ( o  (0) ~ (x ) )  I O ) 

x (Q I: ~k(x) ~(0): [ (2 > ] .  (27) 

Transformation to momentum space is now made using 
the following free-field expressions. 

�9 " d4q iq .x  ~ + m  (28a) 
(O lT(O(O)~(x ) ) lO)=lJ (~ )4e  q2 m2+i ~ 

({tq) ( ir  J , (mx/ /~)  ] 
(al:O(x)-(~ ~ L ~ A 

= I  d4 ke-a ' "  (r m) ~ (k )  (28b) 

(qq)  J,  (m x/~/)  (28c) d '~ k e -ik.= ~ (k) =- 6m 2 x / ~  

The Feynman rule for the normal ordered term in (27) is 
given by (28b), and is illustrated in Fig. 1. Working dir- 
ectly from (27) and (28), or applying the Feynman rules for 
the diagram in Fig. 2, the scalar current correlation func- 
tion can now be expressed as the momentum space inte- 
gral after evaluating traces. 

i f (k)  . (29a) H(p2) =24 ~ d4k [m 2 - p .  k + k  2 ] (p_k)2_m2+i~  

An important property of the Fourier transform ~ (k )  is 
its on-shell behaviour 

(k 2 - m 2) f f  (k) = 0, (29b) 

which follows from substituting both sides of(28b) into (3). 
Making use of this property in the integrand of (29) we 

p . .  . . . . . . . . .  . . .  

,:. ~ = (~d + m ) Y ( p )  

Fig. 1. The momentum-space Feynmau rule for the vacuum expec- 
tation value of normal-ordered quark fields, as in the integrand of 
(28b) 

find that 

H(p2)=12 S d4k[4m2 p2 ] ~ (k )  p2 _ 2p" k + ie 4-12 S d 4 k ~-(k). 

(30) 

The second integral in (30) is determined by the x --*0 limit 
of (28c): 

lim ~ & ke -ik'x o~(k)= - (qq)  lim J1 (rex/~5) 
x-.o 6m z x-.o x / ~  

d 4 k i f ( k ) =  - (qq---~) (31) 
12m ' 

Now consider exponentiating the propagator factor oc- 
curring in the first integral of (30): 

J~ (k) = _ i  l d4 k ~.(k) ~ dtle,,(p2_2,.k+,~ ) 
d 4 k p 2 _ 2 p . k + i e  o 

(32) 

The k integral can now be done using the definition (28c) 
of ~ (k): 

I d4 ~(k) 
k p 2 - 2 p . k + i e  

_ i(clq> ~ d~ e,~p~_~jl(2tlmx/~). (33a) 
12m2x/~ o t/ 

This final integral is tabulated [18], 

e-'~Jv(fix) d_~_x = ( ~  +fl2-c0~ 
0 X V f l  v 

Rev > 0; Re ~ > [ Imfl[, (33b) 

and when the e---,0 limit is taken, the following result is 
obtained: 

~d4k ~ = - ( ( l q - ~ ) [ l + w f i - a m 2 / p 2 ] - l .  (34) 
p2 _ 2p " k + ie 6 r a p  2 

The results of (31) and (34) are now substituted into (30). 
Thus the lowest-order quark condensate contribution to 
the scalar current correlation function for Euclidean mo- 
menta Q2 is then found to be 

H(Q2)= ( q q ) ( 1 - v ) ( l + 2 v ) ,  v = ~  1+4m2/Q 2 (35) 
m 1 +V 

in agreement with previous work [13]. 

Vector current correlation function 

Fig. 2. The Feynman diagram for 
(lowest-order) quark condensate con- 
tributions to two-current correlation 
functions 

The vector current correlation function of light quarks 

Iluv (p) = i ~ d 4 X e ip'x ((2[ T(ju(x)jv (0))1 (2), 

g (x) --= ~(x) 7u ~9 (x) (36) 

is extremely important in applications because of the 
relation between its imaginary part and the ubiquitous 
quantity R(s) = a(e + e- ~ hadrons)/a(e + e-  ~ muons). 
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The leading quark condensate contribution to Flu,(p) 
devolves from a two-quark vev in the Wick expansion. 

H, ,  (p) = -- 2i ~ d 4 x e ip'x Tr [ (01 T(0 (0) ~(x)) I O ) Yu 

x (f2J: r (x) ~((0): I f2) 7, ] (37) 

A momentum-space expression for f/u, can be obtained 
using either (28) or by applying the Feynman rules to 
Fig. 2. 

Hu,(P)=2 j d 4 k Tr[(~-lJ+m)yu(~ +m)y~] 

~(k) 
x ( k -  p)2 _ m 2 + ie" (38) 

The correlation function //u, must be transverse, as re- 
quired by charge conservation. To see this explicitly, we 
contract pup, into the correlation function, and make 
liberal use of (29b) in order to find that 

pUp" Hu,(p) 
= 24 S d 4 k [(m 2 --k 2) p2 + 2 (p" k) 2 -pZp .  k] 

o~(k) 
X 

p2-2p.k  +k2-m2 +ie 

= - 24 ~ d 4 kp" k~(k).  (39) 

We note from (28c) that 

d 4 kp" k r (k) = i lim d ~ d4 k e -  ~r ~- I (k) 
r fig 

"(qq>' d Jl(m~ w / ~ ) = 0  (40) 
= - '  6-2'L o ' 

thereby verifying the transversality of//u,. If we contract 
gU, into both sides of (38) we find, upon evaluating traces 
and imposing the on-shell constraint (29a), that 

(k) 
H ~  (p2 )  = 6 ~ d* k [16m 2 - 8 (k  2 - p" k) ] (p _ k) 2 _ m2 -t- ia 

= 24(2m2 + p2) S d4 k ~ (k) 
p2 _ 2p " k + ia 

--24 ~d 4 k,~(k). (41) 

The integrals appearing in (41) were evaluated in (34) and 
(31). Using the transversality of Hu,(p), the result for the 
vector current correlation function 

(42) 

is easily obtained. This result agrees with previous work 
using the coordinate-space series methods [9], and with 
plane-wave calculations [13]. 

Axial-vector current correlation function 

The axial-vector current correlation function is of rel- 
evance to properties of the pion and their PCAC relations. 

The correlation function for axial currents is 

//UV (P)A = i I d4xeiP'~(QI T(jf(x) J~(O))l f2) 

j~ = r Y, Ts ~k(x), 752 = 1 (43) 

Following familiar procedures, a momentum-space ex- 
pression for Hu a, is obtained. Since the axial current is not 
conserved, the correlation function contains a longitud- 
inal component 

Flua~ (P) - PuP~ HAL (p2) + (pup~ _ p2 g.~) HaT (p2) 

=2  S d4kTr[(r 

~(k) 
x (P-- k) 2 _ m2 + ie" (44) 

The longitudinal part HL a of the correlation function is 
obtained by contracting (44) with pUp,, evaluating traces, 
and imposing the on-shell condition as before: 

. , A 2 2 g~(k) 
P P Hu~=-48m p Sd4k-p2 2p.k+ie 

- 24 j d 4 kp" k o~ (k). (45) 

Recalling the results of the integrals in (31) and (40) then 
finds the longitudinal part of F/u~ to be 

A 2, 2m(qq) [ ~ ' ] 4 m  2 
HL(p ' = ~  t_l--~/- P2 J" (46) 

The transverse component is found by contracting (44) 
with gu,: 

li2U(p) =p2 HL (p2)_ 3p2 HT (p2). (47a) 

, i f ( k )  , ,~ 2 . 1  2 ,  
=48Sd4Kp2 2 p . k ~ t - J m  -t-~p ) 

- 24 1 d4 k o~(k). (47b) 

Evaluating the integrals and solving for HT leads to the 
final result for/ /u A, 

A , 2m(glq)[l_ /1 _4mz] 
IIu'(P)= m ~  p 2  _] PuP, 

+ m ( q q )  I1 6 m2 / 4m2"~ 3/2 

x (PuP,--P2Ou,). (48) 

confirming earlier results [10, 13] obtained through use of 
conventional coordinate-space and plane-wave tech- 
niques. (The relevant equation in [13] has an easily- 
identified typographical error.) 

4 Equivalence of OPE techniques for the gluon condensate 

The equivalence of plane-wave, coordinate-space, and 
moment methods for the OPE coefficient of the gluon 
condensate ((cqG z >) appears a priori unlikely because of 
the fixed-point gauge employed for the non-local two- 
gluon vev in coordinate-space methods. The issue is fur- 
ther complicated by the possibility of operator mixing in 
the OPE, as illustrated by the ST identities for the gluon 
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propagator [19]. Nevertheless, for the evaluation of the 
product of gauge invariant currents as in QCD sum-rule 
applications, then the restricted class of (gauge invariant) 
operators appearing in the OPE allows a demonstration 
of the equivalence between the three methods. 

To demonstrate this equivalence, we first review plane- 
wave, coordinate space, and moment methods as applied 
to the gluon condensate. Consider the OPE of the product 
of two (gauge invariant) scalar currents: 

i ~ d 4 x e 'p'~ T( j  (x)j (0)) 

= y ( p 2 )  + cg (p2): G~ ~ G~: 

+ ~(p2)p~pO [: G~ G~p: --�88 gaP" G~G~v: ] 

+ operators not leading to (cq G 2).  (49) 

A non-trivial complication in (49) occurs for coordinate- 
space methods when the (light) quark mass is taken to be 
non-zero in order to deal with infrared problems. In this 
case, the m = 0  limit does not agree with the direct calcu- 
lation with massless quarks because of an operator mixing 
between the quark and gluon condensates (at lowest or- 
der) when m r  [13]. The resolution of this problem is 
closely related to the heavy quark expansion (the heavy 
quark expansion will be discussed in Sect. 5). For now, we 
will assume that all calculations of the gluon condensate 
effects involve massless quarks. This problem does not 
occur in plane-wave methods because the OPE can be 
interpreted in terms of non-normal-ordered operators 
[223. 

The correlation function H(p 2) is formed by taking 
a vev using the non-perturbative vacuum ](2). Conse- 
quently, the gluonic condensate contributions to H(p 2) 
are given by 

H(p 2) = i ~ d 4 x e ip'x ( O[ T(j(x)j(O))[f2) 

= Cg(p2) (G 2 ) + ~(pZ)pXpO 

• [(f21 "G~,~G~o:If2)-�88176 (50) 

where (GZ)~(f2[:GuvGuv:[f2).  The process of vacuum 
averaging annihilates the term proportional to N(p2) 

so that the gluon condensate contribution to II(p 2) is 
given entirely by ~(p2): 

II(p2)=C~(pZ)(G2)+terms not leading to (G2) .  (52) 

The plane-wave method is designed to extract the gluon 
condensate by forming a (connected) matrix element of the 
OPE with one-gluon states [e, k): 

d4 xelV'x @, kl T(j(x)j(O))le, k)  

= 4c6v (p 2) [e 2 k 2 - (g" k) 2 ] 

+ 4~(p  2) [k 2 (p" e) 2 - p" kp" ek" e -  �88 (e2 k 2 _ (e" k) 2)1. 

(53) 
At this point, the origin of the operator mixing is clearly 
evident in the plane-wave approach, since when m ~0  the 
matrix element ( e , k ] ~ ] ~ ,  k) is non-trivial, leading to 
the misidentification of gluon condensate effects as dis- 
cussed in [13]. 

As with the quark condensate, the behaviour of the 
vacuum is simulated by averaging over the directions of 
the external momentum p 

d~ p~pp = �88 g~p, (54) 

in which case the term proportional to N(p2) is once again 
annihilated: 

dl~ f d4 xe  ip'x @, kl T(j(x)j(O))le, k )  

= 4Cg(p 2) [e 2 k 2 - (e" k) 2 ] .  (55) 

The invariant amplitude for the LHS of(55) is constrained 
by gauge invariance (e,-~e~+k~) to be transverse to the 
momentum k, resulting in two possible terms: 

r,p (p, k) = y d ~ x e iv.x (~, k [ T( j  (x)y(O))lfl, k )  

= T m (p, k) [k2g~p-k~k~] 

+ T (2) (p, k) [k 2 p, pp - k" p k , p p -  k" pkpp, 

31- "k  "2 1 t "P) g~p-- 2 p2 (k 2 g~lJ - k~k~) ] (56) 

The term proportional of T (2) is zero after averaging over 
p, leaving dependence only on T(1): 

4~(P 2) [ e2k2 --(g" k) 2 ] =e 'eP I d/~ Lr k) 

= T(X)(p, 0)(kZg~p-k~kp)e~e ~. (57) 

Thus in the plane-wave method, the OPE coefficient of the 
gluon condensate (G 2) is given by one of the components 
of the invariant amplitude evaluated at zero external 
gluon momenta, 

~(p2)=�88  T")(p,  0). (58) 

As with the quark condensate, coordinate-space tech- 
niques for the gluon condensate involve a non-local vev 
originating in the Wick expansion of the time-ordered 
product of currents�9 The only non-local vev that can 
contribute to the gluon condensate contains two gluon 
fields (f2[:A~(x)A~(y):[f2) [141�9 Since this quantity is 
gauge dependent, it must be demonstrated that such 
gauge dependence does not affect the gluon condensate 
contributions to gauge invariant correlation functions. 
Furthermore, the equivalence between coordinate-space 
and plane-wave methods must be established. 

First consider a covariant gauge representation of the 
two-gluon non-local vev [203 
( ~ l  " ~ �9 A, (x) A~ (y). I~ )  

bab 
- N / - -  1 [C(x--Y)I~(x- y)v+ E(x--y)2 gttv] 

+terms leading to higher dimension condensates. (59) 

The coefficients C and E are related to the dimension- 
four gluonic condensates. 

C -  2E =z~4 (G 2 ) (60a) 

5C + 2E = - �88 (g2[: (0" A)2: I g2), (60b) 

The momentum space representation of (59) is 

(al:A~(x) A~(y):la) 

[ ~ ~ ~ ~ ]64(k). = - ~ d 4 k e  -ik'('-y) C ~k~, ~k ~ t-Eg.~ ~k~ ~k z 

(61) 
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k 

/~ " ," v " - -  . . . . . . . .  . - "  

Fig. 3. The momentum-space Feynman rule for the vacuum expec- 
tation value of normal-ordered gluon fields, corresponding to the 
integrand of (61) in the limit y-x---*O 

As with the quark condensate, the normal-ordered term 
can be identified with a Feynman rule as illustrated in 
Fig. 3. Thus the contribution of this non-local vev from 
the Wick expansion of//(pZ) is related to the invariant 
amplitude 

H(p2)=-~d4k64(k )  C ~k ~ 

~ 1  1 + Eg,o ~ ~ ~ T~ 0 (p, k). (62) 

The symmetry factor of 1/2 originates in the double- 
counting when joining the external gluon lines in the 
amplitude. Using the expression (56) for T,~(p, k) and 
performing the delta function integration leads to the 
following contribution to /7  (p2): 

/-/(p2) = --I d4 k6(4)(k) C c~k, ~k p FEg~tj ~-~ 

• [T(1)(p, k)(kZg~t3-k~kt~) 

+ T ~2) (p, k) (k 2 p,p~ - k" p k,p~ - k" p k~ p, 

+ "kt " P)'2 g~o_ ~ p2 (k2 g,a _ k~kt~ ) ) ] 

= 6(C--2E) T m (p, 0). (63) 

Recalling the relations (60) between C, E and the gluon 
condensates leads to a coordinate-space determination of 
the gluon condensate component of the scalar current 
correlation function. 

H(pZ)=�88 z ) T (~ (p, O) 

(~ (p2) = �88 T~,) (p, 0). (64) 

This result is identical to (58), demonstrating the equiva- 
lence of plane-wave and coordinate-space approaches for 
covariant gauge representations of the non-local two- 
gluon vev. 

A similar procedure exists for fixed-point gauges. In 
this case the non-local vev violates translation invariance, 
and the connection with plane-wave methods requires 
distinct momenta for the external gluon lines. The require- 
ment is similar to the modified non-zero momentum 
(NZI) plane-wave method [19]. The modified NZI plane- 
wave approach has proved to be useful in resolving ques- 
tions of operator mixing and in analyzing the infrared 
finiteness of OPE coefficients. 

In the fixed-point gauge, the gluon condensate com- 
ponent of the non-local two-gluon vev is 

(12]: A~(y) A~ (z): I O) 

1 ( ~ a b ~  
=48 ypz~ \N~---~-I ] [gPr (G2)" (65) 

Since this vev is not translation invariant, its momentum- 
space version depends on two momenta: 

(OI:A~(y) A~(z):I f2) 

(G2) d 4 d4 to e-ik'Y e -ir 
- 4 8 S  kS 

( 0 g 3 0 )6t4)(k)6,,O(d). (66) 
x g~0k x&0 a 0k ~to~ 

The invariant amplitude is also modified by the presence 
of different momenta for the external gluon lines. 

3-"a# (p, k, E ) ~  I d4X eip'x (Ol T(j(x)j(O))l ~, k; fl, ~ 5 

= j (1)(p,  k, to) [-k'tog~a + kt~to~] 

+ 9-(2)(p, k, to) [ -  k" toP~Pt~ +P" kd~pa 

+p'tokap~-�89162 (67) 

Gauge invariance is again satisfied by this amplitude since 
it is transverse with respect to k ~, t ~176 In the limit t~ - k ,  
the above expression must reduce to (56), implying that 

9-~(p, k , - k ) =  T=e(p, k), 

y(1)(p, k,--k)= T(1)(p, k), 

j-(2)(p, k , - k ) =  T(2)(p, k). (68) 

Using the above results, the contribution of the fixed- 
point gauge non-local vev to the correlation function 
/7(p2) is then given by 

(G 2 ) 
n(P2) = - 4~-S dr I dgto6~4)(k)6~'~)(to) 

[ 00 00],  
x g ~ k X O d z  ~kOOto " -~J-,~(p,k, to). (69) 

Using the expression (67) for the amplitude ~--~p and recall- 
ing (68) provides the final result for the gluon condensate 
component of H(p2), 

H(p 2) =�88 (G 2 ) 3 -(1) (p, O, 0)=�88 (G 2 ) T (a) (p, 0). (70) 

Comparison of (58), (64) and (70) reveals that coordinate- 
space and plane-wave methods are equivalent for deter- 
mining the gluon condensate OPE coefficient in correla- 
tion functions of gauge invariant currents. Furthermore, 
the coordinate-space techniques are independent of the 
gauge chosen for evaluating the non-local two-gluon vev. 
This latter point is obviously a concern when combining 
the non-local vev with perturbative covariant-gauge 
gluon propagators. 

As with the quark condensate, moment techniques for 
the gluon condensate identify integrals of the non-pertur- 
bative gluon propagator with the gluon condensate: 

D r':(k)=D~,v(k)-Du~ kt'k~lD(k2 

i S d4k (O2) (71) (-~n) 4 k2g(k2)= 48 
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Thus the relevant (gluon condensate) contribution to 
H(p z) is related to the invariant amplitude 

d4k 4D~P(k) T~p(p, k), //(p2) ___ i I (72) 

where the factor of 4 comes from a colour trace and 
a symmetry factor to prevent double counting. Substitu- 
ting for D~r'(k) from (71), recalling that T~O is transverse to 
the momentum k, and using the explicit form (56) for the 
invariant amplitude leads to the expression 

. d4k 
I I (p2)=i  j ~ 4/~(k 2) TI(p, k) 

" d4k ~ 2 [3k2TO)(p,k)  =i  J (-~)4 4D(k ) [ 

1 2 2 

+2,p 1 (73) 

The angular integration annihilates the term containing 
T (2), and the relation (71) between the moments and (G 2) 
gives a final result 

//(p2)=�88 (Ga) T(t) (p, O) (74) 

identical to the previous methods. This completes our 
demonstration of the equivalence of the plane-wave, coor- 
dinate-space and moment methods for evaluating the 
OPE coefficient of the gluon condensate. As mentioned 
earlier, it has been assumed that massless quarks have 
been used in all calculations for the gluon condensate (see 
[13] for details on dealing with the case when m#0). 

5 Aspects of gauge dependence: the quark propagator 

An important element of the analysis of Sect. 4 is the 
nature of the OPE. For products of gauge invariant cur- 
rents, the OPE can only obtain gauge invariant, equation 
of motion, or BRS variation operators. To lowest order in 
the gluon condensate only the gauge invariant operators 
contribute to the correlation functions, in which case the 
problems associated with operator mixing and renormal- 
ization of composite operators do not occur. However, for 
gauge dependent correlation functions there is no restric- 
tion on the operators appearing in the OPE and hence the 
various approaches to evaluating the gluon condensate 
contribution will differ. An example of such gauge de- 
pendence is provided by the quark propagator. 

An unresolved issue in the literature is the gluon con- 
densate contributions to the quark propagator, where the 
results of plane-wave [11] and fixed-point coordinate 
space techniques [5, 11, 14] disagree. It is essential that 
such dependence disappear from calculations of (gauge 
invariant) physical quantities. We show below that when 
the different expressions for the quark propagator are 
used in the heavy quark expansion for the quark conden- 
sate, all remnants of gauge dependence cancel, and stan- 
dard results [2, 21] are obtained. 

Fig. 4. The Feynman diagram for the 
(lowest-order) gluon condensate con- 
tributions to the quark propagator 

First consider the plane-wave and fixed-point results 
for the (~sG 2) portion of the heavy quark self-energy 
z(p): 

nrn~ (/~ - m) (~s G 2 ) (fixed-point), (75a) X (t 9) = 3 (p2 _ m2)a 

Z (p) = n [ (p2 _ 3m2)i ~ + 4m 3] (es G 2) (plane-wave). (75b) 
9(p 2 -m2) 3 

The parameter m is the heavy quark mass, and the self- 
energy is related to the quark propagator AS(p) in the 
usual fashion: 

iA S(p) = ~ d 4 x e 'p'x (O I T(r •(0)) I O) 

i 
= (~ + m) X (p) (~ + m) (p2 _ m~)2 �9 (76) 

We will illustrate the gluonic condensate contributions to 
the quark propagator in the covariant gauge. The term 
from the Wick expansion that contains the non-local 
gluon vev is 

g 2 
iA S (p) = - -~ ~ d 4 x e 'p'x ~ d 4 y ~ d 4 z ( O [ T(~k (x) ~(y))[ O ) 

x7"2"(O1" " �9 A. (x) ~ ,  (y) :10 ) ( 017"(r (y) ~7(z))l 0 ) 

x r" 2b ( O] T(r (z) qT(0)) I 0 ) ,  (77) 

as illustrated in Fig. 4 ( the Feynman rule for the normal- 
ordered product is shown in (61) and Fig. 3). The 
covariant gauge expression (59) for the non-local gluon 
vev leads, upon converting to momentum space, to the 
self-energy 

g2 [ ~ c3 E ~ 0 ] ~+m ~ z(p)= -~-  ~. c - - - - -  OpU dpV F guv ~p~ ~ ~ - m ~  7 �9 (78) 

Evaluating the derivatives, and recalling the definitions of 
C, E from (60) leads to the covariant gauge result for the 
gluonic condensate portion of the heavy-quark self-energy 

g m  3 

X(p)= 3 (pZ _m2) cq (01:(0-A)2:] •) 

n [(p2 _ 3m 2) r + 3m 3 ] ( ~  G 2) (79) + 
9(t7 2 - m 2 )  3 

The explicit appearance of the (~" A)2 operator is a conse- 
quence of the OPE for a gauge dependent current. 

Clearly the gluon condensate component of the quark 
self-energy is gauge dependent. However, when calculat- 
ing a gauge invariant quantity such as the heavy-quark 
condensate, such gauge dependence must cancel. The con- 
nection with the heavy quark expansion for the quark 
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condensate ( ~ )  is made through the gluonic contribu- 
tions to the self-energy: 

- ( ~ , )  =~ ~ Tr [iA S ( p ) ] .  ( 8 0 )  
tzn) 

Substituting the different versions of the self-energy leads 
to plane-wave (pw), fixed-point (fp), and covariant gauge 
(cg) expressions for the heavy quark condensate: 

12 . d4p 

4m 3 (p2 + m 2) + 2rap2 (p2 _ 3m 2) 
x (p 2 _ m 2) 5 (81 a) 

(~O)fp=i4rcm(%G2) - d4p p2 
- J (2~)4 (pZ _me)4 ' (81b) 

d4p p2+m2 
-- ( ~ ) r  = i47zcqm3 (t21: (0" A)21 f2) S (2rc)4 (p2 _ m2)5 

4 xm (cqG2~ j" d4p 2p4-3m2p2 +3m4 
+ i (p2_  m2)  

(81c) 

All the momentum integrals are finite, and can be cal- 
culated using the integral [4] 

~d4k (k2) ~ 

(k - m )p 

i m2y_p+ 2 r ( 2 + ~ ) r ( / ~ - ~ - 2 )  (82) 
= 167z 2 ( -  F(fl) r(2) 

The final (standard [2, 21]) result for the heavy quark 
expansion contains only gauge invariant operators (i.e. the 
coefficient of (Ol:(O" A)2:I f2) is zero), and as expected, is 
independent of the gauge used to evaluate the quark 
self-energy: 

12z (83) 

This is an explicit illustration of the equivalence of plane- 
wave and coordinate space methods when a gauge de- 
pendent correlation function is used as an intermediate 
stage in the calculation of a gauge-invariant quantity. 

Another example of an apparent discrepancy between 
plane-wave and coordinate-space methods is the (light) 
quark condensate contribution to the quark self-energy. 
The difference between these methods occurs for physical 
momenta where the plane-wave (pw) technique observes 
a "freeze-out" below p2 = m 2 [11] that is inaccessible in the 
explicit m2/p 2 coordinate-space (cs) series [14]. 

92 (glq) [(3+a) -am~ q 
Z (p)r = 9-p~p2 ~ -  A" (84a) 

Z(P)pw= 9 ~  2 (qq)  [_1 (3 + a)--a~2]O(p2--m 2) 

Fig. 5. The Feynman diagram 
for (lowest-order) quark con- 
densate contributions to the 
quark propagator 

The coordinate space series approach, leading to a series 
in powers of m2/p z, is insensitive to the non-analytic 
freeze-out. We show below, however, that the improved 
technique for the coordinate-space approach developed in 
Sect. 3 yields the same freeze-out as observed via plane- 
wave methods. 

Before continuing, some comments on the physical 
interpretation of the freeze-out are required. Since the 
Euclidean momentum expression must be analytic, there 
can be only one analytic continuation of the Euclidean 
result to physical momentum. Phrased another way, only 
one of the two segments in (84b) can be analytically 
continued to Euclidean momentum, namely the large pZ 
portion, leading to the physical OPE coefficient which is 
analytic for large Euclidean momentum (m2/p z ~ 0). How- 
ever, the freeze-out is unavoidable in the plane-wave ap- 
proach [11], and thus if the OPE methods are truly 
equivalent then this effect must also be observed in coordi- 
nate-space techniques. 

The relevant term in the Wick expansion of the quark 
propagator containing the two-quark vev is 

g z 
i A S (p) = ~  ~ d 4 x d 4 y d 4 z e 'px (Oi T(~b (x) ~(y))l O) 7 ~ 2a 

x (Ol:~(z)r (Oi , b T(Au (y)A, (z)) I O) 

x (01T(r ~ff0)) I O) ,  (85) 

as illustrated in Fig. 5. Converting (85) to momentum 
space (via (28) or through use of the Feynman rules) yields 
the following quark self-energy 

0 21 ~(k)  d4k 

x - (--gU" + (1--a) (P-k)U(Puk)~'] (86) 
( p - k )  2 / 

The self-energy is now expressed in terms of its distinct 
Dirac structures 

X(p)= A(p2) l~+ B(p2), 

Tr(Z(p))=4B(p2), 
Tr (r (p)) = @2 A (p2). 

(87a) 

(87b) 

(87c) 

The functions A(p 2) and B(p 2) are found from (86) to be 

4 i f (k)  
B(p2) = --3 (3 + a) mg 2 S d4 k (p_k)2 (88a) 

A(p2) -  4g 2 4 2p" k 4g 2 
-3p-~ S d k,~ ( k ) ~ + ~ p z  (1-a  ) 

x~d4k[(pZ+mZ)p.k.2pZm2 ] ~(k) (88b) 
(p--k) 4" 
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The integral determining B(p 2) is evaluated by exponen- 
tiating the denominator and utilizing (29b) in the integ- 
rand of (88a). After evaluating the k integral 

4 ~ - (k)  ~ - (k )  
Id k (~_k)2-=-Id*kpz ~p.~-+m2 

_ i(F~q) ~ d~ei~(p2+m2+i.)jx(2mrlx//~)" 
12maa/p ~ o r/ 

(89a) 

the remaining integral is tabulated [18] (see (33b)). Care- 
fully taking the e~O + limit in the tabulated integral leads 
to a result containing a freeze-out for physical momenta, 

d 4 k ~ - -  (qq) n, 2 2, (qq) I 12-~mp2 vtp -m )-l-~m3 0(m 2-p2). 
(90) 

Using (90), the result for B(p 2) in the physical momentum 
region is 

92 
B(p2)=-~(3+a)(qq) [~2 0(p2-m2)+-~ O(m2-p2) 1 �9 

(91) 

Now consider evaluating the integrals determining A(p2). 
The first integral in (88b) is simple to evaluate using (90) 
and (31): 

2p" k 
d* k ~-(k) (p4 _ k)2 

=~d*k~.~lk~ p2+m2 ,p2+m2_2p. k ~d4k~(k)  

--(lq?2{l--(p2+m2)I-~O(p2--m2)+~lyO(m2--p2)l}. 

02) 

The second integral of (88b) can be expressed as a linear 
combination of (90) and a new integral: 

~". (p2 + m 2) p. k - -  2p  2 m 2 

1 2 2 ~ ~ - (k)  
= - - ~ ( p  +m )Id4. , (p_k)2 

1 2__//,/2)2 d* ~-(k) +~(P S k (p_k)4 

- ( J l q )  ~O(pZ-m2)+ O(m2-P 2) 

1 2 __m2)2 ~ (k) +~(p ~d*k . (93) 
(p-k)* 

The final integral in (93) is evaluated by exponentiating 
the denominator, using the on-shell constraint, and then 

performing the k integral: 

~(k)  
d 4 k (p2 + m E _ 2p" k) 2 

= - - I  d4k S dtlrlei"tp2+m2-ZP'k+i~)~ 
0 

oo 
_ (ftq) ! dr I eiu(p2+m2+i.) 12mZ j Ja (2,,, x /~ )"  (94a1 

The remaining integral is tabulated [18], 

i dxe ~xJv(flx)= ~~i- " ' 

Rev > - 1; Re(c~+ifl)>0, (94b) 

and after carefully evaluating the e~0  + limit a freeze-out 
is again observed: 

~(k)  (qq) [ pz+m2 
[d4k (P2 +mZ-2p'k)Z-24m3p 2 t_l pZ rn2 0(p2--m 2) 

P2 + m2 1 m 2_p20(m 2-p2) . (95) 

Substituting (92), (93) and (95) back into (88b) leads to 
g 2 

A(pZ)=--~am(Oq)[~40(pZ--m2)+~O(m2--P2)], 

(96) 

in which case, the quark condensate component of the 
light-quark self-energy 

(qq) ( 3 + a ) - - a ~ -  O(pZ-m z) 

+9~(~lq)[(3+a)-a~lO(m2--pZ), (97) 

is found to be in agreement with the plane-wave result 
[11]. 

Thus the improved method developed in Sect. 3 for the 
coordinate-space approach is identical to the plane-wave 
result, leading to a freeze-out in the quark self-energy at 
the physical momentum point p2= m 2. 

Conclusions 

The equivalence of plane-wave, coordinate space and mo- 
ment methods has been demonstrated for the determina- 
tion of the (qq) and (cqG 2) coefficients in the OPE of 
gauge invariant currents. An important conclusion of this 
analysis is that the fixed point gauge commonly employed 
in coordinate space applications to the gluon condensate 
does not affect the result of the OPE for gauge invariant 
currents. 

Sources of disagreement exist between the various 
OPE techniques only when gauge dependent quantities 
are considered. In Sect. 5, however, such gauge depend- 
ence is shown not to affect the calculation of a gauge 
invariant quantity such as the heavy quark expansion 
relating the heavy-quark and gluon condensates. 
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A new approach for evaluating quark condensate ef- 
fects to all orders in the quark mass has been developed in 
Sect. 3 and applied to products of gauge invariant currents 
of physical significance. It is hoped that this new technique 
will be of use in future calculations. 
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Appendix A: One-loop haryonic integrals 

In evaluating the lowest order quark condensate contribu- 
tions to Baryonic currents, the following typical one-loop 
integrals will occur in analogy to (38). 

I(q2)=V,~_D f dDl dDk 1 
(2n) ~ (2r0 ~ ( k -  l) = - m 2 + i0 

1 
x (q _ k) 2 _ m2 + i0 "~ (1). (A1) 

This is a one-loop divergent calculation, so to apply di- 
mensional regularization we need the O-dimensional ver- 
sion of (28c) as obtained from (4). 

(f21 ~/(x) ~(0) { (2) = ~ d D k e-ik.x (~ + m) ~ (k) 

d v l e -~z'~ ~ (l)= F(D/2)2D/2-1 (qq)  Jv/2-1 (mx/x2) 
12m (~n2x-~) D-Wz- ~ �9 

(A2) 

Following the procedures developed in Sect. 3, the propa- 
gator factors are exponentiated, and the momentum vari- 
able k is shifted to eliminate the k" l and k" q cross-terms. 
The result is 

4 2 I ( q 2 ) = - v e - D i d t l i d 4 e x p { i [ 4 ( 1 - ~ _ 7 - ~ ) q  

+ t l ( 1 - & ) m 2 - ( 4 + t l ) m 2 + i O l }  

xj(-~n)Dex p -- 2i ~ - ~  q" l ~ (1) 

. dVk 
x J ~ exp {i(t/+ 4) k z } (A3) 

where the 12= m z constraint has been imposed as in Sect. 
3. The 1 integral is calculated using (A2), and the k integral 
can be accomplished with the following result: 

a-D/2 
" dnk e i a k 2 - ' -  -" (A4) 
J ~ - l (4n)D/z e ,(~/4)D 

After performing the momentum integrals, the 4 and 
t/parametric integrations can be simplified by changing 
variables. 

(t/, 4) = 2 (A5) 
~ =,~(1 - x )  ~=~x; c~ Or, x) 

The resulting expression for i(q2) with D = 4 - 2 e  is 

21-"e i'~/z F(2 __E)~2e (qq )  1 
5 dxf1-1+~ I(q2)=--i  (4n) 2-~ 12m o 

0 

e = 0 - i [ x ( 1  - x)(q2 + m2)-m2] ; 

fl = 2m x / ~  x (1 - x) (A6) 

In the e ~ 0  limit the 2 integral is divergent since for small 
2, the integrand behaves like 2-1 +8. Isolating this diver- 
gent structure leads to two integrals. 

f l - l  +~ ~ d2 2-2+ Z~ e-~,~ jl_~(f12) 
0 

_.=fl-1 +~ { So ddLJ'-z+2ee-~Z(fl~'/2)l-eF(2- e) 

~o [ (/J2/2)'--' ~ ~ (A7) 
+ J  o d'~2-2+Z~e-'Z Jl-,(fl).)  r ( a - e )  d J  

The first integral is divergent and leads to the Gamma 
function, while the second integral is finite in the limit as 
eo0 .  Since we can replace ~=0, the second integral is 

_ ~  e-~" I 2 1  J(e/fl);  where J ( 4 ) -  du-u-~- J l ( u ) -  (AS) 
o 

which can be evaluated by differentiating with respect to 
4, using (33b) and then solving the differential equation for 
J (4) .  The result of this procedure i s  

J ( ~ ) = ~ { 1 - -  l ~ Y } - ~ l ~  } 

1 1 
+ g + ~ log 2 (A9) 

Substituting the results of (A7-A9) into (A6) leads to the 
following result for Euclidean momenta Q2= _ q2> 0. 

/1 1 1 2 i(clq) i d x ~ 7 - - y E + l o g 4 n + ~ +  og 
I(Qa)= (4n) 212m o 

m 2 
- l o g Q 2 / v 2 - 1 o g l x ( 1 - x ) + - ~ ( x 2 - x +  l) j 

1 [1+  x / q - + ~ ] )  "Or~ [I -- %//1 "~ 4 2 ] - - log 

42 _ 4x z (1 - x) z (m2/Q 2) (A10) 
[ x (1 - x) + (mZlQ 2) (x 2 - x + 1) ] 2" 

The final x integral is convergent. This illustrates how the 
methods developed in Sect. 3 for evaluating the quark 
condensate OPE coefficient can be extended to one-loop 
(divergent) integrals which would typically occur in 
baryonic currents. 

Appendix B: charged-current correlation functions 

For off-diagonal vector and axial vector charged currents 
(such as d;;,ysu characterizing charged pions, or in 
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charged current  weak interactions), vector  and axial vec- 
tor  correlat ion functions corresponding to Fig. 2 are given 
by  

IIuVr = k A r  (p2) j [PZguv-PuP,] + \ A L ( p  2)/I  PuP, 

= 2~ d4 k Tr[(~-l~+m')F~(r +m2)F~] ~2(k) (B1) 
( k - p ) 2  _m2a + ie 

where Fu=Tu for vector  (V) and 7u75 for axial-vector  (A) 
currents. The mass  of the condensing fermion in Fig. 2 is 
m2 [with the corresponding mass  shell constraint  
k 2 o~a(k) = m z  2 o~z (k)], and differs f rom the mass  ml of  the 
unbroken  fermion line. We then find the following expres- 
sions for the transverse and longitudinal  componen t s  of 
Hv ,  a:  

p4 f VL(p2)'~ u �9 
\AL(p 2) )=P P lluV; A 

= --24 Sd4kp.k~2(k) - 1 2 ( m Z - m ~ )  S d4 k ~2  (k) 

+ 12 [ ( m ~ - m 2 )  2 - p 2 ( m  1 Tm2)  2] 

~z (k )  . (B2) 
x S d'* kp2_ 2p . k + m2_m~ + i e' 

At(p2) j=3p--~ t~ u, ---~ ~AL(pZ) ) ,  (B3) 

gU'II~A= - -24  S d4 k~ ' z  (k) + 2 4  [pE-mf-m2+4m~m2] 

~-2 (k) (B4) 
•  4 k p 2  2p.k+m2_m2+ie" 

Except  for the last integral appear ing  in (B2) and (B4), all 
o ther  integrals have been calculated [see (31) and (40)]. 
Evalua t ion  of this new integral proceeds as follows: 

i ( p 2 ) = ~  d 4 k ~ (k) 
p2 -2p . k  +m2-m2 +i8 

oO 

= - - i  ~ dr/exp lit/(p 2 + m  2 - m2)]  I d4 k ~-2(k)e-i2~k'P 
0 

i(c]2q2 ) ~ dq 
- 12m 2 V/)  ~ 0 ~ -  exp [it/(p2 + m 2 _ m 2)] 

x J1 [2m2rl V/~] ,  (B5) 

where (28c) has been used. The last integral is tabula ted  
[18], leading to the following result: 

(q2q2)  
m 2 -- m 1 I ( p 2 ) =  24m~p 2 [ p a +  2 2 

- m 2 )  -ml(2p + 2 m 2 - m l ) ] .  (B6) 

I t  is simple to verify that  as required, the results for these 
correlat ion functions in the m2 = ml limit agree with those 
obta ined  in Sect. 3. I t  is of some interest to note that  the 
above  correlat ion functions develop imaginary  par ts  in 
the physical m o m e n t u m  region for (ml-m2)Z<p2< 
(ml +m2)  2 corresponding to below-kinemat ic- threshold  
(as opposed  to unitari ty-driven) branch  cuts also exhibited 
for O<p2<4m 2 in (34), (42), (46) and (48). 
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