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Abstract. We prove that the partial quotients aj of the regular continued fraction 
expansion cannot satisfy a strong law of large numbers for any reasonably growing 
norming sequence, and that the aj belong to the domain of normal attraction to a 
stable law with characteristic exponent 1. We also show that the aj satisfy a central 
limit theorem if a few of the largest ones are trimmed. 

1. Introduction. Let o~e(O, 1) be irrational and let 
co = [al (co), a2(co),...] be its regular continued fraction expansion. 
The ak (co)e N and are called the partial quotients. Denote  by 

SN(CO) = ~ ak(co) (1.1) 
k<~N 

their N-th partial sum. Since S al (co) dco = ~ j j ~  - oe none of  
0 j + 1) 

the classical limit theorems in probability, such as the weak and the 
strong law of  large numbers and the central limit theorem hold for 
these sums. However, with different norming constants the weak law 
of  large numbers holds, according to an old theorem of  KmNCHIN [8]. 

Theorem A. [8] Let 2 denote Lebesgue measure. Then for any e > 0 

1 e} 0 
2{coc(0,1)" NI~gN log2[ ~> --" 

i.e. Su/Nlog N converges in measure to 1/log2. 

For  the strong law of  large" numbers the situation is entirely 
different. No matter,  how a sequence {a(n), n I> 1) of  norming con- 
stants is chosen (as long as it is reasonably regular) we cannot  have 
almost everywhere convergence to a finite nonzero limit. 
14" 
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Theorem 1. Let {a (n), n >~ 1 } be a sequence of positive numbers such 
that 

a (n)/n is non-decreasing. (1.2) 
Then 

lim S N -  0 or l imsup SN 
U ~  c~ ~7 ( N )  (~ ( N )  

~ oo a .e .  

according as 
1 

�9 o 0  o r  

Remark. For  the divergence part  no regularity condition on a is 
needed. 

However, in the absence of(1.2) the limes superior can be non-zero 
and finite a.e., as has been shown by DIAMOND and VAALER [3, 
Corollary 3]. Here is a quick proof. By Theorem A SN/(Nlog N) con- 
verges a.e. to l/ log 2 along some subsequence Nk. Then with a (N) = 

= NklogN k for Nk_l < N<<. Nk we have SN/a(N ) <<. SNk/(NklogNk) 
and so the limes superior equals I/log 2 a.e. 

Since 

t> x} = 1-(1 + o(1)) 
X 

the classical theory for independent random variables suggests that 
{an, n ~> I} belongs to the domain of  attraction to a stable law with 
characteristic exponent 1. 

This is indeed the case and a result to this effect has been stated by 
P. L/~vY [10]. Recent results of  SAMUR [13] apply directly to the case 
of  continued fractions provided one can show that qJ (1) < 1. (For this 
notat ion see (2.1)* below.) In his lecture SAMUR [14] has announced 
a new proof  of  L6vy's theorem along these lines. It is easy to gener- 
alize these results to measures ~ absolutely continuous with respect to 
Lebesgue measure and this is done in the following theorem. 

Theorem 2. Let/~ be any probability measure absolutely continuous 
with respect to 2. Then the ~-measure of the set of  all oJ~(0, 1) with 

SN log N ~< 
N/log 2 
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converges to a distribution funct ion  F(~)  with characteristic funct ion  

f ( t )  = exp - ~ l t [ - i t l o g [ t l  + i T t  . 

Here,  ?, is given by 

( ) 7 =  lira ~ k log  1 +  - l o g N  . 
N--* oo k ~< N/log 2 k (k + 2) 

On the other hand,  as DIAMOND and VAALER [3] recently showed, 
if the largest ak is t r immed or omit ted f rom SN then the strong law of  
large numbers  with norming  constants  N l o g N  holds for SN. 

Theorem B. [3] For almost  all ~ there is a number N o = N o (o)) such 

that 

S N =  I + o ( 1 ) N l o g N + # +  max ak 
log2 l <~k<~N 

holds f o r  all N >1 N o. 

Discarding or t r imming the outliers of  a sample is c o m m o n  prac- 
tice in statistics. In a recent paper  HAHN and KUELBS [5] showed that  
after t r imming a few of the largest members  of  a sample of  inde- 
pendent  identically distr ibuted r a n d o m  variables the properly 
normalized partial sums converge to a Gaussian distribution. In 
Section 4 of  this note we prove such a result for sums of  the form 
(1.1). 

To state this theorem we recall some nota t ion  f rom [5]. For  N >/ 1, 
1 ~<j~< N l e t  

FN(1) = card{i :  a i >  a j fo r  1 ~< i~< N o r  a i =  a j for  1 ~< i<<.j}. 

I fFu( j  ) = k, set ~N~(k) = aj, i.e. ajis the (k + 1)-th largest element of  the 
sample {a l , . . . ,  aN} when FN(j) = k. Let {r n, n >/ 1} and {Sn, n ~> 1} be 
two sequences of  integers with 

r n ~  ~ ,  8n >~ 7 . 
We set 

i.e. S* denotes 
t r immed provided that  they exceed N/r  N. 

(1.3) 

S* = S:v - ~ a~u ) 1 (a~) > N/ru} ,  (1.4) 
j < rN~N 

the N-th partial sum with the rN~ N largest terms 



198 W. PHILIPP 

Theorem 3. Let # be any probability measure on (0, 1) absolutely 
continuous with respect to Lebesgue measure. Then the ~z-measure o f  
the set o f  all ~ ( 0 ,  1) with 

converges to 

1 
S* - ~ N l o g  (N/rN) <~ ~ N(rulog 2) -1/2 

Iogz  

G ( ~ ) - ~  [ "  e x p ( - X t  2) d t .  
7o  

If  the random variables aj were independent this result would 
follow immediately from [5, Theorem 1] except that there fiN needs to 
go to infinity. Here we only require ~U ~ 7. However, according to a 
theorem of  CHATTERJI [2] if the random variables aj are independent 
with respect to some probability measure on (0, 1) then this measure 
is necessarily singular with respect to Lebesgue measure. 

With respect to the Gauss measure {aj,j >1 1} is a stationary V'- 
mixing sequence of  random variables (see Section 2 below.) In a 
second paper HAHN and KUELBS [6] prove a similar general result for 
such sequences. However, their Theorem i does not  apply to the 
present situation since in view of  Theorem A above their condition 
(1.6) is not  satisfied. What  is needed here is an extension of  their 
Theorem 1 to triangular arrays with stationary rows of  mixing ran- 
dom variables. But all things considered it is much quicker to prove 
Theorem 3 directly using the idea of their p roof  and a theorem of  
SAMUR [13]. 

2. Preliminaries. Let T: (0, 1) --+ (0, 1) be defined by Too = {1/~} 
where {.} denotes the fractional part. We restrict ourselves to irra- 
tional ~ f rom now on. This is no loss of  generality since the rational 
numbers have Lebesgue measure 0. Then an + ~ (~) = al (T  ~ o~), n ~> 1. 
The intervals {o~e (0, 1) :al @J) = r l , . . . ,  ak(~o) = r~} for r l , . . . . ,  rk ~> 1 
fixed are called the fundamental  intervals of  rank k. The a-alge- 
bra generated by the fundamental  intervals of  rank ~< k is de- 
noted by ~ k .  By ~/g~ we denote the a-algebra generated by the sets 
{~o ~ (0, 1) : an + m (~o) = rm}, m >~ I, r m/> 1 integer. It consists of  all 
sets of  the form T-  n E where E is a Borel set. 
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For  the proof  of the theorems it is more  convenient to wol;k with 
the Gauss measure P, defined on the Lebesgue measurable sets 
A c (0, 1) by 

( A )  - 
log 2 ,) 1 + ~o 

A 

For  any such set A we have P (T -  1 A) = P (A). 

Lemma 2.1. For all sets A ~  k and B ~ +  k 

I P ( A n B )  - P ( A ) P ( B ) I  <~ P(A)P(B)o~ n (2.1) 

with 0 < 0.8. Thus {aj,j >~ 1} is a stationary vJ~mixing sequence with 
mixing coefficient ~/ (n) = ~". In particular , this implies q~(l) < 0.8 < 1. 

With the right-hand side of  (2.1) replaced by C P (A)P  (B)0 n with 
C > 0 and 0 < ~ < 1 Lemma 2.1 is well-known [1, p. 50]. In [16] 
Sz~sz claims that by his refinement [15] of the Gauss-Kuzmin 
theorem he can obtain 0 < �89 I was unable to reconstruct the indi- 
cated argument  because the function go defined in (2.3) below does 
not  satisfy either condition (1.7) or (1.8) of  Satz 1 in [15]. However, 
using the remark on p. 452 of  Sz/3sz's paper [15] one can at least get 
the bound for O as claimed in Lemma 2.1. 

A sequence of  r andom variables is called 9-mixing if instead 
of (2.1) 

I P ( A  n B) - P (A)  P(B)  I <, +(n) P(A)  (2.1)* 

holds for some q~ (n) ~, 0. This is, of  course, a weaker condition than 
(2.1). In his lecture SAMUR [14] announced a p roof  of q)(1) < 1. As is 
easy to see Lemma 2.1 yields 9(1) < 0.4. 

For  the proof  of  Lemma 2.1 we use the following lemma, implicitly 
contained in [15]. 

Lemma 2.2. Let  {fn (cO, n >~ 1} be a sequence o f  twice continuously 
differentiable functions on [0, 1] with fo (0) = O, fo (1) = 1 and defined 
recursively by 

= - , n = 0 , 1 , 2 , . . . .  ( 2 . 2 )  
k = l  

Set 

g, (~) = (1 + ~)f'n (u) �9 (2.3) 
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Then 
JIg 'nl l~llg~]]  n = l , 2 , . . .  (2.4) 

with q < 0.8. Here I1"]] stands for the supremum norm. 

Indeed, from [15, (1.14)] and by a brute force estimate of the two 
series one obtains Hg~,+ l lJ ~< ~ IIg',ll and this yields (2.4). 

Proof of  Lemma 2.1. Let Ek be a fundamental interval of rank k 
with endpoints Pffqk and (Pk + Pk- l)/(qk + qk- 0, say. Let 

f , ( ~ ) = p ( T , + k  <~lEk): _ _ 1  p ( ( T , + ~ o < ~ ) c ~ E k  ) 
P(Ek) 

be the conditional distribution function of T ~ + k c~ given E k. Now 
(T k oJ < o~) c~ E k is an interval with endpoints Pk/q~ and (Pk + ~Pk - O/ 
(qk + ~ qk 1). Thus by the definition of P 

1 ( - - 1  k 
�9 log l + P k + ~  - - l o g  1 +  . 

f0 (~)=p(E~)  l ogz  k q k + ~ q k - 1  

If g, is defined as in (2.3) then by a straightforward but lengthy 
calculation go'(~) < 0 for 0 ~< ~ ~< 1. Hence [[gol[ ~< max(lg6(0)], 
[ g~(l)I) < I as is easily checked. (But in general g0 is not of constant 
sign as is required for the application [15, Satz 1].) Thus by (2.3) 
and (2.4) 

f'~ (~ (1 + o 01 log 2 ] ~< I g" (~ -+ g, (0) I o ~  + I g, (0)1-+ 1/log 2 I o ~  (2.5) 

and 

J gn( ) - g , ( 0 )  I = Iyg' (t) dtl <. Hg' tl < 
0 

Also, for some 0 < 0 < 1 

1 = s  = j f~(t)dt = g~(t) d t=  
o o 1 +  t 

= g,(O)log2 + O i Jg'(t) +g,(O)I dr= 
0 1 

= g,(O)log2 + Oq'(l - log2) 
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and so 
g, (0) = 1/log 2 + 0 ( l / log 2 - 1) e" . 

Hence f rom (2.5) 

f ; (~)  1 ] 1 en. 
(1 + ~) log 2 ~< (1 + ~) log 2 

We integrate this relation over F with respect to d~ and obtain 

[ P(T-("+~) FI Ek) - P(F) ] % e'~ P(F) . 

Since each A~J//~ k is a countable union  of  disjoint fundamenta l  
intervals of  rank  k we obtain the result. 

3. Proof  of Theorem 1. Assume first that  ~ 1/a (n) = oo. Let 

M > 0. According to a theorem of  BERNSaXIN [9, p. 60] for almost  all 
cO the system of  inequalities aN(cO)>~ M c~(N) has infinitely many  
solutions. Hence 

limsupSN(co)/~(N) >~ l imsupaN(o) /~(N)  f> M a.e. 
N - - > ~  N---> oo 

and so 
lim sup S N (~o)/~ (N) -- oo a.e. 

N--* oo 

If  on the other hand  ~ 1/~ (n) < oo then for almost  all co the 

system of inequalities aN (co) > ~ (N) has only finitely many  solutions. 
Put  

a*(o)  = aN(o) 1 {aN(cO ) ~< (~(N)}  . (3.1) 
Then 

l 1 

~a~v2(o) P(dw) = j 'a2(o) 1 {al(co ) ~ o'(N)} P(dco) <~ 
0 0 

1 1 
'2 < 2~a2(co)l  {al(co ) ~< a (N)}dco< ~" j . _ _ , ~  a(N) 

o j<.~(~ j ( j +  1) 

and so 

, 2  a(N)-2~aN (co)P(dco)~ ~ 1/c~(N) < oo.  
N>~I 0 

Hence by [7, Theorem 1.1.15] 
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1 

1 ~ (a* - I a~'(o)) P (do))) --, 0 
~(N)~.~N o 

a.e. (3.2) 

1 

j" a~'(o)) P (do)) ~ log a (k). (3.3) 
0 

By (1.2) a(n) is nondecreasing and thus 

y '  2k/a(2 k) < oe .  
k~>l 

By (1.2) again and a well-known theorem k 2k/a (2 k) ~ 0. Hence 

NlogN/a(N)--.O, N ~  oo 

and so by (3.3) 

1 
1 , o) _i-~r~ ~ I ak ()P(do)) ~ loga(k) .~ 

o~,~Vlk~NO k 
(3.4) 

Nlog ~ (N)/~ (iV) -~ 0 .  

By (3.1) and the remark preceding it for almost all o) we have 
aN(o)) r a*(o)) for only finitely many N. Hence by (3.2) and (3.4) 

SN/~(N)~O a.e. 

4. Proof of Theorem 3. For fixed N ~> 1, set 

ui= Uuj:= ajl {aj~< N/rN}, 1 <<.j<. N. 

Vj = VNj = aj I {aj > N / rN}  , 1 <~ j <~ N .  

vN= E u,, Z v,. 
j ~ N  j<~N 

(4.1) 

Here and throughout the rest of the paper we drop the o), whenever 
this is convenient. 

The idea for the proof of Theorem 3 if the measure # is replaced 
by the Gauss measure P is taken directly from [5]. It consists of 
proving the following two lemmas. 
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Lemma 4.1. The Gauss measure P of the set of all ~o, with 

1 
UN _ @ Nlog(N/ru) << a N (rulog2)- ll2 

converges to G (~). 

Lemma 4.2. 

VN-- Z aN~)l {a~) > N/rN} ~ 0  in P-measure. 
j <<. rN#N 

In view of (1.4) Theorem 3 follows immediately from these two 
lemmas provided that the underlying probability measure is P. From 
this fact one obtains the general case of Theorem 3 in the same way 
as in the proof of [12, Theorem 4]. Hence it remains to prove these 
two lemmas. 

For the proof of Lemma 4.2 we note that the P-measure of the 
left-hand side in Lemma 4.2 being positive equals 

N 

P (exactly k of the a]s, 1 ~ j ~< N, exceed N/rN) <, 
k = r N ~ N  -t- | 

c o  k 
~< Z ~ "~ "[U~[ru~k(l +~)k< ~, r~ 1 8 k ~ 0  

t.k ) t.N) " k = rN ~N 

by Lemma 2.1, Stirling's formula and the tail estimate for the power 
series of exp (x). [] 

For the proof of Lemma 4.1 we need some preliminary calcula- 
tions. We have by (4.1) 

, ( 
Euj -  lo-2e k < ~N/~"kl~ 1 + k(k + 2) = l~ + O(1) (4.2) 

I ~ k21og(1 + 1 ) + 
Euf - log2k~N/r~ k(k  + 2) = N/rN + O(1).  (4.3) 

Put 

Then 

and 

x j = u j - E u j .  

Exj = 0, Varx i = Eu} - ( E � 9  2 - 1 + o(1)N/ru (4.4) 
log 2 

Eixjl <~ 2Eu j~  (logN) 2 . (4.5) 
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Now 
Var U s =  ~ E x  2 + 2 Z Exixj" (4.6) 

j<~N l <~i<j<~N 

By Lemma 2.1, [11, Lemma 3] and (4.4) 

E x i x j ~  E]xi[E[xj[o~ 1-~ for 

Hence by (4.3)--(4.5) 

j ~ i .  

Var U N -  1 + o(1)NZ/rN+ O(log4N ~ Oj_) = 
log2 1 ~ ~<.j< N 

(4.7) 
_ 1 + O ( 1 ) N 2 / r N .  

log 2 

We now apply [13, Corollary 4.6] to 

XN, = X, (Var UN)- 1/2, 1 <~ n ~< N .  (4.8) 

By Lemma 2.1 {Xun, 1 ~< n ~< N, N i> 1 } is a w-mixing, stationary, 
triangular array with w (n) = ~" and W(1) < 1. By (4.4) EXN, = 0 and 
by (4.8), (4.1) and (4.7) 

[xu, ' [ <~ N r N 1/2 _ r~7 ,/2 ~ 0 . (4.9) 
r n N 

Condition (1) of [13, (4.6)] is satisfied because of (4.3) and (4.7), 
condition (2) holds because of (4.9). Condition (3) holds because of 
(4.3) and (4.8), since the series is ~ rxlog2N/N-~ 0 and since the 
main terms tend to 1. Condition (4) finally is vacuous since it needs 
to be applied only if the random variables are infinite-dimensional. 
Hence Lemma 4.1 follows. 

This concludes the proof  of Theorem 3. 

Remark. Lemma 4.2 also can be obtained from [11, Theorem 3]. 
The calculations are longer, they do not require q~ (1) < 1 and were 
carried out in an earlier version of this paper. 

5. Proof of Theorem 2. Again as in the proof  of [12, Theorem 4] one 
can obtain the general case from the case when the underlying proba- 
bility measure is P. But this last case follows directly from Corollary 
5.10 of SAMUR [13]. Conditions (1) and (2) of [13, (5.10)] hold with 
l~ = 0 and/2 = 1 since for x-~ 
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P(al(co) > x)= + l ~  + l )  + ~ 2 xl + ~ 

Moreover,  this last relation implies 

lim NP(al (co)> xN/log2) = 1/x. 
N---, oo 

Hence by the proof  and the conclusion of  [13, (5.10)] we obtain the 
result with log N replaced by 

l o g 2 E { a  1 1 {a 1 ~< N/log2}} = 

k ~< N/log 2 k (k + 2 " 

This also proves the statement about  ~. The expression for the charac- 
teristic function f(t) itself is perhaps most  easily obtained from [4, 
p. 167]. 

Note Added in Proof 

In a recent paper "Rates of convergence in stable limit theorems for sums of 
exponentially ~v-mixing random variables with applications to metric theory of 
continued fractions", Math. Nachr. 131, 149--165 (1987) LOTHAR HEINRICH obtains 
bounds on the rates of convergence in Theorem 2 in case that f~ is the Gauss 
measure P. I am grateful to Professor M. IOSIFESCU for drawing my attention to 
Heinrich's paper and for pointing out an annoying misprint in the statement of 
Theorem 2. 

Also, SAMLrR recently has circulated in preprint form ("On some limit theorems 
for continued fractions") a complete version of his results announced in [14]. 
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