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1. INTRODUCTION 

In interpreting travel-time curves it is very valuable if one knows how the travel-time curve 
varies under small changes of the parameters of the medium. These changes can be characterized 
by means of the partial derivatives of the travel-time curves with respect to the parameters of the 
medium. Besides this, the calculation of the partial derivatives is a necessary constituent of some 
methods of solving the inverse problem. 

The partial derivatives of the travel-time curves can be determined by numerical differentiation. 
However, this method is time consuming and not very accurate, because, in the case of a layered 
medium, the travel-time curve cannot be expressed by a single formula, but only in so-called 
parametric form. It is much more convenient to calculate the derivatives of travel-time curves of 
a reflected wave by means of Eqs (8), given below. 

Section 2 gives the well-known formulae for the travel-time curve of a reflected wave. The 
formulae for the partial derivatives of travel-time curves with respect to the parameters of the 
medium are given in Section 3 and the way in which they were derived is described in Section 4. 
Some of the properties of these partial derivatives are described in Section 5 and in Section 6 
a numerical example is presented. 

Equations (8) for calculating the partial derivatives of travel-time curves of reflected waves 
were already published in [3], and the use of these partial derivatives for interpretations was 
described in [5, 6]. However, it took a long time before these formulae were derived accurately. 
The proof in [3] was founded on the use of Taylor's developments (ref. to Proof  2 below), the 
proof in [6] was already founded on differentiating the parametric form of the travel-time curve. 
However, both proofs contained some steps which were not quite accurate. A new contribution 
of this paper is Proof 3 which is based on the parametric form (2). It is only this proof  that can 
be considered as accurate from a mathematical point of view. Besides this, also some results from 
papers [3, 5, 6] are given, because these papers were not published in journals. 

2. MODEL OF THE MEDIUM AND THE TRAVEL-TIME CURVE 
OF A REFLECTED WAVE 

We shall consider a medium composed of n plane-parallel, homogeneous and 
isotropic layers, lying on a substratum (Fig. 1). Assume that the source of  the seismic 
waves and the observer are located on the surface of the medium. Assume the 
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propagation of seismic waves which were reflected from the interface between the 
n-th layer and the substratum. Also assume that multiple reflections and transforma- 
tion of waves do not occur (i.e. the wave propagates along the whole ray either 
as a P-wave or as an S-wave). 
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Fig .  1. M o d e l  o f  the  m e d i u m  a n d  r a y s  o f  the  r e f l ec t ed  w a v e .  

The equation of the travel-time curve expresses the dependence of the travel time t 
on the epicentral distance r and on the parameters of the medium: 

(1) t = t(r,  v , ,  v2 . . . . .  v., d , ,  d2 . . . . .  d . ) ,  

where v., and d,. are the velocity of the seismic waves and the thickness of the m-th 
layer, respectively. Apart from the simplest case of one layer (n = 1), Eq. (1) cannot 
be expressed explicitly. Therefore, the equation of  the travel-time curve is usually 
written in parametric form 

(2a, b) t = z(v,  . . . . .  v., dt  . . . . .  d., p ) ,  r = ~(v, . . . . .  v., d ,  . . . . .  d., p ) ,  

where 

(3) p = sin il/v, = sin i,./v., 

is the parameter of the ray and im is the angle of incidence in the m-th layer. Therefore, 

(4) sin i~ = v,,p = v~(sin ia)/v,. 

We have introduced two symbols for time, t and v, because we consider both 
quantities to be functions of different variables. Similarly, for the epicentral distance 
we use the symbols r and 4; r is considered to be the independent variable, whereas 
is a function of the parameters of the medium and of the parameter of the ray. 

It follows from Fig. 1 that the r.h.s, of  the equation of the travel-time curve (2) 
can be altered to read 

(5a, b) z = 2 ~  z,., { = 2 ~  {,., 
m = l  m = l  
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(6a) 

(6b) 

Part ial  Derivatives o f  Travel- t ime Curves . . .  

= c o s  ira)  - 1  = d v;l(1 - 

(m = d m  tan i., = d vmp(1 - v Z p 2 )  - 1 : 2  . 

If  we adopt various values of the parameter p (or of the angle i t or of the quantity 
sin il), Eqs (5) and (6) can be used to calculate the travel-time curve of a reflected 
wave for a given model of the layered medium. 

3. PARTIAL DERIVATIVES OF THE TRAVEL-TIME CURVE 

In section 4 we shall derive the following formulae for the partial derivatives of the 
travel-time curve of a reflected wave with respect to the parameters of the medium: 

(7a, b) Ot/~vj = Oz/Qvj - p ( ~ / ~ v j )  , Ot/Od~ = Oz/3dj  - p ( ~ / O d ~ )  , j = 1 , . . . ,  n . 

By substituting Eqs (5) and (6) into the above we arrive at the final very simple 
formulae 

(8) Ot/3vj = - 2 z ; / v ~ ,  Ot/Odj = 2(1 - v ] v Z ) l / z / v j .  

It should be noted that the partial derivatives (7) and (8) are partial derivatives 
of function (1), i.e. partiaI derivatives at a fixed epicentral distance r. These are 
indeed that partial derivatives we require in interpreting the experimental data. 

We shall now describe the calculation of the travel time and of the partial deriva- 
tives for a given epicentral distance r. The computation is carried out in two steps: 

a) Using an iteration method we determine a parameter p such that for it the 
epicentral distance ~ is equal to the given value r within the limits of the required 
accuracy [1]. (This procedure in fact represents the numerical solution of Eq. (28) 
in terms of the unknown p). 

b) Once the corresponding parameter p has been determined, the travel time can 
be computed by substituting into Eqs (5a) and (6a), and all partial derivatives are 
then obtained by substituting into Eqs (8). 

Clearly, the largest amount of computer time (for a given epicentral distance) 
will usually be required to determine the parameter p, i.e. for the numerical solution 
of Eq. (2b). The computation of the travel time and of the partial derivatives is then 
very fast. 

4. DERIVATION OF THE FORMULAE FOR THE PARTIAL DERIVATIVES 

We shall now describe three different proofs of Eqs (7). The first two proofs are 
partly intuitive and cannot be considered as quite accurate. The third is more accurate. 
We shall give three proofs to provide a deeper insight into the parametric expression 
of the travel-time curve and into the meaning of Eqs (7). 
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P r o o f  1, (geometric). This proof has been elaborated on the basis of the procedure, described 
in [2]. We shall describe the proof with the aid of Fig. 2. For the sake of simplicity we have 
chosen a two-layered medium, however, the procedure described below has a general validity. 
In the upper part of the figure the full line represents the travel-time curve for some initial model, 
the dashed line the travel-time curve for the new model in which one of the parameters of the 
medium has been changed (in our case we have increased the thickness d 2 by the value Ad2). 

,~qj.... B f 

>r 
0 P ~' 

0 P ~ [  P' ,. 

Fig. 2. The seismic ray and travel-time curve for the original model (full lines) and for the model 
with a thicker second layer (dashed line). 

We are interested in the extent to which the time of propagation of the reflected wave will change 
at the point where the observer is located, P, in changing from the original model to the new. 
Denote this change by At = t c - -  t A. We now want to express the quantity At with the aid of the 
parametric expression of the travel-time curve, see Eq. (2). 

Assume the parameter of the seismic ray p to be fixed and calculate to what extent the time 
and the epicentral distance ~ will change if the thickness d z changes by the value Ad z. The new 
ray, represented in Fig. 2 by the dashed line, will no longer be incident at point P, but at point P' .  
The appropriate change of the epicentral distance will be denoted by A~. The new time of propaga- 
tion is denoted by point B on the dashed travel-time curve. Time r has thus changed by the value 
Ar = t B - -  t a. It now holds that 

(9) A t =  t c - - t a = ( t B - - t A ) - - ( t B - - t c ) = A r - - ( t B - - t c ) .  

As regards the last term in (9) it is approximately true that 

(10) t n -  t c = A~ tan ~,  
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where ct is the slope of the travel-time curve at point B. In  virtue of Benndorf 's  equation, p = 
= dt/dr, we arrive at tan ~ = p. (On the original travel-time curve point A is appropriate to 
the parameter p). It then follows that 

(11) At = A r - - p  A~. 

Divide both sides of this equation by the quantity Ad z. If we decrease Ad 2 to zero, in the limit we 
shall find that 

(12) St/ad z = ar /ad  z - -  p ( a ~ / a d j  . 

And this is already one of the formulae (7). The others can be obtained quite analogously, because 
Eqs (9) to (11) remain valid even if other parameters of the medium change. 

Proof2  (with the aid of Taylor's development). In the foregoing proof  we retained parameter p 
constant, but we had to "correct"  the quantity Av for the effect due to the change of the epicentral 
distance. We shall now proceed in a different way. We shall accompany each change of the para- 
meter of the medium by a change of parameter p such that the new ray is incident at the same 
epicentral distance. This proof has been adopted from [3]. 

~d2 

0 P 

\ / 

Fig. 3. Seismic ray for the original model (full line) and for the model with a thicker second layer 
(dashed line). 

For the sake of illustration we shall again use a two-layered model (Fig. 3). The seismic ray 
for the original model is marked with a full line. Increase the thickness of the second layer by Ad 2. 
For the new ray (dashed line) to be incident at the same epicentral distance, it must leave source O 
under a smaller angle. Therefore, we must change the parameter of the seismic ray by some, 
hitherto unknown value Ap. 

We shall use Taylor's development in Eqs (2). If we only change d 2 and p, we shall arrive at 

(13a) At = (ar/ad2) Ad 2 + (ar/ap) A p ,  

(13b) Ar = (a~/ad2) Ad z + (a~/ap) a p .  

In Eqs (13) we have neglected the terms containing the second and higher derivatives. We now 
require the partial derivatives of the travel time at a fixed epicentraI distance. Therefore, we 
require that the epicentral distance does not  change, i.e. Ar = 0. Equation (13b) then yields 

(14) Ap = - -Ad2(a~/adz)  (a~/Op)- i . 

Substitute (14) into (13a) and execute the limiting procedure as in Proof  1. We then have 

at Or a~ a~/a~ 
(15) a---~2 = ad z - -  ad--'- z ap / ap ~ 
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Let us modify the last term. By differentiating (6) with respect to p we obtain 

(16) OVm/a p = p(O~m/Op). 

It then follows that 

(17) (&lOp) (a~l@)- 1 = p .  

Equations (15) now take the form of Eqs (12). The other formulae in (7) can be derived analogous- 
ly. This constitutes the proof. 

A certain drawback of the given proofs is in that the formulae (10) and (13) used are onty 
approximate, because the terms of higher orders in them have been neglected. These proofs do 
not indicate quite clearly whether Eqs (7) are accurate or whether they should be complemented, 
e.g., by the second derivatives of the functions ~ and ~, etc. In order to clarify this question, we 
would have to consider higher terms in the proofs as well. The following proof will show that 
Eqs (7) are accurate and that no terms in them are missing. 

P r o o f  3 (analytical). We attempted a proof of this type in [5, 6], however, some 
vaguenesses remained, particularly as a result of unsuitable notations in the para- 
metric expression of the travel-time curve. 

Let us revert to the computation of the travel-time curve for given epicentral 
distances, as described in Section 3. In step a) we solved Eq. (2b) for the unknown p. 
The solution yields parameter p as a function of the remaining variables: 

(18) p = p(r, vl . . . .  , v,, d, . . . . .  d=). 

Substitute (18) into the parametric expression (2) and mark all the functional depen- 
dences: 

(19a) t(r, v ,  . . . . .  v,, da, . . . ,  d ,)  = 

= . . . . .  d ,  . . . .  , < ,  ; ( r ,  d . ) ] ,  

(19b) r = ( [ v , ,  . . . ,  v,, da . . . .  , d,, p(r ,  v l ,  . . . ,  d,)] .  

Here, r is considered to be the independent variable and we select the values of r. 
The parametric form (19) is the basis of this proof, the other relations being obtained 
formally by mathematical procedure. 

By differentiating (19) with respect to v; we arrive at 

(20a) ,~t/O,,~ = O G %  + (OG@) ( @ / % ) ,  

(20b) 0 = ~?~/Ovj + (O@?p) (@/~v , )  . 

It should be noted that two similar explanations why we had to put ~gr/Ov; = 0 in 
Eq. (20b), are possible: a) The epicentral distance r is an independent variable, 
therefore independent of v j; b) In computing the partial derivatives at a given epi- 
central distance we consider r to be a constant, see procedure in Proof 2. 

Equation (20b) yields 

(21) e p / e v j  = --(O~/avj) @~/c3p) -1  . 
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By substituting into (20a) we arrive at 

(22) Ot/c?v; = O~/Ov; - (&/8p) (O{/@)- '  (8{/Ovj). 

Now, on the r.h.s, of this equation, only derivatives of the functions ~ and { occur 
and we may, therefore, substitute Eqs (5) and (6). By using (17) we can simplify Eq. 
(22) to read 

(23) 8t/Svj = &lay,  - p(8{/av;).  

And this is Eq. (Ta). Equation (Tb) can be proved in a similar way. 

We shall add a few remarks concerning the mathematical terminology. The described com- 
putation of the partial derivatives of the travel-time curve of a reflected wave resembles the 
computation of the derivatives of an implicit function. We developed the procedure on the basis 
of the analogy with the computation of the partial derivatives of dispersion curves [4, 7] in which 
the theorem of implicit functions was used. Equations (2b) and (19b) really have the character of 
implicit equations, because they can be rewritten in the following form: 

(24) g ( v ,  . . . . .  v n, d l . . . . .  dn ,  p )  - -  r = O . 

Introduce the function f =  ¢ - -  r. Equation (24) can then be expressed as 

(25) f ( r ,  v 1 . . . . .  Vn, d 1 . . . . .  (In, p )  - -  O .  

Function p is given by Eq. (25) in implicit form. Some numerical method must be used to deter- 
minep  as a function of the other variables. However, if the value o f p  is known for a given value 
of r and a given model of the medium, the derivatives of function p can be determined with the 
aid of the theorem of implicit functions, i.e., for example, 

(26) ¢ ) p / ~ v j  = - - ( a f / O v j )  (aJ /e~p)  - 1 = - - ( O ~ / ~ v j )  ( a ~ / c g p )  - l , 

see Eq. (21). Fornmlae (2a) and (19a) are not equations, but formulae for computing the travel 
time with the aid of the composite function ~[v 1 . . . . .  dn,  p ( r ,  v 1 . . . . .  dn ) ] .  If we consider r to be an 
independent variable, the computation of the travel-time curve then rests in solving the equation 
f =  0 (determination of the implicit function p) and in computing the composite function ~. 
Thus, determining the partial derivatives of the travel-time curve consisted of computing the 
derivatives of the implicit function and of the derivatives of the composite function. 

5. SOME PROPERTIES OF THE PARTIAL DERIVATIVES 

Equations (8) clearly indicate that the partial derivatives Ot/~vj are always negative 
and the partial derivatives Ot/Odj always positive. This agrees with the physical con- 
cept: if the velocity increases in any layer, the travel time of the reflected wave 
decreases, and if the thickness of any layer increases, the travel time increases. 

Like the travel time t also the partial derivatives #t/#v; and Ot/Odj are functions 
of the parameters of the medium and of the epicentral distance. The dependence of  
the partial derivatives on the parameters of the medium is responsible for the inverse 
problems for the travel-time curves of reflected waves being non-linear problems (the 
second and the higher partial derivatives will in general be non-zero as follows from 
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Eq. (8)). We shall now only consider the dependence of the partial derivatives on the 
epicentral distance. First determine the values of  the partial derivatives at zero epi- 
central distance and at infinite epicentral distance. 

I f  the epicentral distance r is equal to zero also the parameter of  the seismic ray p 
is equal to zero. If  we substitute p = 0 into Eq. (8) and (6a), we find that 

(27) lim (Ot/~vi) = - 2 d j v f  2 , lim (Ot/Odj) = 2 v f  1 . 
r - -~O r ~ O  

Assume the velocities of the seismic waves to attain their maximum values in the 
k-th layer, i.e. 

(28) Vk = max vs. 
i= l ,...,n 

I f  p ~ 1/Vk, r ~ m, and Eqs (8) yield 

(29) l im (Ot/Ovj) = - 2 d j v f  2[1 _(1)i l l )k)  ] 2  2 --1/2 , 
r ' - *  o o  

- lim(Ot/Odj) = 211 2 2 1/2 - i  
r--* oo 

In particular for the derivatives with respect to the parameters in the fastest layer 
this yields 

(30) lim (O@Vk) = - -o0 ,  lim (Ot/Odk) = O. 
r ~ o o  r ---~ oo 

The parameter of the seismic ray p is an increasing function of the epicentral dis- 
tance r (p increases from zero to 1/v k when r increases from zero to infinite). It follows 
that the partial derivatives (8) are monotonous and decreasing functions of the epi- 
central distance r. Moreover, I&/Ovjl are increasing functions of the variable r and 
[Ot/Odjl are decreasing functions of the variable r. These properties of the partial 
derivatives can also be seen in Fig. 4 which is described below. 

6. N U M E R I C A L  E X A M P L E  

Consider a two-layered model of the medium with the parameters 

(31) v 1 = 6 .0km/s ,  d 1 = 20k in ,  Va = 7"0km/s,  d2 = 1 5 k m .  

The travel times of the reflected wave and the appropriate partial derivatives for 
several epicentral distances are given in Tab. 1. The partial derivatives for an infinite 
epicentral distance were determined with the aid of Eqs (29). The partial derivatives 
of  the travel-time curve are also depicted in Fig. 4. 

The analysis in Section 5, Fig. 4 and other computations which we shall not go 
into here, indicate that the travel-time curve of the reflected wave carries information 
about the thicknesses of the layers particularly at small epicentral distances. At large 
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Table 1. Travel times and partial derivatives for model (31). The letter r represents the epicentral  
distance, t is travel t ime of the reflected wave. The partiaI derivatives 8t/Ov i are given in units  

of k m -  1 s 2, Ot/Odl in k m -  1 s. 

r(km) t(s) Ot/~v I Ot/Ov 2 Ot/ad l Ot/Od 2 

0 
100 
200 
300 

O0 

10-952 
18'984 
32-472 
46'564 

OO 

--1"1111 
--1"6826 
---2"0348 
--2"1110 
--2"1572 

--0"6122 
--1"2699 
--2"8948 
--4"8426 

0-3333 
0'2201 
0-1820 
0'1755 
0"1717 

0"2857 
0-1378 
0'0604 
0"0361 
0"0000 

a_l_t, 
~d, 
0.5 

-1.0 

-2.0 

aL 
~v, 

50 I00 150 r(kml 

Fig. 4. Partial derivatives of the travel t ime of the reflected wave with respect to the thicknesses 
of the layers (positive values) and with respect to the velocities in the layers (negative values). 

The numbers  marking the curves represent the ordinal  number  of the layer. 

epicentral distances the travel time curve is mostly affected by the velocities in the 
fastest layers. 
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Compare the partial derivatives of the travel-time curves of reflected waves with respect to the 
parameters of the medium with the partial derivatives of the dispersion curves of seismic surface 
waves [4, 7]. The graphs of these partial derivatives have different shapes. Whereas the partial 
derivatives of the travel-time curves are monotonous functions of the epicentral distance, the 
partial derivatives of the dispersion curves as functions of the period have typical local extremes. 
Therefore, a certain parameter of the medium has a marked effect on the dispersion curve only in 
a certain range of periods. This is favourable for solving the inverse problem if we want to deter- 
mine simultaneously a larger number of parameters of the medium. In a certain sense this implies 
that one dispersion curve carries more information about the structure of the medium than one 
travel-time curve of the reflected wave. In order to obtain more detailed information about the 
structure of the medium with the aid of reflected waves, we would have to use, e.g. the system of 
travel-time curves for waves reflected from interfaces at different depths. 

7. CONCLUSION 

E q u a t i o n s  (8), wh ich  enab le  the  pa r t i a l  de r iva t ives  o f  the  t r a v e l - t i m e  cu rve  o f  

ref lec ted  waves  in a l aye red  m e d i u m  to be  c o m p u t e d  qu i ck ly  and  accura te ly ,  h a v e  

been  der ived .  O n l y  for  a g iven  ep i cen t r a l  d i s tance  n e e d  the  p a r a m e t e r  o f  the  se ismic  

ray  be  c o m p u t e d  us ing  s o m e  i t e r a t i on  m e t h o d ,  bu t  the  t r ave l  t i m e  and  its de r iva t ives  

can  be  d e t e r m i n e d  by subs t i tu t ing  in to  s imple  f o r m u l a e .  

W e  have  d e m o n s t r a t e d  tha t  i t  is ve ry  easy to der ive  the  f o r m u l a e  for  the  pa r t i a l  

der iva t ives ,  i f  a su i tab le  n o t a t i o n  is used  in the  p a r a m e t r i c  express ion  o f  the  t rave l -  

t ime  curve.  I t  is ev iden t  tha t  the  p r o c e d u r e ,  desc r ibed  in P r o o f  3, c o u l d  a lso  be used 

to c o m p u t e  the  h igher  pa r t i a l  de r iva t ives  o r  to c o m p u t e  the pa r t i a l  de r iva t ives  o f  the 

t r ave l - t ime  cu rve  fo r  o the r  m o d e l s  o f  the  m e d i u m .  

Received 4. 9. 1979 Reviewer: I. P~en(ik 
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