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0 Introduction 

The central theorem of Gentzen's theory of proofs states that every deduction d (in 
classical or intuitionistic, propositional or quantifier logic) can be transformed into 
a deduction G(d) which does not make use of the cut rule. Avoiding the use of a 
particular proof rule will, obviously, have the effect that G(d) becomes longer than 
d, and Gentzen's algorithm for cut elimination establishes an upper bound for the 
length l(G(d)) of G(d). In this article, I shall construct a (different) cut free deduction 
J(d) for the case of intuitionistic propositional logic and derive considerably 
sharper upper bounds for l(J(d)). Also, I shall use the methods developed for this 
purpose in order to set up an effective decision method. 

Gentzen's upper bound for l(G(d)) depends on both the length l(d) and the cut 
degree g(d) of d, viz. the maximum of the degrees, increased by 1, of cut formulas 
used in d; it has the form 

2a(a) 
.," 

l(G(d))<=22 (g(d)2's) or l(G(d))<_2~aa~ with 2g=n, 27+l=2 ~zr~. 

The reason for the appearance of these iterated exponentiations lies in the nature 
of Gentzen's algorithm which proceeds by a double induction on both n = l(d) and 
g = g(d) with respect to the lexicographical order of pairs (n, g). It follows from 
results of [W-P] that in the case of quantifier logic the enormity of these bounds 
cannot be avoided: there is no constant c such that 2~ would be an upper bound 
independent of the cut degree of the particular d. 

On the other hand, it is known that in the case of classical propositional logic a 
deduction d can be transformed into a cut free deduction K(d) such that already 

l(K(d)) < 2 2g~" t~a). l(d) 

will hold (cf. [Go]). Clearly, a proof of this fact will have to employ methods 
different from Gentzen's lexicographic induction, and what it actually does use is 
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the technique of inversion rules. Inversion rules for sequent calculi are well known, 
and a technique to use them in order to eliminate cuts from a deduction d is 
described by the following two observations. 

Local reduction. Given an instance of cut with a composite cut formula, the 
inversion rules referring to that type of formula may be applied to the premisses 
and will give deductions of sequents in which the cut formula has been replaced by 
formulas of lesser degree. In order to obtain the conclusion of the original cut, these 
replacing formulas will have to be removed by new cuts which, however, then have 
cut formulas of lesser degree. 

Applying the local reduction sufficiently often will result in a cut free deduction. 
Doing this in an economical manner by the 

Global process. Consider the instances of cut in d which have maximal position. If 
their cut formula is composite then apply the local reduction; if it is not then apply 
Gentzen's reduction, 

will permit to computate bounds for the length of the resulting deduction. Run by 
itself, this algorithm of inversion rules does not yet provide such an upper bound; it 
will, therefore, be supplemented by the introduction of suitable new cut degree 
functions k and j which serve this purpose; in view of the limitation of 
exponentiations mentioned above, the decisive property of these functions is that 
their values k(d),j(d) for a deduction d do only depend linearly on the length n of d. 

In the preparatory Sect. 1, I shall consider the calculus LK for classical 
propositional logic, define an operator K which transforms deductions d into cut 
free deductions K(d), and prove, for a suitable cut degree function k, that 

l(K(d)) < 2 k(a)- l(d) 

holds; this implies the result mentioned above since k(d)< 2 g(a). l(d). 
In Sect. 2, I shall consider the calculus LJ for intuitionistic propositional logic, 

define an operator J which transforms deductions d into cut free deductions J(d), 
and prove, for a suitable cut degree function j, that 

l(.l(d)) < 2 ~(a) �9 l(d) 

holds. Since j(d) < 2 2 2 g ( a )  �9 l(d), this implies 
2e(a)  

l(J(d)) < 2 {22 .,(a)). l(d), 

expressing the bound in terms of Gentzen's original parameters. Suffice it to say 
here that the intuitionistic case will be considerably more complex than the 
classical one since its inversion rules may be applied less liberally than those of the 
classical calculus. 

In Sect. 3, I shall introduce a calculus LH and prove it to be equivalent to LJ. 
The decisive property of LH is this: for every sequent s, I can define a number 
deg(s), depending alone on the structure of formulas in s, which is an upper bound 
for the lengths of all (possibly existing) LH-deductions of s. Consequently, deg(s) is 
also an upper bound for the lengths of branches occurring in decision procedures 
with respect to derivability in LH. In addition, the rules of LH contain, essentially, 
the forward procedures which the inversion rules of LJ state as backward 
procedures. This has the effect that most of the rules of LH become invertible; thus 
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the decision procedures for L H  will require only a relatively small amount of 
backtracking. 

(The proof of Theorem 3 as well as the preceding lemma is due to the 
anonymous referee whose advice I gratefully acknowledge.) 

1 Classical propositional logic: an example 

In this chapter, I shall illustrate the technique of inversion rules on the example of 
classical propositional logic. I consider formulas built from atoms (propositional 
variables) and the constant A (absurdity) with the connectives ^ ,  v ,  - ;  the degree 
of an atom is 0, and the degree of a composite formula is the maximum of the 
degrees of its immediate subformulas increased by 1. (Finite, possibly empty) 
sequences M, M' of propositional formulas will be taken as equal if they differ only 
by a permutation of their index set. Sequents are ordered pairs of such sequences, 
written in the form M =~ N. Deductions are trees, the nodes of which carry 
sequents such that (a) the maximal nodes carry sequents belonging to a specified 
set of axioms, and (b) the sequents on non-maximal nodes e are related to the 
sequents on the upper neighbours of e by instances of a specified set of rules. The 
calculus L K  of classical propositional logic is defined by specifying as axioms all 
sequents of the form 

M , v = ~ v , N  and M , A ~ N ,  

where v is atomic, and specifying as rules 

M o u ,  uAv, N M ~ v ,  uAv, N M, uAv, u ~ N  M, uAv, v ~ N  
(IA) M ~ u ^ v , N  (EA/) M , u ^ v ~ N  (EAr) M, u A v ~ N  

(Iv/) M ~ u ,  uvv, N (Ivr) M ~ v ,  uvv, N (Ev) M, uvv, u ~ N  M, uvv, v ~ N  
M ~ u v v . N  M ~ u v v ,  N M, u v v ~ N  

M , u ~ v , u ~ v , N  M , u ~ v ~ u , N  M , u ~ v , v ~ N  
(I~) (E-~) 

M ~ u~v,N M,u~v ~ N 

M ~ c , N  M , c ~  N 
(CUT) M ~ N 

(CUT) is the cut rule and c is its cut formula; the rules different from cut will be 
called the logical rules of LK. In every instance of a logical rule there occurs a well 
defined composite formula in the conclusion, called the principal formula of this 
instance. A branch of a deduction is a (full) branch of its tree together with the 
sequents on its nodes; the length of a branch shall be the number of its nodes. The 
length l(d) of a deduction is the maximum of the lengths of its branches. 

It will be noticed that there is neither a weakening nor a contraction rule. They 
are not needed since their admissibility can be proven. Actually, applications of 
these two rules may be viewed as those of operators W and M acting on deductions 
(where I omit the parameters referring to the formulas weakening or being 
contracted): 

W transforms a deduction of M =~ N into a deduction of M, A =~ N, B 

M transforms a deduction of M , A , A  ~ N , B , B  into a deduction of 
M , A  ~ N , B .  
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Moreover, both these operators preserve the structure of deductions and hence the 
property of being cut free as well as the length. 

Given a sequent M =~ N which occurs on a node of a deduction of LK which is 
neither maximal nor a conclusion of cut; then it will be conclusion of a well defined 
logical rule with a well defined principal formula. Singling out arbitrarily the one 
or the other of the composite formulas w in M =~ N, we may ask whether there is a 
(presumably different) deduction leading to M =~ N with this particular formula w 
as the principal formula of the logical rule relating to its leading connective. For 
the calculus LK, the answer is always Yes, and actually we may, for each of the 
three connectives and for each of the possible premises leading to M =~ N with w as 
the principal formula, define algorithms which construct a deduction of that 
premise out of the deduction of M =~ N. These algorithms I shall view as inversion 
operators, and the following table lists their names, the sequent the deduction of 
which they start from, and the sequent their results end with: 

I ^ L  M=~u^v ,N  M=z,u,N 

I ^ R  M=~u^v ,N  M=c,v,N 

I v  M=~uvv, N M=~u,v,N 

I ~  M=~u~v,N M,u=~v,N 

E ^  M,u^v=~N M,u,v=~N 

E v L  M, uvv=>N M,u=~N 

E r R  M, uvv=~N M,v=c,N 

E ~ L  M , u ~ v ~ N  M=~u,N 

E ~ R  M,u~v=~ N M,v=~ N. 

The construction of these algorithms is by a straightforward recursion on the 
lenghts of the given deductions. (cf. e.g. [C], p. 203ff.) They all preserve the 
property of being cut free and they all do not increase lengths. 

Making use of the inversion operators, I shall now perform the transformation 
of a deduction d by the global process as explained in the introduction. For a 
formal description, I define an operator RED on deductions d by recursion on/(d): 
if l(d)= 1, i.e. if d is 1-node tree carrying an axiom, then RED(d)= d; if l(d)> 1 and if 
d ends with an instance of a rule (R) 

Mo ~ No M1 ~ N1 (11) 
M ~ N  

which is not a cut in maximal position, then RED(d) shall be the deduction 
obtained by prolonging RED(do), RED(d1) with the same application of (R). If, 
however, (R) is a cut in maximal position 

M ~ c , N  M , c ~ N  (R) 
M ~ N  

with the cut formula c then do and dl both are cut free, and I distinguish four cases, 
depending on the form of c. (Case 1) that c is atomic, I handle in the traditional 
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manner: put do, say, on top of the axioms of dl and perform the cut there, making 
use of the fact that the set of axioms is closed under cut. Observe that then 
/(RED(d)) ~ 2. l(d). 

Case 2. c = u ^ v. In this case, I define RED(d) by 

el~ eq 
~o M, v =:, u, N M, u, v => N 

(CUT) 
M ~ v , N . . . . .  / M , v = * . N  , 

M =~ N - - - ~ U T )  

where e o is I ^ R(do), el is W(I ^ L(do) ) with the weakening formula v, and e 2 is 
E ^ (dl). Observe that/(RED(d)) < 1 + l(d) since the operators producing the ei do 
not increase lengths. 

Case 3. e = u v v. Then I define RED(d) as 

M ~ u , v , N  M , u = * . v , N  
$ 

(CUT) M ~ v, N M, v ~ N 

M ~ N (CUT) 

with eo=Iv(do) ,  e ~ = W ( E v L ( d O ) ,  and e a = E v R ( d O ;  observe again that 
t(RED(d)) ____ 1 + t(d). 

Case 4. c=u--*v. I define RED(d) to be 

~o M, u ~ v, N M, u, v ~ N 
,1, (CUT) 

M =~ u,N..... _ . ._M,u ~ N 

M ~ N ~ - ~ C ~  

with eo = E--*L(dl), el = I--*(do), and e2 = W(E-*R(d0) and, once more,/(RED(d)) 
____ 1 + t(d). 

This concludes the definition of the operator RED. The following observation is 
immediate: 

If a deduction d contains a maximal cut which is atomic (i.e. which has an 
atomic cut formula) then in RED(d) it has disappeared and no new cuts are 
introduced during this removal. If d contains a maximal cut with a 
composite cut formula of degree m, then in RED(d) the number of cuts with 
cut formulas of degree larger than or equal to m has decreased. 

It follows that iterating RED sufficiently often will result in a cut free deduction 
K(d). The question is: how often? In order to answer it, I will need to find a simple 
parameter which decreases under applications of d. 

Let me examine the definition of RED, e. g. that of(Case 2) discussed above. The 
cut with u ^ v has disappeared; instead, the branch going through eo contains a 
new cut with v, and the branches going through el, e2 contain new cuts with u as 
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well as with v. Now the length of the formulas u ^ v is I plus the sum of the lengths 
of u and v. Consequently, the 

sum of the lengths of cut formulas 

on el, e2 is less than the corresponding sum taken for dl - and the same, only much 
more so, is true for the sums with respect to eo and to do. The same situation exists 
in all other cases, and so I define for every branch V of d the number 

N(V) = sum of the lengths of cut formulas on V 

and conclude that for the branches V' of RED(d) arising from a branch V of d it 
holds that N(V')< N(V). But every branch of RED(d) arises as a branch V' from a 
branch V of d. Consequently, for 

k(d)= maximum of the numbers N(V) taken over all branches V of d 

it follows that k(RED(d)) < k(d). This implies that at most k(d) iterations of RED 
will result in K(d). 

Finally: what about the increase of lengths ? In all four cases in which RED was 
applied to deductions d ending with a maximal cut, I had observed that/(RED(d)) 
< 2. l(d). It then follows from the recursive definition of RED that /(RED(d)) 
< 2. l(d) holds generally. Since K(d) will be arrived at after at most k(d) applications 
of RED, it follows that 

l(K(d)) < 2 k(d). l(d). 

A formula of degree 0 has length 1 = 21 - 1 ; thus a formula of degree n will have at 
most the length 2" + 1 _ 1. Gentzen's cut degree g = g(d) is the maximum of degrees, 
increased by 1, of all cut formulas in d; hence 2 g is an upper bound for all these 
lengths. If V is a branch of length m, it will contain at most m cut formulas; hence 
2 o. m is an upper bound for N(V). But m is bounded by l(d), and thus 

k(d) < 2 ~ l(d). 

2 Cut elimination in intuitionistic propositional logic 

The calculus LJ ofintuitionistic propositional logic differs from LK basically only 
in one respect: it uses sequents M ~ N in which the right hand N consists of one 
formula only. So its axioms are of the form 

M , v ~ v  and M , A ~ r ,  

where v is atomic, and its rules are the rules (I ^ ), (E ^ L), (E ^ R), (I v L), (I v R), 
(E v ), ( I~) ,  (E~) ,  (CUT) of LK, written now for the new, intuitionistic sequents. 
Thus in the/- rules  the set N, as well as the parameters, disappears altogether, in 
(E ^ L), (E ^ R), (E v ) it becomes a single formula, in ( E ~ )  and (CUT) it disappears 
in the left premise and becomes a single formula in the right premise and the 
conclusion. That  are all the differences already. 

The operators W and M for weakening and contraction with the effect 

W M ~ r  M,N=~r 

M M,M,N=*.r M,N=*.r 
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are defined as before and retain their properties. The same holds for the inversion 
operators 

I ^ L  M = ~ u ^ v  M=~u  

I A R  M = c . u ^ v  M ~ v  

I - -  M =~ u ~ v  M, u =~ v 

E A  M, uAv=>r M,u,v=:.r  

E v L  M, uvv=: . r  M , u ~ r  

E r R  M, u v v ~ r  M , v ~ r  

E ~ R  M , u ~ v ~ r  M , v ~ r .  

But I v and E ~ L  are not available since they would produce sequents with two 
formulas on the right. As for I v ,  used on the left premise of a cut with a disjunction, 
its missing is not serious, and the removal of the cut formula from the subdeduction 
leading to that premise can be managed by the familiar methods. The case of E--* L 
is a different matter, and for this operator I shall substitute three new ones which 
perform the transformations made in [HI: 

if M, (u ^ v )~w  =~ r is derivable then so is M, u ~ ( v ~ w )  ~ r 

if M , ( u v v ) ~ w ~ r  is derivable then so is M , u ~ w , v ~ w ~ r  

if M , ( u ~ v ) ~ w ~ r  is derivable then so is M , u , v ~ w ~ r .  

Clearly, these transformations act precisely on the sequents which E ~ L  would be 
applied to, and appropriate applications of (CUT) will show them to be correct. I 
shall now prove three lemmas which describe the construction of inversion 
operators producing the actual deductions without applications of (CUT). 

In order to do so, I need a measure of the occurence of left premises o f (E~)  in a 
deduction d. Given a formula u~v ,  I denote by 

m(u ~ v  I d) the maximal length of a subdeduction of d leading to a left premise 

of (E~)  with principal formula u~v .  

Furthermore, given an occurrence u ~  v of a formula u ~  v in d I denote by n(u~v  I d) 
the maximal length of a (full) branch of d containing u ~ v and a left premise of(E ~ )  
with principal formula u~v .  

It is easy to see that the inversion operators F already introduced do not 
increase these measures: it holds that m(u~vld)>m(u~vlF(d) )  and n(u~vld)  
> n(u~vlF(d)). 

Lemma 1. There is an operator E ~  /x converting cut free deductions d of 

M, (u A v )~w  ~ r 

into cut free deductions E ~ ^ (d) of 

M, u~(v--*w) ~ r 

which at most doubles the lengths: I (E~ ^ (d))<2. l(d). 

If d is an axiom M , ( u A v ) ~ w ~ r  then E ~ A ( d )  shall be the axiom 
M, u~(v-~w) ~ r; if l(d) > 1 then I define E ~  ^ (d) by recursion on l(d). Ifd is of the 
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form 
1 

M~176  M D ( u ^ v ) ~ w = ~ r l  (R) 
M,(u ^ v ) ~ w  =~ r 

and (R) is not an application of ( E ~ )  with (u ^ v ) ~ w  as principal formula, then I 
define E ~  ^ (d) as 

col el~ 
M~176 Ml 'u -~(v~w)=~r l  (R) 

M, u ~ ( v ~ w )  => r 

where ei is E ~  ^ (di). If d is of the form 

M , ( u ^ v ) ~ w = ~ u ^ v  M, (u^v )~w ,w=* . r  

M,(u A v )~w  ~ r 

then I define E ~ ^ (d) by 

eli e2~ 
co] M , u ~ ( v ~ w ) , v ~ w = ~ v  M , u ~ ( v ~ w ) , v ~ w , w = c . r  

M, u ~ ( v ~ w )  =~ u ~ / M, u~ (v~w) ,  v ~ w  =~ r 

M, u ~ ( v ~ w )  =~ r 

with eo = E ~  ^ (I ^ L(do)), el = W ( E ~  ^ (I ̂  R(do))), and e2 =W(M(E~R(dl ) ) ) .  
The bound f o r / ( E ~  ^ (d)) is established by induction on l(d). 

Lemma 2. There is an operator E ~ ^ converting cut free deductions d of 

M,(u v v)~w=~ r 

into cut free deductions E ~  v (d) of 

M , u ~ w , v ~ w  ~ r 

such that I (E~  v(d))<2- l (d) .  

E ~  v (at) will be defined by recursion on the number 

p(d) = l(d) + m((u v v)--, wl d) 

and it will be shown that l(E ~ v (d)) < p(d): Ifp(d) = 1 then d is an axiom of the form 
M, (u v v )~w  =~ r, and E ~  v (d) shall be the axiom M, u~w,  v ~ w  ~ r. For  p(d) > 1 
I will have to distinguish various cases. 

Case 1. d is of the form 

g 
M,(u v v ) ~ w  =~ u d~ 

(I v L) 
M , ( u v v ) ~ w : ~ u v v  M , ( u v v ) ~ w , w = ~ r  

M , ( u v v ) ~ w = ~ r  
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Then I define E ~  v (d) by 

eo 1 
M,u~w,v- -*w=~u M,u--+w,v~w,w=~r 

M, u ~ w ,  v ~ w  ~ r ( E ~ )  

with e o = E ~  v (do) and e 1 = W(M(E~R(d0)  ). If (I v R) was applied instead of 
(I v L) then I proceed analogously. 

Case 2. d is of the form 

(E--,) 
M , ( u v v ) ~ w ~ u v v  M , ( u v v ) ~ w , w ~ u v v  $ 

M,(u v v ) ~ w  ~ u v v \ . .  / m , ( u  v v )~w ,w  ~ r 

M, (u v v ) ~ w  =~ r" (E ~ ) .  

Then I define E ~  v (d) as E ~  v (e) where e is 

l eo 1 
M , ( u v v ) - - * w ~ u v v  M , ( u v v ) ~ w , w ~ r  

(E-*) 
M , ( u v v ) - - * w ~ r  

with eo =W(M(E~R(dz)));  observe here that by definition of the operator E ~ R  
we have m((u v v)~Wleo) = 0 and thus p(e) < p(d). 

Case 3. d is of the form 

(E~) 

do~ dl~ 

m,  ro--*rl , (UVV)~W~ro m ,  ro - -*r . (uvv )~w,  r l ~ u v v  d2 

M, roar1, (u v v )~w  ~ u v v 

/ M , ( u v v ) ~ w , w ~ r  

M, ro--*rl, (u v v )~w  ~ r (E ~ )  

then I define E ~  v (d) to be 

M, ro~r l ,  u--rw, v ~ w ~ r  o M, ro~rl ,  u~w,v--+w, rl ~ r  

M, ro--~rl, u-+w, v---*w ~ r 
(E---,), 

where e is defined by 

M, r o ~ r x , ( u v v ) ~ w , r  1 ~ u v v  M, ro~rl,(UVV)--*w,w,r 1 ~ r  

M, roar , ,  (u v v)-~w, r, ~ r 
(E-*). 
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Case 4. d is of the form 

(R) 

M o , ( U V V ) - ' w = : , u v v  m l , ( u v v ) - ' w = > u v v  

m , ( u  v v ) - 'w=~ u v v d~ 

M, (u  v v ) - 'w ,  w ~ r 
/ 

M, (u v v)-" w =~ r (E -" ) 

where (R) is different from (E- ' )  and (I v ). Then I introduce auxiliary deductions 
Co, ex defined by 

di~ W(M(E--*R(d2))I 
M i , ( u v v ) - ' w : c ' u v v  M i , ( u v v ) - ' w , w ~ r  (e-'). 

Mi, (u v v)-" w :=~ r 

From eo and el I obtain E-"  v (d) as 

E~V(eo)+ E~V(ex) ~ 
Mo, u--->w,v--.w=>r M l ,  u--.w,v--.w=>r 

M,  u - . w ,  v - ' w  =r r 

Finally 

Case 5. d is of the form 

Mo, (u v v)-" w =*" r o M a, (u v v ) - ' w  :r r 1 

M , ( u v v ) - ' w ~ r  

(R). 

(R), 

where (R) is not an application of (E- ' )  with principal formula (u v v) - 'w ,  then I 
define E-"  v (d) by 

eo l 1 
Mo, u - ' w , v - ' w ~ r  o m l ,  u--~w,v--~w::e.r 1 (g) 

M, u - ' w ,  v - ' w  ~ r 

with ei: = E-"  v (di). In all these cases I have /(E-" v (d)) < p(d) = l(d) + m((u v v) 
- 'wld) ,  and this implies in particular I(E-" v (d))< 2. l(d). 

Lemma 3. There is an operator E - ~  converting every cut f ree  deduction d o f  a 
sequent 

M , ( u - ' v ) - - ' w  ~ r 

into a cut free deduction E--~(d) of  the sequent 

M , u , v - ' w  ~ r 

such that / (E--~(d))  < l(d). 
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If d is an axiom M, (u~v)-~w ~ r, then I define E--~(d) to be M, u, v ~ w  ~ r. 
Now the construction of E--~(d) proceeds by recursion on l(d). If d is of the form 

do I d, l 
M o , ( u ~ v ) ~ w ~ r  o M l , ( u ~ v ) - - * w ~ r  1 (R), 

M,(u v v ) ~ w  ~ r 

where (R) is not an application of (E~) with principal formula ( u ~ v ) ~ w ,  then I 
define E--~(d) by 

M ~ 1 7 6  M l ' u ' v - * w ~ r l  (R) 
M , u , v ~ w  ~ r 

with ei: =E--~(di). If d is of the form 

M , ( u ~ v ) - ~ w ~ u ~ v  M , ( u - - * v ) ~ w , w ~ r  
(E--, ) 

M, ( u ~ v ) ~ w  ~ r 

then I define E---~(d) to be 

M , u , v ~ w ~ v  M , u , v ~ w , w ~ r  
(E--,), 

M, u, v ~ w  ~ r 

where eo :=M(E---~(I~(do))) and el :=W(M(E~R(dt))). 

These three lemmas having been proved, the program for the reduction 
procedure presented in the following theorem is as follows. I have constructed the 
operators E ~  ^,  E ~  v ,  and E--~ as substitutes for the missing operator E ~ L .  As 
for the first two, they may be applied in the appropriate situations and will work as 
in the classical case. As for E---~, its application in a situation leading from 

M ~ ( u ~ v ) ~ w  M , ( u ~ v ) ~ w ~ r  to M ~ ( u ~ v ) ~ w  M , u , v ~ w ~ r  

M ~ r  

will, in general, leave me without knowledge about how to proceed. In the 
particular case that M , ( u ~ v ) ~ w  => r in d happens to be the conclusion of (E~) 
with principal formula (u ~ v)~ w, however, a suitable reduction will be possible (cf. 
Case 6 of the following proof); moreover, it will be shown that all other cases can be 
transformed in such a way that, in the end, only this particular case needs to be 
treated. 

There remain the situations 

M ~ a ~ v  M , a ~ v ~ r  

M ~ r  

with a atomic in which the left side may be reduced with help of I--*. Again, in 
general no reduction for d seems to be available. In the particular case, however, 
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that d ends with an instance of (E~) with principal formula a ~ v  and the left 
premise being an axiom, the reduction of 

do M, a, a ~ v  =~ a M,  a, a ~ v ,  v =~ r $ 
M,  a =~ a ~ v  M,  a, a ~ v  =~ r 

J 
M , a ~ r  / 

(E-,) 

may be performed (cf. Case 3.2 in the following proof). Moreover, it may be shown 
that all other cases can be transformed in such a manner that only this particular 
case need to be treated. 

Carrying out all these transformations will, obviously, increase the lengths of 
deductions, and so I will need recursion parameters in order to measure them. I 
begin by defining a new degree function deg for formulas: 

deg(v) = 2 if v is atomic, 

deg(u ^ v)-- deg(u) �9 (1 + deg(v)), 

deg(u v v) = 1 + deg(u) + deg(v), 

deg(u~v) = i + deg(u), deg(v), 

and in all the following degree shall always refer to this degree function. I shall be 
using the following properties of this function: 

deg((u ̂  v)~w) > deg(u~(v ~w)), 

deg((u v v ) ~ w )  > deg(u~ w) + deg(v~w), 

deg((u ~v)~w)  > deg(u) + deg(v) + deg(v~w), 

deg((u~v) ~w) > deg(u~ v) + deg(v ~w).  

If d is a deduction and V is a (full) branch of d then I set 

j (V)  := Sum of the degrees of cut formulas on V 

and 

j(d):= Max i mum ofj(V) for all branches of d. 

The reason behind these particular choices is simply the fact that the function j 
defined in this manner will decrease under application of the operator RED to be 
defined now. - If a deduction d ends with an instance of a 2-premise rule then I will 
write ll(d) and lr(d) for the lengths of the subdeductions leading to the left or the 
fight premise respectively. 

Theorem 1. There  is an operator RED converting every deduction d o f  a sequent s 
with 

0<j(d) 

into a deduction RED(d) of  s such that 

j (RED(d))  < j(d) 

which at most doubles the length o f  d:/(RED(d))__< 2. l(d). 
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I define RED(d) by recursion on v(d), where v(d) is defined as follows: 

1. If d =  M ~ c  M , c ~ r  
M =~ r (Cut), 

where do and dl are cutfree, then I set 

v(d):= l(d), if e is atomic or a disjunction 

n(u~vld), if c = u ~ v  and u atomic 

l(dO, if c = ( u ~ v ) ~ w ,  

l(d) otherwise. 

2. In all other cases I set v(d):= l(d). 

Simultaneously I prove l(RED(d))<l(d)+v(d). Since v(d)<l(d) this implies the 
theorem. I distinguish cases according to whether the last rule applied in d is or is 
not a maximal cut. The simple case is the latter one in which d is of the form 

do 1 dl~ 

Mo ~ ro M~ =~ rl 
(R); 

M =~ r 

here I define RED(d) as 

M o =~ r o M1 =:, r 1 (e) 
M ~ r  

with ei = RED(di). If, however, the last rule of d is a maximal cut, I shall distinguish 
six cases according to the form of the cut formula e. 

Case 1. c is atomic or a disjunction. 

Case 12. The left premise of  the cut inference is an axiom. Then d is of  the form 

do 1 
M , c ~ c  M , c , c ~ r  

M,c=~ r / 
(CUT) 

and I set RED(d)= M(do). 

Case 1.1. The left premise is the conclusion of an (I v L)- or (I v R)-inference, 
e = u v v for formulas u and v: 

d~ d, 
M ~ u  

(I v L) 
M ~ u v v  M, u v v ~ r  

M ~ r  (CUT)" 
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Then I define RED(d) by 

M ~ u  M , u ~ r  
(CUT) 

M ~ r  

with e = E v L(dl), and similarly if (I v L) is replaced by (1 v R). 

Case 1.2. 

l 
M, r o ~ r  1 ~ r  o M, r o ~ r l , r  1 ~ c  

( E ~ )  M,  r o ~ r  1 ~ c  
/ 

M, ro---~r 1 => r 

Here I set RED(d)= 

do~ RED(e) 1 

M ,  ro---~r 1 :=>r 0 M ,  ro---~rl, r I =r 

M ,  r 0 ~ r  i ~ r 
where e is 

d2 
+ 

M, ro---~ r l ,  c ~ r .  

(CUT) 

M ,  ro--~rl,  r l  =:~ c M, ro--~rl, rl,r 

M,  ro--+yl, r 1 :::~r 

The remaining possibilities are covered by 

Case 1.3. 

M o ~ c  M~ ~ c  

M , c ~ r ,  (R)  M ~ c ~ 

M ~ r / (CUT) 

(CUT). 

where (R) is different from (I v ) and (E~).  In this case I consider the deductions ei 
given as 

and define RED(d) by 

M i ~ c M i ,  c ~ r 
(CUT) 

M i ~ r  

RED(eo)~ RED(el)~ 

M o o r  M z ~ r  
(g). 

M ~ r  

It then follows that 

j(RED(d)) __< max {j(RED(eo)),j(RED(el))} < max {j(eo),j(el) } = deg(u v v) =j(d) 
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and 

Case 2. c = u/x v.  

If d has the form 

/(RED(d)) ____ l(d) + v(d) . 

do l 
M ~ U A V  M ,  u A v ~ r  

(CUT) 
M =:, r 

then I define RED(d) to be 

el~ e2 l 
eo M, v ~ u M, u, v ~ r 

$ (CUT),  
M ~ v , ~ .  __ lM,  v ~ r  , 

M ~ r ~ ~ )  

where eo = I ^ R(do), el = W(I ^ L(do)), and e2 = E ^ (d0. It follows that 

j(RED(d)) = deg(u) + deg(v) < deg(u A v) =j(d) 

and 

/(RED(d)) =< l(d) + 1 <= l(d) + v(d) . 

Case 3. c = u ~ v  and u is atomic. 

Here I use recursion on the parameter n(u ~v[d ) ,  where u ~ v is the occurrence of 
u ~ v  in the antecedens of the right premise of the bot tommost  (CUT) of d. If this 
number is 0 then I set RED(d) : = the deduction resulting from the deduction of the 
right premise of the cut inference, by ommitting all occurences of u ~ v .  

There remain the cases that n ( u ~ v l d )  > 0 in which it is easy to see that the right 
premise of the conclusion cannot be an axiom. 

Case 3.1. This right premise is not conclusion of an instance of (E ~ )  with principal 
formula u-~v.  

do d~ d~ 
Mo, u ~ v  ~ r o M 1 ,  tt---->V ~ r 1 

(R) 
M ,  u ~ v  ~ r 

M ~ u ~ v  M ~ r ~ U T )  

Then I set RED(d)= 

Mo =~ ro M1 ~ rl 
M ~ r  

(R), 
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where the e i are 

W(do) 1 d,+~ 1 

M i ~ u ~ v  Mi, u ~ v = r i  (CUT). 
m i  =~ r i 

The remaining cases cover the situation that the right premise is conclusion of an 
instance of (E~)  with principal formula u ~ v  and distinguish according to the 
form of its left premise. 

Case 3.2. a,~ 
do 

M ,  u, u ~ v  =~ u M ,  u, u ~ v ,  v =~ r 
(E--,) 

M , u  ~ u ~ v  M , u , u ~ v = ~  r / 

M, u =~ r / ( C U T )  

Then I define RED(d) by 

M , u ~ v  M , u , v ~ r  
(cuT), 

M , u ~ r  

where eo =M(I~(do)) and el = M(E-*R(dO). 

Case 3.3. 

dl l d2~ d3 
M , u ~ v ~ u  M , u ~ v , v ~ u  j, 

( E ~ )  M , u ~ v ~ u ~  M , u ~ v , v ~ r  
/ 

M, u ~ v  ~ r ( E ~ )  

and eo = W(M(E~R(d3))). 

Case 3.4. 

do 

M ~ u ~ v  
\ 

M ~ r ~ (CUT) 

Mo, u ~ v  = r o M1, u-'-~V ~ u d~l 

(E--*) M, u--+v ~ u ~  M, u ~ v ,  + v ~ r 
/ , 

M, u-+v ~ r ( E ~ )  

ao I 

M =~ u ~ v \  

M = ~ r ~  (CUT) 

with u ~ v  as principal formula in the upper instance of (E~). I define RED(d) as 
RED(e), where e is 

do d'l e~ 
M , u ~ v  =~ u M , u ~ v , v  = ,  r 

+ ( E ~ )  
M ~ u ~ v  _ M , u ~ v  ~ r 

=:~r 
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where the principal formula of the upper instance of (E~) is different from u~v .  
Then RED(d)-- 

RED(eo)~ "ED(el)I 
M ~ r o  M, r l ~ r  

( e ~ ) ,  
M ~ r  

where e 0 is 

and el is 

do~ dl~ 
M ~ u ~ v  M , u ~ v ~ r  o 

(CUT) 
M ~ r  o 

d21 IW(M(E-~R(d3))) 
W(do) M, rl, u ~ v ~  u M, rl, u ~ v , v ~  r 

* (E--*) 
M ,  r 1 =~ u ~ v  / M ,  rl,  g--*V ~ r 

\ M ,  r 1 =~ r " - ~ U T )  

Case 3.5. 

d1[ d2+ da 
Mo, u ~ v ~ u  ml,u--~v=~u 4, 

do (R) M , u ~ v ~  M , u ~ v , v ~ r  u ~  / 
M=>u-'+v. x M,u~v=>r  ( E ~ )  

M =~ r ~ ~  (CUT) 

with (R) different from (E~). I set RED(d)= 

.ED(eo)~ RED(el)~ 
M o : ~ r  M l  ~ r  

M =~ r (R), 

where the ei are 
W(do) dl + 1~ ~W(M(E--R(d3))) 

Mi, u---~v~u Mi, u--~v,v~r 
* (E~) 

M i ~ U---~V M i, u ~ v  => r 

\ M i  ~ r (~CUT) 

The resulting deduction RED(d) has the length/(RED(d)) N l(d)+ n(u~v ld)= l(d) 
+ v(d). 

Case 4. c=(u/x v ) ~ w .  

m ~ ( u / x v ) ~ w  m , ( u A v ) ~ w ~ r  
(CUT). 

M ~ r  
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I define RED(d) by 

M , u , v = ~  w 

( I~)  M ~ u ~ ( v ~ w )  M, u~(v-,w) =. r' 
M, u- , (v~w) ~ r (CUT)  

where eo = E ^ (I~(do))  and el = E ~  ^ (d0. I t  follows tha t / (RED(d) )  <= l(d) + v(d) 
and 

j(RED(d))  = deg (u ~ ( v  ~ w)) 

= 1 + deg(u) �9 (1 + deg(v) deg(w)) < 1 + deg(w) �9 deg(u).  (1 + deg(v)) 

= deg((u A V)~W) =j(d) .  

Case 5. c=(u v v)~w. 

do 1 dl 1 
M ~ ( u v v ) ~ w  M , ( u v v ) ~ w ~ r  

M ~ r  

I define RED(d)  by  

M , V = ~  W 

(CUT). 

(I-,) 
M ,  ~---~ W =~ U---~ W 

(CUT) 
M, u-,w, v ~ w  => r 

(I-,) M ~ v ~ w ~  M, v- ,w ~ r 

�9 ~ M  =*. r ~ (CUT) 

where eo = E v R(I~(do)) ,  el = E - ,  v (d0, and  e2 = W(E  v L(I~(do))) .  I t  follows 
that/(RED(d))__< l(d) v(d) and 

j(RED(d))  = deg (u--, w) + deg (v--. w) 

= 1 + deg(u) �9 deg(w) + 1 + deg(v) �9 deg(w) 

< 1 + deg(w) �9 (1 + deg(u) + deg(v)) = deg((u v v)~w) =j(d) .  

= deg((u v v ) ~ w ) = j ( d ) .  

Case 6. c=(u~v) - ,w .  

I f  M,  (u~v)- ,w =~ r is an ax iom then so is M ~ r. I f  M,  (u- ,v)~w =~ r is no t  an 
ax iom then I distinguish two subcases:  

Case 6.1. 
dl I d2~ 

M ~ ( u ~ v ) ~ w ~ M  ~ r . ~ ( C U T ) , ( u ~ v ) - , w ~  r (E-,) 
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I define RED(d) to be 

eol e~ e21 " ea[ 
M,v=~w M,u,v~w=~v M,u-~v=~w M,u~v,w=~r 

(I-~) M =~ v ~ w  M ' v ~ w  ~ u~v  ~ (~CU 
(CUT) ~ M  J T)' u ~ v  " ~ M ,  u ~ v  ~ r 

~ M  ~ r ~ C U T )  

where eo = E~R(I~(do)) ,  e 1 = M(E--~(I~(d0)),  e2=l~(do), and 
e3 = W(M(E~R(d2))). 

Case 6.2. 

Mo,(U~V)~w=~ro Ml,(u~v)~w=c,r t 

M =~ (u~v)~w M, (u~v)~w =~ r (R) 

~ M  =~ r ' ~ T )  

where (R) is not an instance of (E-~) with principal formula (u~v)~w. Then I 
define RED(d)= 

RED(eo) 1 RED(eO l 
M o =~ r o M~ ~ r~ 

(R), 
M =~ r 

where the ei are 

W(ao) 1 a,+ 1~ 
Mi~(u~v)~w Mi,(u~v)~w~r~ 

(CUT). 
M i =~ r i 

It follows that/(RED(d)) =< l(d) + v(d) and 

j(RED(d)) < deg (u ~ v) + deg (v ~ w) 

= 1 + deg(u) deg(v) + 1 + deg(v) deg(w) < 1 + deg(w) �9 (I + deg(u) deg(v)) 

= deg((u ~v) ~w) =j(d). 

This concludes the proof of Theorem 1. Iterating the operator RED, I immediately 
obtain the 

Theorem 2. There is an operator J converting every deduction d of a sequent s into a 
deduction J(d) of this same sequent such that 

J(d) is cut free and/(J(d)) <__ 2 jta). l(d). 

If v is a formula of (traditional) degree g, a straightforward induction will show 

deg(v) < 222g . 



350 J. Hudelmaier 

Since the maximal number of cut formulas on a branch of d is bounded by l(d), it 
follows for Gentzen's cut degree that 

2 2 .g(d)  

I(J(d)) < 2 t2 �9 tta)), l(d). 

3 A decision procedure for intuitionistic propositional logic 

Consider the sequent calculus LJ  and a sequent s which is not an axiom. If we want 
to know whether s can be derived, we may restrict ourselves to search for cut free 
deductions, and our first attempt will be to choose a composite formula v = q~(s) in s 
and to look for rules which produce s as their conclusion with v as principal 
formula. Unfortunately, the E-rules of LJ  are such that v then also occurs in the 
one or two premises t(s, ~o(s)), r(s, ~o(s)) of that rule, meaning that our task may have 
to be repeated for them with that same formula v. There now are two strategies to 
pursue: 

Search by Depth First: iterate such choices of always one formula and form 
the sequents 

s, t(s, qffs)), t(t(s, ~o(s)), q~(t(s, q~(s)))) . . . .  , 

hoping to arrive finally at some axiom; in that case, return to the branching 
nodes still left (i.e. to r(s, q~(s)) as the first such node) and repeat the process 
until all branches close with axioms. 

Search by Breadth First: if t(s, qffs)), r(s, r are not both axioms, then 
inspect all other possible choices ~p(s), Z(s), ... of composite formulas, collect 
all the corresponding premises 

t(s, q~(s)), r(s, ~o(s)), t(s, ~p(s)), r(s, ~p(s)), t(s, Z(s)), r(s, X(s)) 

as the result of a first stage, and then repeat the construction of stage n + 1 
from all the sequents of stage n which are not axioms. 

Unfortunately, search by depth first may lead to not terminating branches even ifs 
happens to have a deduction. On the other hand, search by breadth first will 
discover an existing deduction, but at the price of considerable storage space and 
time, and it will not terminate at all if no deduction happens to exist. 

The literature contains descriptions of two ways leading out of this dilemma. 
The first one was stated by [G] and improved by I-D]; it relies on the observation 
that search by depth first may be broken offif sequents start to repeat themselves in 
a certain manner. The other method was found by [F] and makes use of the fact 
that the number of instances of E-rules, all with the same principal formula, on a 
branch of a deduction may be bounded (viz. by 1 in case of(E ^ ) and (E v ), and in 
case of(E--+) by expressions depending on the form of that principal formula). Both 
these methods suffer the disadvantage that they often have to keep formulas u--,v 
on the left sides of premises of(E-,) ,  leaving them again as possible conclusions of 
this rule. This will rise the number of possibilities considerably, since instances of 
the non invertible rules can, in general, not be permuted. 

In this chapter, I shall present a calculus L H  which is equivalent to LJ. It has the 
property that every chain of sequents, constructed during a depth first search, 
breaks off, either with an axiom or with a sequent not a conclusion of any of its 
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rules. Moreover, with the exception of two rules corresponding to (I v ) and a 
subcase of (E~), all the rules of LH are invertible, meaning that a much smaller 
number of possible deductions can arise as result of the search. 

Let me begin by defining LH. It shall work with the same sequents as LJ. 
Axioms of LH are the axioms of L J; its rules are 

M ~ u  M ~ v  M , u , v ~ r  
(HI A) (HE A) 

M:--=~UAV M, U A V ~ r  

M ~ u  M ~ v  M , u ~ r  M , v ~ r  
( m  v R) (HE v) (HIvL) M ~ u v v  M ~ u v v  M, u v v ~ r  

M~ u :::~ v 

( n I ~ )  M ~ u ~ v  

M, u--,(ww) ~ r 
(HE ~a) M,a,v=~ r (HE--* A) 

M, (u ̂  v)~ w ~ r 
M,a,a---~v ~ r 

[a atomic] 

M , u ~ w , v ~ w = > r  M , u , v ~ w ~ v  M,w=~r 
(HF.---, v ) (HP.--,-~) 

M,(u v v)--*w ~ r M , ( u ~ v ) ~ w  ~ r 

Here (HI v L), (HI v R) coincide with (I v L), (I v R), and the meaning of the rules 
(HI ^),  (HE ^ ), (HE v ), (HI ~ )  becomes evident if they are read upwards: they 
then express the effect of the inversion operators I ^ L, I ^ R, E ^ ,  E v L, E v R, I ~ .  
The last four rules of LH replace (E~), and ( H E ~  ^ ), ( H E ~  v ) again express the 
effect of E ~  ^ and E ~  v.  Obviously with the exception of (HI v L), (HI v R), 
(HE--~) the rules of LH are invertible. Consider now a search process relying on 
the successive application of such inversions; in order to state that it terminates, I 
will use a measure of complexity of sequents which decreases under such 
inversions: the premises of the LH-rules should, with respect to this measure, be 
simpler than the conclusions. In contrast to the rules of L J, those of LH are not 
cumulative in the sense that the principal formula also appears in the premises, so 
that at least in this respect inversion may lead to simpler sequents. Measuring 
complexity with help of the usual degree of formulas, however, will not suffice in 
view of the situation in ( H E ~  ^ ), ( H E ~  v ), (HE--~). But if I employ the degree 
deg introduced before Theorem 1, then it is easily verified that the function 

deg(s) = Sum of the numbers deg(v) for formulas in s 

has the property that, for every rule of LH, deg(s') < deg(s) for the conclusion s and 
for each premise s'. In particular, it follows that every deduction d of a sequent s will 
satisfy l(cl) < deg(s)! 

Thus I obtain the following decision procedure for LH. Perform a search by 
depth first, considering only the invertible rules as long as possible. It will 
terminate with sequents which, if not axioms, are conclusions either of (HI v L), 
(HI v R) or (HE--~). In such a sequent s, I collect the candidates for principal 
formulas of these rules (provided there are any) and test, one by one, whether the 
respective premises s' have deductions - since deg(s')<deg(s) these tests will 
terminate. In the case of (HE--~) it is advisable first to test the deducibility of the 
right premise s" since (HE--~) is semi-invertible in that together with s also s" must 
be derivable. 
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It remains to prove the equivalence of L H  and LJ .  I begin with the simple 
observation that all the rules o f  L H  are admissible for LJ .  This is obvious for all but 
the four (HE-~)-rules. For the first three of them, the admissibility is seen by 
applying cuts to their premises and to the L J-provable sequents 

a , a ~ v  =~ v for ( H E ~ a ) ,  

(u ^ v ) ~ w  =~ u--->(v~w) for (HE ~ ^ ) ,  

(u v v ) ~ w  ~ u ~ w  and  (u v v)--->w ~ v ~ w  for ( H E ~ v )  

and simplifying with help of the operator M. Concerning (HE--+-~), an L J-  
deduction do of M, u, v ~ w  =~ v together with an Ld-deduction dl of M, w =~ r gives 
an L J-deduction d of M , ( u ~ v ) ~ w  =~ r by 

~o[ 
M~ u~ v ~ w =~ v e[ 

( I ~ )  M ,  v ~ w  =~ u-~v  ( u ~ v ) ~ w  ~ v ~ w  w~d~) 
$ 

(CUT) M , ( u ~ v ) ~ w = ~ u ~ v  M , ( u ~ v ) - ~ w , w ~ r "  

M,  ( u ~ v ) - ~ w  =~ r (E ~ )  

where e is an L J-deduction of ( u ~ v ) ~ w  =~ v ~ w .  
The remainder of this chapter will be devoted to the proof that every 

L J-deduction d can be transformed into an LH-deduction D(d). In view of 
Theorem 2, d may be assumed as cut free. 

For L H  we have the same set of inversion operators as for L J, vic. the operators 
I/x L, I ^ R, I ~ ,  E ^ ,  E v L, E v R, E~R,  E ~  A, E ~  v,  and E--~. Moreover we 
have an inversion operator E ~  converting any deduction of a sequent M, a, a 
---,v => r into a deduction of M, a, v =~ r. The definition of all these operators is 
straightforward for L H ,  and it is obvious that none of these operators lengthens 
deductions. Now we show: 

Lemma 4. Given an LH-deduct ion d o f  a sequent M,  u ~ v =~ u and an LH-deduct ion 
e o f  M ,  v ~ r, one obtains an LH-deduct ion o f  M ,  u ~ v  ~ r. 

This is proved by induction on the length of the d: If it is an axiom, then u is in 
M, and from M, v ~ r by an application of ( H E ~ )  I obtain the required sequent. 

If the last inference of d is an application of (HE- , - , ) ,  then its premises are of the 
form N,  u o, u 1 -~w, u-~v ~ ul and N,  w, u ~ v  ~ u. Then from the deduction of the 
second premise and from E-~(e) by the induction hypothesis I obtain a deduction 
of N, w, u ~ v  ~ r, and from this deduction and the deduction of the first premise by 
an application of ( H E - - ~ )  I obtain the required deduction of N , ( u o ~ U O - ~ w ,  
U--+V :=~ F. 

If this last inference is an application of (HE~ v ) then its premise is of the form 
N,  Uo--*w, u ~ w ,  u ~ v = ~ u .  Thus from this premise and from E ~  v(e) by the 
induction hypothesis I obtain a deduction of N, Uo~W, u~ ~ w ,  u ~ v  =~ r, and thus 
by an application of ( H E ~  v) I obtain the required sequent. 

The cases that the last inference is by (HE-~  A)  or ( H E ~ )  are handled 
analogously. 

If the last inference is by (HE v ), then its premises are of the form N, ui, u ~ v  =~ u 
for i = 0 resp. i = 1 and from these premises and from E v L(e) resp. E v R(e) one 
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obtains deductions of N, ui, u ~ v =~ r from which an application of (HE v ) deduces 
the required sequent. 

The case that the final inference is by (HE ^ ) is handled in the same way. 

Theorem 3. L H  deduces every sequent s which L J  deduces. 

For the proof I set for a sequent s deg(s) : = the sum of all deg(v) for the formulas 
v of s. Now I use induction on the number 3deg(s)/, where l is the length of the 
shortest cutfree L J-deduction d of s: If the last inference of d is by an application of 
(E~)  with principal formula u ~ v ,  where u is atomic, then the two premises are of 
the form N,  u ~ v  ~ u and N,  u ~ v ,  v ~ r. Thus by the induction hypothesis both 
N,  u--*v ~ u and N, v ~ r are provable by LH.  Hence by the lemma N, u ~ v  ~ r is 
also provable by LH.  

If the last inference is an application of (E-~) with principal formula 
(Uo--.ul)~v,  then the two premises are of the form N,(uo--- ,u l )~v  ~ Uo--*ul and 
N , ( u o ~ U O ~ v ,  v n ~ r .  From the deduction of the first premise one obtains a 
deduction of N, u0, ul--*v ~ ul and from the deduction of the second premise one 
obtains a deduction of N, v ~ r. Since to these deductions the induction hypothesis 
applies, an application of (HE---~) gives the required LH-deduction. 

If the last inference is an application of (E~)  with principal formula 
(Uo A Ua)--+V, then, since the degree of the last sequent o f E ~ / x  (d) is smaller than the 
degree of s, but the length of E--* A (d) is at most twice the length of d, the sequent s 
with (u0/x uO--*v replaced by Uo~(U~--*v) is provable by L H  by the induction 
hypothesis. Thus an application of (HE--.  A)  yields an LH-deduction of the 
original sequent. 

All the other cases with the exception of the trivial case, where the final inference 
is an (I v ), are treated similarly. 

(The proof of this theorem as well as the preceding lemma is due to the 
anonymous referee whose advice I gratefully acknowledge.) 
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