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Abstract. W e  study the asymptot ic  behavior  o f  the solution o f  the initial and 
ini t ia l-boundary value problem o f hyperbolic conservation laws when the initial 
and bounda ry  data  have bounded  total variation. It is shown that  the solution 
converges to the linear superposit ion o f  traveling waves, shock waves and 
rarefaction waves. The strength and speed of  these waves depend only on the 
values o f  the data  at infinity. 

§ 1. Introduction 

We consider a system of  conservat ion laws 

U,+F(U)~=O, (1.1) 

where F(U) and U are n-vectors, F = (F l, ..., F,), U = (U 1 , . . -  U,), x e R and t > 0. We 
assume that  the system is strictly hyperbolic and  each characteristic field is either 
genuinely-non-linear or linearly' degenerate in the sense o f  Lax [10]. We study the 
Cauchy  problem (1.1) with initial da ta  

V(x, O) = Uo(x ) (1.2) 

which is assumed to have bounded total variation so that  the limiting values o f  U o at 
x = _ oo exist : 

U , -  Co( - oo), U r - Uo( + ~ ) .  

Our  main purpose is to compare  the solution U(x, t) of  (1.1), (1.2) with the solution 
U,(x, t) of  the corresponding Riemann problem (1.1) with 

U(x ,0 )=  { Uz for x < 0 ,  (1.3) 
U r for x > 0. 
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We show that U(x, t) converges to U,(x, t) as t tends to infinity in the following 
sense: In the primary i-th region, (5.1), all j-th waves, i=t=j, decay, (Theorem 5.2). If 
the i-th wave in U,(x, t) is a shock wave, then an i-th shock wave will appear in 
U(x, t) as t becomes large, and will approach the corresponding i-th shock in U,(x, t) 
and dominates U(x, t) in the primary i-th region, [Theorem 5.7, (iii)]. If  the i-th wave 
in U,(x, t) is a rarefraction wave, then all i-th shocks in U(x, t) decay to zero and 
U(x, t) approaches U,(x, t) in the primary i-th region, [Theorem 5.7, (ii)]. When the 
i-th wave in U,(x, t) is a contact discontinuity, i.e. when the i-th characteristic field is 
linearly degenerate, then all i-th waves have speed approaching that of the contact 
discontinuity of  U,(x, t), in other words, the i-th waves become increasingly linear. 

In particular if Ut = Ur, then all i-th waves decay except those associated with 
linear degenerate characteristic fields and thus if q is a Riemann invariant for all 
linear degenerate fields, then q tends to a constant. If, moreover, the system is 
genuinely nonlinear in all characteristic fields, then the solution decays to the 
constant U z = U r. 

Our main assumption is that the total amount of interactions is finite (cf. 
Section 3). We carry out our analysis with Glimm's difference scheme, [5]. The 
scheme has a stochastic feature. By a compactness argument based on Helly's 
theorem [5], it is shown that the approximate solution U h converge to an exact 
solution U if 

total var x Uh(X, t) < const total var~ Uh(X, 0) (1.4) 

for some constant independent of t. When the initial data have small total variation, 
the estimate (1.4) was established in Glimm [5] by introducing a nonlinear 
functional defined on the approximate solutions. The functional consists of a linear 
and a quadratic term. The quadratic term measures the potential amount of 
interactions. It follows from the boundedness of the functional that the total 
amount  o f interactions is bounded. Thus our results apply for the Glimm solutions. 
Estimate (1.4) has also been established for certain systems where initial data need 
not be of  small total variation, [1, 3, 14, 15, 17, 18, 19]. In particular, Nishida [17] 
solves the Cauchy problem for the model equations of  gas dynamics 

u,-p(v)x=O, 

v ~ - u x = 0 ,  p(v) =constv  -~ (1.5) 

when the initial data have arbitrary finite total variation. For  isentropic equations 
of  a polytropic gas, p(v)=constv -~, y >  1, Nishida and Smoller [18] obtain the 
uniform bound (1.4) under the assumption that (y - 1) total var~ U(x, 0) is less than a 
constant independent of  7. Solutions for general equations o f a  polytropic gas have 
been constructed by Liu [14] under similar hypothesis. The functionals used in 
[14,18] contain quadratic terms. Other aforementioned works do not use 
functionals containing quadratic terms, nevertheless we will show that for those 
solutions the total amount of interactions are finite and our results apply. 

Our methods also apply to solutions of initial-boundary value problems in the 
quadrant x__>0, t__> 0. It is shown that the asymptotic behavior of the solution is 
determined by the initial data at x = + oo and the boundary data at t = + oo. We will 
illustrate this for general gas equations, Theorem 6.1. The initial-boundary value 
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problems for general gas equations with pressures or velocity given at x = 0 have 
been studied by Liu [15]. 

The theory of decay for genuinely nonlinear systems of conservation laws has 
been developed by Glimm and Lax [6]. The Glimm-Lax theory is developed for 
systems of two conservation laws when initial data have small oscillation. In the 
case when the initial data are constant outside a finite interval, the solution decay to 
zero at the rate t-1/2. With periodic initial data, the total variation of  the solution 
per period decays uniformly at the rate t-1. When the initial data equal U~ for 
x < - N and U r for x > N for some N > 0, and the solution contains only weak shock 
waves, it was shown by Liu [16] that the solution of (t.1), (1.2) converges to the 
solution of (1.1), (1.3) at algebraic rates. 

Our results on the asymptotic behavior of  solutions of general systems of n- 
conservation laws, n > 2, reduces to results on the decay of solutions when the initial 
data are constant outside a finite interval. Such decay results have been obtained by 
DiPerna [4] under an additional assumption that system (1.1) possesses a convex 
extension in the sense of  Lax [11]. Since we do not assume the initial data to be 
constant for Ixt large, we do not expect the solution to converge at algebraic rates. 
When Uo(x ) equals U l for x < - N ,  and U r for x > N, N > 0, we believe that the 
solution converges to that of the corresponding Riemann problem at algebraic 
rates. However, new techniques are required for the proof;  we leave this for the 
future. For  the asymptotic behavior of special solutions see [2, 7] and [8]. 

The primary reasons for the simple large-time behavior of the solution are the 
spreading of rarefaction waves which forces the cancellation of shock and 
rarefaction waves o f the same genuinely nonlinear characteristic field. Waves o f the 
same linearly degenerate family do not cancel and behave like linear waves. For  
general systems, the interaction o f waves may change the speeds and magnitudes o f 
waves and may produce new waves. Since we assume the total amount of 
interaction to be finite, the amount of  interaction after large time is small. It follows 
that the solution is almost uncoupled, (Lemma 5.1). We then use the asymptotic 
results for scalar equations, Liu [16], to show that the solution approaches that of 
the corresponding Riemann problem. Our main tool is the theory of generalized 
characteristics developed by Glimm and Lax [6]. 

It is essential for our methods that the Riemann problem has a unique solution. 
For  general systems of conservation laws, Lax [11] uses the implicit function 
theorem to show that the Riemann problem has a unique self-similar solution in a 
small neighborhood of  a constant. For  a wide class of two-conservation laws, 
Smoller [21, 22] solved the Riemann problem when the initial states may not be 
close. The Riemann problem for general gas equations has been solved by Liu [13] 
and Smith [20] for arbitrary initial states. In proving that the system is increasingly 
uncoupled, we assume that the characteristic speeds are strictly separated for any 
approximate solutions under consideration, [(5.1)]. This assumption is satisfied for 
nearconstant solutions of  general systems and also solutions of  general gas 
equations in the Lagrangian coordinates which are bounded away from the 
vacuum. This assumption can be relaxed, however. 

The space of  functions of  bounded variation is a natural space for the solution 
operator of  a system of conservation laws. Even if the initial data are analytic, in 
general the solution is not smooth due to the nonlinearity of the system. On the 



166 T.-P. Liu 

other hand, results on decay and asymptotic behavior of  solutions show that the 
nonlinearity of  the system has certain smoothing effects, and these results may be 
viewed as results on the regularity of  the solutions. 

In the next section we will describe briefly the Riemann problem, the Gl imm 
difference scheme, Gl imm and Lax's notions of  approximate conservation laws. In 
Section 3 we investigate the assumption on the boundedness of  total amount  of 
interactions for existing existence theorems. Section 4 studies the spreading of 
rarefaction waves. The main results on the asymptotic behavior of  solutions of 
initial value problems are proved in Section 5. The initial-boundary value problems 
for gas equations are studied in Section 6. 

§ 2. Preliminary 

We assume that system (1.1) is strictly hyperbolic, i.e. OF(U)/~ U has real and distinct 
eigenvalues 21(U)<22(U)<. . .  <2,(U). Assume that each characteristic field is 
either genuinely nonlinear or linearly degenerate, i.e. for any U under consideration, 

r d U ) . V ~ £ , ( U ) * O ,  i = 1 , 2  ... .  ,p ,  (2.1) 

r~j(U). Vv2~j(U)=O , j =  1, 2, ..., n - p ,  (2.2) 

where ri(U), i=  1, 2, ..., n, is an i-th right eigenvector of~F(U) /~U and {~1, ~2, ..-, %, 
ill, fi2 . . . . .  f t ,_v}={1,2 ... . .  n}. The rareJaction curve Ri(Uo), i = 1 , 2  ... . .  n is the 
integral curve ofr~ through the point U o ; and the shock curve Si(Uo), i = 1, 2 .. . . .  n, is 
a curve tangent to Ri(Uo) at U 0 and for all U~ U o, (U o, U) satisfies the following 
Rankine-Hugoniot condition 

a(U, Uo)(U - Uo) = F ( U ) -  F(Uo) (R-H) 

for some scalar o-=a(Uo, U), the shock speed for (Uo, U). When i6{fi 1 ..... ft,_v}, 
Ri(Uo) = Si(Uo), (Lax [11]), and for any U6 Ri(Uo), a(U o, U) = 2i(Uo) = hi(U ), U o is 
connected to U by an i-th contact discontinuity. For i6{ctl,...,ctp} and 
U6R+(Uo)={U~Ri(Uo)12i(U)>£i(Uo)} ,  then U o can be connected to U on the 
right by an i-th rarefaction wave; if U E S i- (Uo) - { U 6 Si(Uo)12i(U) < 2i( Uo)}, then U o 
can be connected to U on the right by an i-th shock wave satisfying the shock 
inequality of  Lax [11]: 

,~(u) < ~(Uo, u) <,~(Uo). (L) 

We set 

~Ri(Uo)=Si(Uo),  for i~{ f i l , . . . , f i ,_v} ,  (2.3) 
T~(U°I=[s?(Uo)UR+(Uo) ,  for ie{cq,...,Ctp}, 

so that U o can be connected to any U on T/(Uo) on the right by an i-th wave. 
The Riemann problem (1.1), (1.3) is solved by finding Ui, i=0 ,  1, 2 . . . . .  n, U o = Uz, 

U, = Ur, Ui6 T/(U i_ 1) so that U i_ 1 is connected to U i on the right by a centered i-th 
wave, denoted as (U i_ 1, Ui). Solutions of  Riemann problems are the building blocks 
for the Glimm's difference scheme, [5]. Let r,s be mesh lengths so chosen that 
r/s >= max {4¢}. The Glimm's approximate solution U~(x, t) is exact in the strip ns < t 
< (n + 1)s and consists o f elementary waves generated at t = ns, x = mr, m + n = even. 



Hyperbolic Conservation Laws 167 

At time (n + 1)s, the value of U~(x, t) in the interval ( m -  1)r < x < (m + 1)r is set to be 
the value of  the exact solution constructed in the strip t= (n+l ) s  and 
x = (m + c~,+ Dr. Here {e,} is a randomly chosen sequence, equidistributed in ( -  1, 1). 
An I-curve is a space-like curve consisting of a segment joining neighboring mesh 
points ((m + e,)r, ns), m + n = even. The upper half plane t >__ 0 is covered by diamonds 
A,,m with vertices ((m + ~, ~_ 1)r, (n - 1)s), ((m + c~, + a)r, (n + 1)s), ((m - 1 - ~,)r, ns), 
((m + 1 + %)r, ns). 

The strength of the i-th wave (U~_ 1, U~) in the solution of  the Riemann problem 
(U l, U~) is defined as 

(U l, U~)i-- wi(U i_ 1) - wi(Ui), i= 1, 2,..., n, (2.4) 

where wi=)~ ~ if i = e  1 ..... ep and w~ is any increasing function along T~ for 
i=  fll .... , ft,_ ;. The first step in establishing estimates such as (1.4) is to investigate 
the interaction of waves of  solutions of  two Riemann problems. Suppose that the 
Riemann problems (Ul, Urn), (Urn, U~) and (Ul, U~) can be solved. Then in rather 
general circumstances, there exists a quantity Q(U~, U m, U~), the potential amount of  
interactions, so that for some constant 0(1) depending only on the system (1.1), 

(Ul,  Ur) i = (UI, Urn) i At- (Urn , Ur) i ~- O(1)Qc(UI, Urn, Ur).  (2.5), 

Given any diamond A in the Glimm scheme, if the waves entering A from the right 
and left as solutions of the Riemann problems (Urn, U.) and (Ul, Urn) respectively, 
then we set Q(A)=Q(Ut, U.,, U~). We also set the amount of  cancellation in A as 

C,(A) =½[](U,, U,.)I, + I(U,,, U, ) , I -  I(U,, U,.), + (Urn, U,),I] • (2.6), 

Let A be a collection of diamonds. We denote by E~ + (A) and E/- (A) the total amount 
of i-th rarefaction and shock waves, respectively, entering A. The amount of waves 
leaving A is denoted by L/~ (A). Summing up (2.5) for all diamonds in A we obtain the 
following approximate conservation laws 

L + (A) = E + (A) -T C,(A) + 0(1)Q(A), (2.7), 

where Ci(A)= ~ Ci(A ), Q(A)= ~ Q(A). In the next section we will investigate the 
A~A A~A 

amount of interactions Q. 

§ 3. The Amount of Interactions 

For  a general system of  n-conservation laws, Glimm [5] obtains the following 
estimate for any nearby states Ut, U,~, U r: 

(U~, U~)~ -- (U~, Urn) i + (U m, Ur) ~ + O(1)D(Uz, U,,  U~) (3.1) 

where D(U~, U m, Ur) is the sum of products of the strength of approaching waves. An 
i-th wave ~ approaches aj- th  wave fl if either i>j  and ~ lies toward the left offl, or 
i = j  and at least one of a and fl is a shock wave. Given any/-curve J, we define D(J) 
as the sum of products of  strength of  approaching waves which cross J. If  J2 is an 
immediate successor of J1, i.e. J1 and J2 sandwich a diamond A and Jz lies toward 
larger time than J1, then it follows directly that 

D(J2)-- D(J1) <= - D(A) + O(1)L(Ja)D(A ) 
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where L(JI) is the total amount of waves crossing Jr. Thus for L(J1) small enough 
D(J2)-D(J1) < -½D(A). If we sum up this inequality over all diamonds in a region 
A, one gets 

D(A)<2D(J) (3.2) 

for any /-curve J containing the domain of dependence of A. This shows in 
particular if L(J) is small, then D(A) is bounded for all A. Thus the total mount of 
interaction D(A) is finite if the initial data have small total variation. 

For isentropic gas equations (1.5) with p(v)=constv -~, 7>1, Nishida and 
Smoller [8] show that global solution exists if(7 - 1) times the total variation of the 
initial data is sufficiently small. Under this assumption it is not hard to see from 
their estimates that 

Q(A) < const V(0) (7 - 1)- 1, (3.3) 

where F(J) = L(J) + (7 - 1)D(J) and L(J) is the total mount of shock waves crossing J, 
D(J) is a quadratic term measuring the potential amount of interaction. The 
inequality (3.3) is obtained from 

(;~- 
V(Jz) - F(J~ ) <: - _~11  D(A). 

Estimate (3.3) is crude when y is close to 1. Suppose that the strength of waves is 
measured by a linear combination of Riemann invariants (cf. Liu [15]) and we set 

F(J)-- L(J) + F(J), 

L(J) = total mount of waves crossing J, 

/}(J)=K ~ {[sill Is and p are strengths of approaching shock waves} 
J 

+ H ~ {Isfll Is and fl are strengths of approaching waves and not both are 
y 

shock waves}, 

where K and H are constants independent of 7- Then if we choose K and H 
sufficiently small, H small compared to K, it follows that 

F(Jz)-  F(J1) < - ½ D(A) (3.4) 

whence we obtain an estimate stronger than (3.3): 

Q(A) < const F(0). (3.5) 

The inequality (3.4) is proved by detailed analysis of wave interactions, [8]. 
Analogous estimate also holds for general gas equation, [15]. We omit the details. 

The result of Nishida was generalized by Bakharov [1] where the existence 
theorem was proved under the assumption that shock strength does not increase 
after interaction. If one measures the strength of the wave not by Riemann 
invariants but instead by linear combination of Riemann invariants, [ 15], then after 
detailed analysis of wave interactions, one sees that 

F*(J2)-  V*(J 1) < - D*(A)/L(O) (3.6) 
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where D*(A) is given as in (3.1), F* =L*  +D*/L(O) and L*(J) measures only the 
amount of shock wave crossing J. Thus one concludes by summing up (3.6) that 

Q(A) < F(0)L(0) __< 2(L(0)) 2 (3.7) 

where L(0) is the total amount of shock waves for/-curve connecting points on t = 0 
and t =s  in Glimm's scheme. We thus obtain the estimate (3.7) which is as strong as 
(3.2) which holds only for solutions near the constant. 

§ 4. Expansion of Rarefaction Waves 

Generalized characteristics are Lipschitz continuous curves m the xt-space which 
propagate with either shock or characteristic speeds. Such curves can be con- 
structed by the recipe o f Glimm-Lax's [6]. The two-sided limits o f the solution exist 
along a generalized characteristic except for a countable value of t. Given any k- 
characteristics Z~ and Z~ issued from time to, k~ {1, 2 .... , n}, Z~ lies to the left o f z  z, 
we set 

Dk(t ) = distance between Z~ and Z~ at time t, t > t 0, 

X~(t) =amount  of k-rarefaction and k-shock waves, respectively, between (but 
not on) Z 1 and Z~ at time t, 

Xk(t)=total amount of j - th  waves, j:t:k, between Z~ and Z 2 at time t, 

U~i(t)=the one-sided limit from right and left, respectively, of U(x, t) at the 
point (x, t) on Z~, i= 1, 2. (4.1) 

We now assume that the k-characteristic family is genuinely nonlinear so that we 
have 

+ i  - -  + i  + i  2k (t)=)~k(Uk (t))<=ak(U k (t),u[i(t)) <=2k(U k-i(t))=2 k -  -i(t). 

It follows easily from the Rankine-Hugoniot condition and the mean-value 
theorem that for some 0(t), 0 < O(t)< i, 

Dk(t ) = ak(U; 2(0, U[ 2(0 ) - ak( U 21(0, U[ 2(0 ) 

= O(t) [2~- 2(0-  2 + 1(0 ] + (1 - O(t)) [2 [ 2 (0 -  2[ 1(0]. (4.2) 

We note that O(t) = 0(2ff l(t), 2ff 2(0 ) and 2 +/- ltt~, j, 2~ 2(0 range over a compact set in U- 
space. Thus there exists a constant 0, 0 < 0 <  1, independent of t such that 

Dk(t ) ~ 0[).k- 2 ( t )  - -  2 + l(t)] -t- (1 -- 0) [2+ 2(t)-- 2[  ~ (t)]. (4.3) 

Since 2[ 2 (0 -  2~ 1(0 =X~(t) +X[(t)  + 0(1)Xk(t ) as is easily seen, it follows from (4.2) 
that 

bk(t) = X ;  ( t )+X;(t)+ 0 ( 1 ~ ( 0  

+ (1 - O(t)) [str Z~(t) + strz2(t)] • (4.4) 

Since the characteristic speeds are assumed to be strictly separated, there exists a 
finite t~ > t o such that all i-th generalized characteristics X~ and Z 2, i~  k, meet Z~ or 
Z 2 before time t~. Similarly, for any t>t l ,  there exists s<  t such that the ( k -  1)-th 
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[(k + 1)-th] generalized characteristics through a point on Z~(Z.~) at time s meets 
Z~(Z 2) before time t, and for some 0(1) independent of t, 

t--s=O(1)Dk(t  ). (4.5) 

We denote by hk(t o, t) the amount of i-th waves, i#: k, crossingX~ orX 2 between time 
t o and t. Let Q(to, t) be the amount of interactions in the region between Z~ and Z~ 
between t o and t. We have from (2.7), 

t 

2(k(t ) = 0(1) ~ d(Q(to, z) + hk(to, z)). (4.6) 
s 

Integrat ing (4.4) f rom t 1 to t, t > t 1, and using (4.5), (4.6) we obtain 
t 

Dk(0 _-< Ok(t i) + ~ EX[ (~) +X ;  (~) 
t l  

+ (1 - O(t)) (s tr Z 1 (T) ÷ str Z 2(z))] dz 

+ 0(1) ~ Dk(z)d(Q(to, z) + hk(t o, z)). (4.7) 
t l  

Since k-th waves may cross Z~ or Z~ only due to interactions, we have from (2.7) 

X~(s)>=X](t ) -O(1)Q(s , t ) ,  to <=s<=t , 

X [  (s) =>X~- (to)- O(1)Q(to, s), 

and thus we may solve the linear integral inequality (4.6) to obtain 

Dk(t) 
X [ ( t )  <= t -  t 1 ÷ 0(1) [Q(to, t) + hk(to, t ) - Z • ( t ) -  max str] 

where maxstr is the maximum strength ofz  I and Z~ between t o and t. We may apply 
this inequality to subregions which contain predominantly k-th rarefraction waves 
and the boundary of these subregions may be so chosen that it consists of k- 
characteristics with small strengths ([6], pp. 88--92). Thus the above inequality 
holds without the last two terms on the right. We list this as a theorem. 

Theorem 4.1. Let Z~ and Z~, k = l, 2 .... , n, be generalized k-characteristics issuedJrom 
two points on t = to, Z~ lying to the left o~ Z~. Let  tl, t 1 > to, be any time after which Z~ 
and Z~ do not intersect Z) and )i~ Jot i ~:j. We denote by Dk(t) the distance between Z~ 
and Z~ at time t, X [  (t) the amount oJ k-rareJaction and k-shock waves respectively 
between Z~ and Z 2 at time t. Then 

X [  (t)<= Dk(t) + 0(1) [Qk(to, t )+ hk(t o, t)] (4.8) 
t - - t l  

where Qk(to, t) is the amount oJ interaction between t o and t and hk(to, t) is the amount 
oJ i-th waves crossing Z~(Z~) Jor all i>  k(i < k) between t o and t. 

§ 5. Initial Value Problems 

The main purpose of this section is to investigate the asymptotic behavior of the 
solution U(x,t) of the initial value problem (1.1), (1.2). We assume that the 
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characteristic speeds 2~(U(x,t)) are strictly separated, i.e. there exist #~, 
i=0 ,  1,2 . . . .  , n, and a positive constant  6 such that  

#o < rain 21(U(x , t ) ) - 6 ,  
(x, t) 

max 2i(U(x, t)) + 6 < #i < min )oi + 1 (U(x, t)) - 6, 
(x, t) (x, t) 

i = 1 , 2 , . . . , n - 1 ,  

max 2,(U(x, t)) + 6 < p, .  (5.1)1 
(x, t) 

We will investigate the asymptotic shape of  U(x, t) in each i-th primary region (2 i 
defined as 

Qo = {(x,t) I~X <#o} ,  

~i = (x, t)Ipi_ 1 < ~ < #i , 

Q.+, = {(x.t),#.< [}. 

i =  1,2, . . . ,n ,  

(5.1)~ 

We set 

W~(t) = total amount  of /-rarefact ion waves contained in ~j  at time t, 

W£)(t) = to t a l  amount  of / - shock  waves contained in ~2j at time t, i =  1, 2, ..., n, 
j = 0 ,  1, ..., n +  1. 

Since the total amount  of  interactions is finite and U(., t)  has uniformly 
bounded total variation for each t, for any given e > 0, there exist t o - to(z ) > 0 and 
M = M(e) > 0 such that  for any t > to, 

Q(to, t) = Q{(x, v)lt o < z < t} < e, 

total var~ { U(x, to)l Ixt > M} < e. (5.2) 

We denote by )~ and )~k z, k = 1, 2 . . . . .  n, the k-th generalized characteristics issued 
from ( -  M, to) and (M, to) respectively. The quantities Dk(t),X~(t ) and t, are defined 
as in Section 4 for each given Z~ and Zk z and t o. In what follows, 0(1) are bounded 
functions independent of  t and e. 

Lemma 5.1. Let  F i, i = 1,2 . . . . .  n, be the region between )~1 i and Z 2 and A o the region left 
oJ Zl, Ai, i = 1, 2 .. . .  , n -  1, the region between Z 2 and zl+ l, and A ,  the region right oJ ;~ 2. 
Then Jor any t > t i , j = l ,  2 . . . . .  n, i = 0 , 1 , 2  . . . .  ,n. 

(i) The amount oJ j-waves outside Fj at time t is O(1)e. 
(ii) The total variation oJ U in regions Ai at time t is O(1)e. 

(iii) For any (xt,  tl) and (x 2, t2) in Ai, ]U(Xl, t l ) - U ( x 2 ,  tz)l=O(1)e. 

Dflt) + 0(1)5. (iv) X+(t)<= t -  t- 1 



172 T.-P. Liu 

Proof  We apply the conservation law (3.1) to the region right o f z  2 to obtain that the 
amount  of/-waves,  i < k, which cross 2 • Zk IS less than the total variation of  U(x, to) for 
x > M, plus the amount  of  interactions in the region. Similar estimates hold for the 
amount  of/-waves,  i >  k, which cross )~1. Thus (i) follows from (5.2); and as a direct 
consequence of  (i), we have (ii) and (iii). Finally, (iv) follows from (i) and estimate 
(4.7) Q.E.D. 

Theorem 5.2. The amount oJ i-waves, i = 1, 2 . . . . .  n, in the region (2j,j =0,  1, 2, ..., n + 1, 
i+j ,  at time t approaches zero as t ~  + co. 

ProoJ. According to Lemma 5.1, since 5 is arbitrary, we need only to show that Fj  is 
contained in f2j for large t, but  this is obvious from the definitions of  Oj and 
F r  Q.E.D. 

Lemma 5.3. Suppose that i=f l l  . . . . .  f t ,-v,  i.e. r~. V2i-O. Then Jot any (Xk, tk) in A~, 
k=i ,  i - 1 ,  

(i) 2o( U(x ~, t~)) = 2,(U(xi_ i, ti_ 1)) -[- 0(1)5, 
(ii) U(xi, ti)e Ti( U(x i_ 1, t i-  1)) + 0(5). 

Proof  Since 2~ changes value only acrossj -waves, j  =t= i, (i) is a consequence of  Lemma 
5.1, (i). We note that T~ are integral waves of  the vector field r i. V, thus (ii) follows also 
from Lemma 5.1, (i). Q.E.D. 

Lemma 5.4. Suppose that i=cq,  ..., %, i.e. r i. [72 i +0, and 2i(U(xi, tl) ) 
__< 2i(U(x i_ 1, t i-  1)) - ke )[or some (x i, ti) ~ Ai and (x i_ 1, t l-  1) ~ A i -  1 and k > O. Then 
there exists a constant k o independent oJ t and ~ such that Jor t sufficiently large and 
k>ko ,  

(i) X+(t)=O(1)5, 
(ii) Z~ and Z{ coalesce to Jorm an i-shock with strength 2i(U(xi, t i ) ) -  2i(U(x i_ 1, 

tl- 1)) "q- 0(1)5. 

Proof. We will use the notat ion in Section 4 [cf. (4.1), (4.2)]. Since J(i(t)= 0(1)e from 
Lemma 5.1, (i) and 2 + =(t) = 2i(U(xi, ti) ) + 0(1)e, 2/- 1 (t) = 2i(U(x i _ 1, t~ _ 1) + 0(1)e from 
Lemma 5.t, (iii), we have fi'om (4.2) that for some 0e(0, 1), 

hi(t) <= OEx + (t) + x ?  (t)] + (1 - 0) E4(U(xi, h) 

-2 i (U(x i_p t i_ l ) ) ]+O(1)e ,  t > q .  

Thus it follows from Lemma 5.1, (iv) that 

Di(t ) ~ 0 Di(t) + (1 - 0) [2i(U(xi, ti) 
t - t ,  

-2 i (U(x i_ t , t i_O)]+O(1)e ,  t>=t 1 . (5.3) 

If  we set 

H,(t) = Di(t ) - [)~i(g(xi, ti) ) - ;~i(U(xi- 1, t i -  a))] ( t -  q ) ,  

then (5.3) yields 

I:ti(t ) G 0 Hi(t) + 0(1)e, 
t - - t  1 

t ~=t I . 



Hyperbolic Conservation Laws 173 

This is a differential inequality which can be easily solved to yield 

Di(t ) < const ( t -  ti) ° + [2 j  U(xi, ti) ) -  2i(U(x i_1, t i-  1))] 

• ( t -- t l )+O(1)~(t-- t l ) ,  t > t , .  (5.4) 

Since 06(0, 1), it follows from (5.4) that i f k  o is so chosen that ko >0(1 ) on R H S  of  
(5.4), then D~(t)=0 for t large. Thus the lemma follows from Lemma 5.1. Q.E.D. 

I_emma $.5. Suppose that i=~1, ...,ep, i.e. ri.V2i4=O, and 2i(U(xi, ti))> 2i(U(xi_l, 
t i_a))-0(1)e JoT some 0(1)>0. Then JOT t sufficiently large, 

(i) PYT(t)[ =O(1)e, 
(ii) U(x i, t/)eR+(U(xi__ 1, t¢_ 1))+ O(1)e. 

Proof  It follows from Lemma 5.1, (iv) and estimate (5.4) that 

X• (t) < c o n s t ( t -  tl) °-  1 + 21(U(xi ' ti)) 

-21(U(xi_l ,  ti_l))+O(1)e, t > t  1 , 

and so for t large, 

x ? (t) < ;t~(U(x, t,)) - ,~i(u(x,_ 1, t~_,))  + o(1)e .  (5.5) 

Since 

X + (t) + X  i- (t) + O( 1 )~: = 2i( U(xl, ti)) - 2i( U(xi_ 1, ti_ 1 )) 

as is easily seen from Lemma 5.1, it follows from (5.5) that 

X ?  (t) ~- ; ' i(U(xi,  ti)) -- ;~i(U(xi 1, ti -1  )) + 0(1 )~S, 

X[-(t) =0(1)e.  (5.6) 

The lemma follows from Lemma 5.1. and (5.6). Q.E.D. 

Lemma 5.6. Suppose that the Riemann problem (1.1), (1.3) is solved by centered i-waves 
(Ui-1, Ui), i= 1, ..., n. Then JOT any (xi, ti)¢A i, we have 

Ig(xi,  t~ ) -  U~l = 0(1)~. 

Proof  It follows from Lemma 5.3, (ii), Lemma 5.4, (ii) and Lemma 5.5, (ii) that there 
exist Ui, i=0 ,  1, ..., n, such that 

]( f / -  U(x~, tz)[ = 0(1)~, 

Thus (0z_ 1, U/), i = 1, 2, ..., n, solves the Riemann problem with data (~Uo, U,). But 
the above inequality and Lemma 5.1, (iii) imply that It) o - U ( -  oo)[ + I U, - U( + oo)1 
= 0(1)e. Because the solution of  the Riemann problem depends differentiably on its 
data, we have proved the lemma. Q.E.D. 

Theorem 5.7. Suppose that the Riemann probtem (1.t), (1.3) is solved by i-th centered 
waves (Ui_ 1, UI), i= 1, 2,.. . ,  n. Then 

(i) U(x, t ) ~  U i as t ~  + ~ Jor x 
r 
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(ii) / ]  r i • I72 i #: O, i.e. i = cq, ~2 .. . .  , c~p, and ( U i_ 1, Ui) is a centered rareJaction wave, 
i.e. 2i(U ~_ i)--< 2~(Ui), then the amount oJ i-shock waves in f2i approaches zero as t ~ 
+ oe and U(x, t) approaches the centered rareJaction wave (U~_ 1, Ui) pointwise in I2~ 
as t ~  +oo. 

(iii) / ]  r i. Vhi+O, i.e. i=cq,c~ 2 . . . .  ,ep and (Ui_I,  Ui) is centered shock wave, i.e. 
hi(Ui- 1) > 2i(U~), then there exists an i-shock wave in £2 i which approchaes (U~_ 1, Ui) 
both in strength and speed and, moreover, the total variation oJ the solution in f2~ 
outside oJ this shock wave approaches zero as t ~ + oo. 

( iv)/J  r i . [Th i =--O, i.e. i=  ill, f12,..., f t , -  p, then in f2i, hi(U(x, t ))~hi(  U~_ 1)= hi(Ui) as 
t-+ + ~ and the distance between U(x, t), (x, t)~(2 i, and T(U i_ 1) = T(Ui) approaches 
zero uniJormly as t ~ + oo. 

Proo f  It is easy to see that  given any e > 0 and associated F~, i = 0, 1, 2 . . . . .  n, the point  

(x, t) with t = #i belongs to Fi if t is sufficiently large. Thus (i) of  the theorem follows 

from Lemma 5.6 and the arbitrariness of  e. Similarly, the first half  of  (ii) follows 
from Lemma 5.5, (i) and Lemma 5.6. We now prove that  U(x, t) approaches the 
centered rarefaction wave (U i_ i, Ui) in ~2 i. 

Given any e > 0, we construct  )~ and Z 2 as above. By Lemma 5.5, (i) there exists 
t 2 => t 1 such that  [Xi-(t) I <0(1)e for t___ t 2. Thus it follows from Lemma 5.6 that  the 
speeds ofzk t and Z 2 for t > t 2 are hi(U i_ 1) + 0(1)e and hi(Ui) + 0(1)e, respectively. Thus 
for t > t z + D i ( t 2 ) ,  

distance {)~], l] } + distance {Z~ z, l 2 } = O(1)e(t - tz),  (5.7) 

where J -  t l i - { ( x , t )  } =,~i(Ui_2+j), j = l , 2 ,  are the edges of  the centered wave 

(U~_ a, Ui). Fo r  (x, t )~A  i_ 1, it follows from (5.7), Lemma 5.6, and the structure of  
centered rarefaction waves that  

I U*(x,  t) - U(x ,  t)f = I U*(x,  t) - u i _  11 + t u i _  1 - U(x ,  t)l 

= 0(1)e t -  t 2 + 0(1)e = 0(1)e (5.8) 
t 

where U*(x, t) denotes the centered wave (U~_ 1, Ui). Similarly, for (x, t ) e A  i, 

I U*(x, t ) -  U(x, t)l = 0(1)e. (5.9) 

For  any (x, t ) eF  i, t>= t 2 +Di(t2) , we can choose (x*, t) between l~ and l { such that 
IU*(x*, t ) -  U(x, t)l = 0(1)s as is easily seen from Lemmas 5.1 and 5.6. Through  (x, t) 
we draw an i-th generalized characteristic )~ backward in time. If Z meets ;/~ and Z{ 
we continue Z with )~¢ or ;~2. Since Z may change speed only due to shock waves 
entering X or j-waves, i+j ,  crossing X, one sees that  for t > t z, Z has speed 21(U(x, O) 
+0(1)e. As a result we see that  

Ix* - xl = 0 (1 )e ( t -  t g .  (5.10) 

Similarly we may draw an i-th generalized characteristic Z* through (x*, t) and 
apply estimate (4.7) for X and X* [cf. Lemma 5.1, (iv)] together  with (5.10) to yield 
that  the total amount  of / - rarefac t ion  waves between X and X* is 0(1)e. This along 
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with Lemma 5.5, (i), yields that for (x, t )~F i, t large 

tot var{U(.,t) between x and x*} =0(1)e 

and so 

] U*(x, t)-- U(x, t)[ = 0(1)g. (5.11) 

Thus it follows from (5.8), (5.9), (5.11) and the arbitrariness ore that U(x, t)-+ U*(x, t) 
is uniformly in £2~ as t--+ + oo. 

Statements (iii) and (iv) of the theorem follow from Lemmas 5.3 and 5.4 by 
analogous arguments. We omit the details. Q.E.D. 

The following corollary is a direct consequence of the above theorem. We omit 
the proof. 

Corollary. Suppose that U ( - o o ) =  U(+ oo) and let tp be any i-Riemann invariant, 
i=fi l , f la . . . .  ,fl~_p, i.e. g, is constant along all T i curves jor  all i~{fl l ,  fl2 . . . . .  fin-p} 

totvar{~p(x,t)I-oo<x<oo}-~O as t-->+oo. 

IJ p = n, i.e., all characteristic fields are genuinely nonlinear, then 

t o t v a r { U ( x , t ) ] - o o < x <  oo}-->O as t ~ + o o .  

§ 6. Initial-Boundary Value Problems 

In this section we investigate the large-time behavior o f solutions of (1.1) de fined in 
the quadrant x = 0, t >= 0. We will illustrate our basic ideas for gas equations: 

ut + Px=O ' ! 

v t - u x = O '  (6.1) 
!U2 / E t + (pu)x = O, p = p(s, e) = p(s, v), E = e + 2 , 

pv(s, v) < O, p,,v(s, v) > O, 

x > O ,  

or, 

(u, v, E) (x, O) = (Uo, Vo, Eo) (x), 

u(O, t) = Ub(t), t ~ O, 

p(0, t)=pb(t) ,  t > 0.  

(6.2) 

(6.3)1 

(6.3)2 

It follows from the estimates in Liu [15] that there exists a finite amount of 
interactions Qo in the interior t > 0, x >0  and Q1 on the boundary x = 0 provided 
that either the data (6.2), (6.3) have small total variation or the gas is polytropic, i.e. 

p(s, v)= const exp ( ~ ) v - ~ ,  1 < 7 < 5/3, and (7-1)t imes the total 
/ t "  ~ , , \  

variation of the 

data (6.2), (6.3) is small, (see also Section 3). Given any region A in the quadrant 
which intersects the boundary x = 0 from t = a to t = b, the following approximate 
conservation laws hold [cf. (2.7)i ] when (6.3)1 is the boundary data 

L~ (A) = E~ ( A ) -  R~ (a, b) T- CI(A) + 0(1) [Qo(A) + Ql(a, b)], (6.4)1 
+ ,_+ 

L2(A)=E3  (A)+R~(a,b)T-C3(A)+O(1)[Qo(A)+Ql(a ,b)+Bf(a ,b)]  (6.4) 3 
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and  when (6.3)2 is the bounda ry  data  then the first equat ion in (6.4) is replaced by 

L~ (A) = E~ (A) - R ~ (a, b) ~ C3(A ) + 0(1) [Q o(A) + Q1 (a, b) + B ~ (a, b)]. 

Here  R~(a, b) denotes the amoun t  of  1-waves hitt ing the line x = 0  between time a 
and b, and B~(a, b) the amoun t  of  3-waves issuing f rom x = 0  due to the bounda ry  
da ta  (6.3). 

Given  any  ~>0 ,  we choose to, M so large tha t  Qz(A)+Ql(to, OO)<e for 
A = {(x, t)lt > to}, and [B~ (to, oo)1 < e, tot  var  { U(x, t), x > M} < ~. Th rough  (M, to) we 
construct  a 1-characteristic Z which intersects x = 0 at t ime t~. Applying (6.4), to the 
region right o f  )~, we find that  for any t>_=t t 

[X~(t)l = 0(1)~, IRa(t, ~)[  = O(1)e, (6.5) 

and so, (6.4)3 becomes 

L f ( A )  = Es (A)  T- Cs(A ) + 0(1)e 

for all A in the region {(x, t)lt>t~}. Tha t  is, for t sufficiently large, the a m o u n t  o f  1- 
waves is small and thus we may  use the techniques used in the last section to prove  
the following theorem whose p r o o f  is omit ted  : 

Theorem 6.1. Suppose that either T V  is suJJiciently small or the gas is polytropic with 
exponent y, 1 < 7 < 5 / 3  and ( y - 1 ) T V  is suJJiciently small. Here T V  is the total 
variation oj the data (6.2), (6.3). Then the initial-boundary value problems have a global 
solution (u, v, E) (x, t) which approaches the solution (u*, v*, E*) (x, t) oJ (6.1) such that 

(u,v,E)(x,O)=(Uo, Vo, Eo)(+oo),  x>O,  (6.2)* 

u(O,t)=ub(+oo), t>O, (6.3)* 

or~ 

p(0, t) = p b ( +  oo), t>=0. (6.3)* 

More precisely, i~ (u*, v*, E*)(x, t) is a rarejaction wave or a constant, then shock 
waves decay and (p, u)(x, t) approaches (p*, u*)(x, t) pointwise as t ~  + o% and i~ 
(u*, v*, E*) (x, t) is a shock wave, then a shock wave emerges Jrom (u, v, E) (x, t) Jot t 
large such that the shock wave approaches the shock wave (u*, v*, E*)(x, t) both in 
speed and strength and outside the shock wave (u,p)(.,t) has total variation 
approaching zero as t ~ + oo. 
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