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A b s t r a c t .  The elliptic equation A u = F(u) possesses non-trivial solutions in R" 
which are exponentially small at infinity, for a large class of  functions F. Each of 
them provides a solitary wave of  the nonlinear Klein-Gordon equation. 

1. I n t r o d u c t i o n  

We define a solitary wave as a solution 05(x, t) of  a wave equation whose maximum 
amplitude at time t, sup 105(x, t)[, does not tend to zero as t ~  ~ ,  but which tends to  

zero in some convenient sense as Ix]~ oo for each t. The convergence should have 
the property that physical quantities, such as the energy and charge, are finite. 
Particular types of  solitary waves are (1) traveling waves 05 = u ( x - c t )  where c is a 
constant vector and (2) standing waves 05 = exp(icot)u(x) where co is a real constant. 
Traditionally, solitary waves have been traveling waves, but in recent years 
oscillatory factors have been allowed. The above definition includes all uses of  the 
term. Solitary waves have also been called "solitons" but, properly speaking, the 
latter word should be reserved for those special solitary waves which exactly 
preserve their shapes after interaction. Many  examples of  these special solitons have 
been discovered in recent years in the case of  two space-time dimensions. In higher 
dimensions, however, even the existence of solitary waves seems to be elusive. 

We consider the scalar N L K G  equation 

05tt - A 05 + m205 + f(05) = 0 ,  (3) 

where x = (xi , . . . ,  x,)~ R", A is the Laplacian in x and m > 0. We assume f(0) = 0 and 
f ( re i ° )=f (r )e  ~°. I f  05 is a standing wave (2), Equation (3) reduces to 

- A u + (m 2 - co2)u + f (u)  = O.  (4) 

We shall show that (4) possesses non-trivial solutions exponentially small at infinity 
provided lco[ < m  and f satisfies certain conditions. In particular, if co=0, we have 
05(x) = u(x). Since we may change to a different Lorentz frame, it follows that there 
exist traveling solitary waves (1) for any tcl< 1. Alternatively we may proceed by 
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putting (1) directly into (3) to obtain the equation 
02u 

- ~ aij c~xiOx----- ~ + m 2 u + f(u) = 0 ,  (5) 

where ai;--6ij +qcj .  Note that (a~j) is a positive-definite matrix because 

aij~i~ j=]~12_ (c'~)2 ~(1 --IC[ 2)[~12 

for any ~ =(31, ..., ~,)eR". Thus Equation (5) is elliptic and it can be converted into 
an equation with leading term - A v  by means of a rotation and stretching of axes. 
The same sort of equation comes from standing wave solutions (2) of the NLS 
equation i4t - d ~b + f (4 )  = 0. 

In each of  these cases we get an equation of the form 

- A u +  F(u)=O, xeR"  , (6) 

where f (u)  = f(u) + (const.)u. 
We assume that F(0)=0,  which means that (6) always possesses the trivial 

solution u = 0. Let F be a real continuous function and let G' = F, G(0) = 0. Consider 
real-valued solutions of (6); for the complex case, see Section 2. 

Some necessary conditions on F, found in part by Pohozaev I-7], are the 
following. 

Theorem 1. Ij" u is a solution of (6) which is sufficiently small at infinity, then 

( n -  2) S I Vul 2 dx = - ( n -  2) S uF(u)dx = - 2n ~ G(u)dx . (7) 

Hence if sF(s) or G(s) (for n ,  1) or H(s)= ( n -  2)sF(s)-  2nG(s) or - H ( s )  is positive 
(for s+O), then the only solution is the trivial one. For any non-trivial solution, the 
energy is positive: 

E =  ~ [½lVul2 +G(u)]dx= ~[. IVul2dx>O. 

The main result of this paper is the existence of non-trivial solutions of (6) for a 
large class of functions F. Let 

~2 

L = - ~ aii Ox~Sxi + a o , 

where the constant matrix (a~;) is positive-definite and a o is a positive constant. Let 
Fl(s ) and F2(s ) be real continuous functions defined for 0 < s  < o0. Denote by G 1 
and G z their indefinite integrals. Assume the following. 

Fl(s)>O , F2(s)>0 for s > 0 .  (8) 

As s~O,  f l ( s ) = O ( s  ) and F2(s)=o(s ) .  (9) 

f2(s)=o(sZ+Fi(s))  as s-~oo.  (10) 

Fz(s)=O(st+Gl(s)/s)  as s ~ o o ,  (11) 

where t=  (n + 2) / (n-2)  and n __> 3. (For the cases n = 1 or 2, see Section 3.) 

Theorem 2. Under these assumptions, there exists 2 > 0  and a solution u of 
Lu + Fl(u ) = 2F2(u ) (12) 

which is non-negative, belongs to the Sobotev space H ~, decays exponentially as 
tx[-~ 0% and ~ G 1 (u(x))dx < or. 
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Examples are presented in Section 2. 
A number of studies have been made of Equation (6) by restricting attention to 

the radial solutions (u = u(r),  r = Ixl) and analyzing the resulting ordinary differential 
equation; see Synge [14], Nehari [6], Anderson and Derrick [1], and Berger [2]. 
One-dimensional problems have also been studied by Stuart [ 13] and Dancer [4]. 
In addition, there are a large number of papers on the existence of a solution of an 
equation with an inhomogeneous term 9 ( x ) ;  in the present case, when g = 0, there is 
always the trivial solution u = 0. 

Nonlinear eigenvalue problems of  this type have also been much studied for the 
case of a bounded domain £2 C R" with Dirichlet boundary conditions. Methods of 
the calculus of variations, bifurcation theory and topological degree have been 
used; see Pohozaev [7], Rabinowitz [9, 10], for example. These methods fail to 
extend to unbounded Q because H 1 is no longer compact in L 2. To be compact in L 2 
on an unbounded domain, a class of  functions has to be uniformly small at infinity. 
We use the variational method with the extra constraint that the functions be radial, 
which ensures the compactness. 

We allow rapid growth of  the nonlinearities in Theorem 2. Almost all authors 
(for f2 bounded or not) require Fi(s  ) = o (J )  as s-+ 0% i = 1,2. Clement [3], for the case 
of (12) in a bounded domain, relaxes this condition for F 1 but requires it for F2. 
Rabinowitz [11] exhibits an example where F 2 does not satisfy the growth 
condition and F 1 = 0. 

In Section 3 we prove Theorem 2 in two stages. We apply the direct variational 
method to truncated versions of F 1 and F 2. Then we remove the truncations by a 
limiting process, using techniques of Strauss [12] and C16ment [3]. 

Classical eigenvalue problems possess an infinite sequence of solutions. By the 
minimax technique, the same should be true in our case. We have not carried this 
out ; instead, in Section 4, we apply abstract theorems of  Rabinowitz [10]. These 
theorems unfortunately require the growth conditions on F 1 and F2 mentioned 
above. 
I wish to thank L. Vazquez for many stimulating discussions on this topic and P. Rabinowitz and C. 
Dafermos for some helpful suggestions. 

2. Examples and Necessary Conditions 

We use the notation LV=LP(R~) ,  H lip =Lp-norm, Hi  =Hi(R") = {u~L21~u/c~xi ~L2, 
i=  1 ..... n}. Integrals are taken over all of  R" unless otherwise specified. 

E x a m p l e  1 (Pohozaev [7]). 

- A u + u - l u t q - * u = O  , 

x e R " ,  n > 3, q > 1. We have scaled out the coefficients to be 1. To apply Theorem 1, 
F(s)  = s - I s [  q - is ,  G(s) = s2 /2  - I s l  q+ X/(q + 1). Let c~ - 1 = 2-1 _ (q + 1)- 1. So there is no 
non-trivial solution if ( ( n -  2) /2 ) sF(s )  - nG(s)  = - s 2 + (1 - ~ -  1 n)Isl ~ + 1 is of one sign ; 
that is, ~_<_ n or q > (n + 2) / (n-  2). So assume 1 < q < (n + 2) / (n-  2). Any solution must 
satisfy identity (7), which reduces to: 

e ( n -  2).ItVut2dx = o n j n  j [up 2 d x  = n ~ [u[ q+ i d x .  
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Theorem 2 asserts the existence of a solution, where Fl(s)=0,  F 2 ( S ) = N q - l s ,  
L = - A + I and a scale change is used to make 2 = 1. In Section 4 we show that this 
solution is the first one of an infinite sequence of distinct solutions. 

Example  2. - A u + (m 2 - (~)2)u + [u[ v -  ~ u -  2[u[ ~- lu = 0 where x s  R', m 2 - 0) 2 > 0 and 
p and q are distinct numbers larger than 1. We distinguish four cases. 

Case A : q < p. Theorem 2 asserts the existence of  a non-trivial solution for some 
)~ > 0. Note that 

1 2 
G(s) = ½ (m2 - co2)s2 + p ~  -[slv+l q + l   sl. 

is bounded below. There is a number 2,  so that, for 2 =<2,, G(s) is non-negative and 
the only solution is the trivial one, according to Theorem 1. 

According to Theorem 1, the (integrated) energy is necessarily positive, even 
though the function G(s) is not allowed to be positive if a non-trivial solution is to 
exist. On the other hand, for a standing wave solution (2) of the N L K G  Equation (3), 
the energy density 

½10,12 + ½1 viol 2 + ½1Vul 2 + co2u s + 

may be positive. This is the case if 0 > 0  and 2 is slightly larger than 2,. 

Anderson [1] has computed these solutions in the case n--3, p = 5, q = 3. His 
most interesting result is that the positive solution appears to be stable with respect 
to perturbations of the initial data of  Equation (3) in the cases when the energy 
density is positive. For  this choice of p, q, and n, the inequalities 

~.S 4 = (2s) (½2s 3) =< ½(2s) ~ + ½(½2s3) s = 2s s + 12Ss6, 

G(s) w l s2"4-1S6-- ~ S 4 ~ ( 1 _ 1  ~2)$6 

show that 2 ,  =4.3-2/2,  if we normalize to make m s - c 0 s =  1. This explains the 
rather mysterious fraction 3/16=222 appearing in [ i] .  

Case B: p < q < (n + 2)/(n-2).  Theorem 2 is again applicable. In Section 4 we 
prove the existence of an infinite sequence of  non-trivial solutions for each 2 > 0. 

Case C: p = < ( n + 2 ) / ( n - 2 ) < q .  Let c ~ - 1 = 2 - i + ( q + 1 )  -1 and fl-1 = 2 ~ i  
+ ( p +  1) -1. Then a=<n<=fl and 

2 

By Theorem 1, there can be no non-trivial solution. 

Case D: (n + 2) / (n-  2) <p  < q. This case remains open: we do not know whether 
or not there exists a non-trivial solution. 

Remark .  For the equation - A u + F(u) = 0, existence essentially requires F'(0) > 0. 
Indeed, suppose - e = F'(0) < 0 and let f ( s )  = F(s)/s + ~. Let u(x) be a non-trivial 
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solution smallat infinity and let q(x) = f(u(x)). Then the equation can be rewritten as 
-Au  + qu = ~u. Assuming u(x) is small enough at infinity that q(x)= o(rx[-1), it is 
well-known that the operator - A + q has no positive eigenvalues (Kato [-5]), so that 
we reach a contradiction. 

Remark. A word about real vs. complex solutions. If we restrict our consideration to 
s 

real solutions u(x), then we consider real functions F(s) and G(s) = S F(a)da. If we 
o 

allow u(x) to be complex-valued, then we assume the following. 

~:[0, oo]--+R, 

G(z)=g(lz[) for complex z ,  

F(z)  =g' (z)z / Iz l  . 

It follows that 

0 
~-e G(z + ~[)l~ = o = Re F(z)[ 

and 

0 8[ 
0x~ G(u(x)) = ReF(u(x) )  ~ j  . 

In this case, the middle term in Equation (7) should be ( 2 - n )  Re S ~F(u)dx. 

Proof of  Theorem 1. We have - (A u)~ = - V(Vu~) + I Vul 2. So if we multiply Equation 
(6) by ~, integrate, and assume that u and its derivatives are small enough at infinity, 
we obtain 

S {[Vul2 + Re ~tF(u)} dx = O. 

On the other hand, the multiplier rO~/Or-- ~ xi~, where we denote derivatives by 
i 

subscripts, gives the identities: 

- Reu j j x ~  i = - Re(u~xfii)j +(ixiTujl2)~ + 1 - ~ l u i l ,  

Re F (u)xi~ i = (xiG(u)) i -  riG(u), 

j' { (n-  2)[ Vut 2 + 2nG(u)}dx = O . 

This proves (7). It may be illuminating to give a different proof  of the second 
equality in (7). We regard u as a solution of the variational problem 6£°(u) = 0, where 

~e(.) = S {I1 rut 2 + G(u)}dx. 

Motivated by the fact that rc~/Or is the infinitesimal generator of the scale change 
u(x)-+u(2x), we define UZ(X)=2(n-Z)/Zu(,'],X) for ).>0. Then 

ff(u~) = 5 {1,)fl(Vu)(2x)[ 2 + G(2 ("- 2)/2U(I~X))}Mx 
= S {½1Vu(Y)l = + "~-" G(,~<"- 2)/2 u(y))} d y .  
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Hence 

n - 2  

Remark. The last proof  is based on the transformation u--,ux, which leaves the 
Dirichlet integral invariant. For  which functions G does it also leave the integral 

G(u)dx invariant? Exactly those G for which 2nG(z)=(n-2)RegF(z).  That is, 
2ng(s) = ( n -  2)sg'(s), whence 

n + 2  
G(z )= -C[z [  ~+1 q = n - 2  if n > 2  

Now a critical point of the functional 5°(u) is the same as a critical point of  the 
Dirichlet integral subject to the constraint S lu[ q+ ldx= 1. Let 

m=inf{~IVul2dx} I/2 subject to S[u[q+Xdx=l 

(u a test function), then m II u I[q +1 < T[ Vurj z. This is the classical Sobolev inequality. 
We are going to prove Theorem 2 by means of  the variational problem 

rain ~ {½fVuf 2 + ½uZ + G1 (u)} dx 

subject to the constraint ~Gz(u)dx=l , u~H 1. The following theorem serves as 
motivation for our proof. We have made some simplifications; in particular, we 
consider the real case only. 

Theorem 3. Let F 1 and F 2 be continuous functions satisfyin9 (8) and (9) and 
Fi(s)=O(s) as s-~oo. Extend Fi(s ) to be zero for s<0.  I f  the above problem has a 
solution, then it has a solution which is non-negative, radial and exponentially 
decaying. 

Proof Let u be a solution. Let u+(x)=max(u(x)),O). Then @(u+)=G~(u), V(u +) 
=(Vu) + and u+~H 1. So u + is a solution of the same minimum problem and of  
course u + is non-negative. In the rest o f the proof  we assume u > 0. To find a radial 
solution we use Steiner symmetrization. In the classical use of this technique (Polya 
and Szeg6 [8], Weinberger [15]), the integrands are quadratic, the equation is linear 
and the domain is bounded. However, the proof  easily extends to the present case. 
Let D={(x,t)sR"+l:O<_t<_u(x)}. Let D* be the symmetrization of D in the 
hyperplane xl =0. This means that each line L in R "+1 perpendicular to xl = 0  
intersects D* in a single line segment symmetric about x 1 = 0 such that the length of 
Lc~D* equals the length of Lc~D. D* is of the form D* = {(x, t)e R" + a :0 < t _< u* (x)}. 
Then (for i = 1, 2) 

u~x) 

I Gi(u(x))dx = I ~ f,(t)dtdx = ~f Fi(t)dxdt 
o D 

u*(x) 

= ~ri(Odxdt= ~ ~ F,(t)dtdx= ~G,(u.(x)dx, 
D* 0 

where the middle equality follows from the definition of D*. On the other hand, 
symmetrization does not increase surface area. We apply this fact to the boundary 
of 

De, ~ = {(x, t)6 R n + 1 :lxt < R , 0  _< t _< eu(x)} 
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where R and e are positive numbers .  Thus  

{l +e2lVul2}l/2dx+ j" eu(x)dS 
Ixl<R Ixl=R 

~= ~< {l+g2IVu*12}l/2dx+ 5 eu*(x)dS. 
Ixl R Ixl=R 

Since u - u ' e L  2, we m a y  choose a sequence R n +  oo so tha t  the integral  o f  t u - u * j  
over  Ix] = R,  tends to zero. Not ing  that  0___ { 1 + e2iVu ]2 } 1/2 _ 1 <= ½e2]Vul2, and taking 
R = R , - ~  0% we obtain  

[{1 +~21Vu12}*/2- lJdx > 5 {1 + e2lVu*12} */2- 1]dx . 
Dividing bo th  sides by e2 and  letting e--+0, we get 

5 IVuI edx > 5 JVu*J 2dx" 

This shows that  u* is a solution of  the same m i n i m u m  prob lem as u. I f  we repeat  this 
procedure  successively over  an appropr ia te  sequence o f  hyperplanes,  we get a non-  
negative radial  solution. 

Call the radial solut ion u. It  is cont inuous  for r = txl + 0 ,  by the Radial  L e m m a  of  
Section 3. I t  satisfies an equat ion 

n - 1  
u~r+ u , -F(u)=O,  0 < r < o o ,  

r 
where f(u) = u + f l (u  ) - 2F2(u). Thus  r I -"(r  n- lur) ~ = ur~ + ( ( n -  1)/r)u r is cont inuous  
and hence u is a C 2 function for rq=0. Let  

F(u(r)) 
q(r )=  - 1 + F'l (O) + p(r ) . 

u(r) 
By (8) and (9), p(r)--+O as r--+ oo. Hence  q(r) > ½ for large enough r. N o w  v = ¢~- 1)/2u 
satisfies the equat ion 

( n -  1 ) ( n - 3 ) ]  
vr.-- q(r)+ ~ r  2 

whence 

(½v2)rr=VZ~ + fq(r)+ (n-- l~r2n-- 3)]v2 . 
Thus  w = v z satisfies the inequali ty w,, __> w for large enough r. F r o m  this inequali ty 
follows the exponential  decay o f  w, hence of  u. 

In fact, it implies that  Q = e-~(% + w) in non-decreasing for large r. I fQ remains 
non-posi t ive for large r, then (e~w),=e2"Q~O, which implies that  w=O(e -~) as 
r ~  o~. If, on the other  hand,  Q > 26 > 0, then w~ + w is certainly not  integrable near  

2 and  w, are all integrable on an interval R < r < ~ .  But the functions v 2, v~, w 
because u~H 1. This contradic t ion proves  the exponential  decay. 

3. Existence 

Radial Lemma 1. Let n >_ 2. Every radial function u E H* is almost everywhere equal 
to a function U(x), continuous for x q=O, such that 

IS(x)l<cixl(l-"V2llull~ for Ixl>l, 
where c depends only on n. 
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Proof Let m = ( n -  1)/2. For  v~C°°c~H 1, we have 

(r2mv2)r = ((rmv)2)r = 2(r"v)~Wv < (r%)~ + (rmv) 2 

=r._l(vZ+vZ)+m(r._2v2) ~ (n--1)(n--3) r._3v2. 
4 

If  n >  3, we integrate over an interval [0, r] to obtain 
r 

r"- iv 2 (r) < ~ (~  + v 210,-1 do 
o 

= I S " - l f - ~  flvfl~., , 

where IS"- 1] is the area of  the unit sphere in R". I f  u~H a, we let 

0 

v~(r)= S ¢~(Q)u(r-Q)do, 

where ~ is the usual approximate  delta function, and pass to the limit to obtain the 
result. In case n = 2, the differential inequality takes the form 

- (rv2), __< r(v~ + ~2)+ (½~)~+ 1 v~ 
4r " 

We integrate over an interval Jr, oo] to obtain 

(r + ½)v~(r) < f. (~,~, + v2)~d~ + ,~,~d~. 
r r 

For  r > 1, we may  replace 1/~0 by ~ to obtain 

2~(r + ½)v2(r) < 5 2 
= ~ H v l l . ,  • 

The p r o o f  is completed as before. 

Compactness Lemma 2. Let {Pu} and {QN} be two sequences of continuous 
functions: R ~ R .  For c > O, let 7(c) = sup {It]: t = PN(s) for some N and s such that 
I QN(s)I < ClPN(S)! }. 

Assume i) 7 (c )<oo for all c > 0 .  (In other words, PN/QN--*O uniformly as 
PN ~ o0.) 

ii) {Uu} is a sequence of measurable functions: R " ~ R  such that 

q = sup ~ IQu(uN(x))ldx < oo . 
N 

iii) PN(UN(X))~V(X) fo r  a.e. x~R" .  
a) Then 

IPN(UN) - vldx~O 

for all bounded sets B. 

b) Assume in addition that 
iv) PN(s)= o(QN(s)) as s--*O uniformly in N. 
v) uN(x)~O as Ixl~oo, uniformly in x and N. 
Then ~ IPN(uN)-- v[dx ~O. 
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Proof We use the method of [12]. Fix N and e > 0. Let c > 4q/e. Let B be a bounded 
set. By iii) and Egorov's lemma, choose a set Z C B of measure less than e/(4),(c)) 
such that PN(UN)~V uniformly on B/Z. Let 

Z' = {xe  Z :IQN(uN(x))I <__ clPN(u~(x))I} , Z" = Z \ Z '  . 

Thus IPN(uN)I<>'(C) on Z' and IPN(uN)I ~c-~IQN(ur,,)I on Z". Hence 

S IPN(uN)ldx < q/c + y(c)lZ"l < e /2 ,  
Z 

1 ~  ~ IPn(u~v ) -  vldx <-_~ + lim ~ [P~(uN) - vldx = e .  
B B\Z 

This proves a). To prove b), let e>0. By iv) choose 6>0  so that 
suplPN(s)/QN(S)I<e/2q for Isl <a.  By v) choose R >0  so that supluN(x)l <6 for 

N N 
Ixl > R. T h e n  

IPu(uN(x))ldx< ~ ~ [QN(uN(x))ldx< 
l~l>R zq 

Applying Part a) of this lemma to B =  {Ixl <R}, we conclude that 

1~ ~ Ie~,(uN)- vldx <= ~ . 

This completes the proof. 
We are now ready to begin the proof of Theorem 2. Let F~ and F 2 satisfy 

conditions (8)-(11), where 

= i  Gi(s) Fi(t)dt 
0 

We extend them by zero for negative s:Fi(s)--O for s<O. We may also assume 
L = - A + I .  

Lemma 3. There exists a non-trivial solution of (12) in case Fi(s)<qs for all s 
(i = 1, 2). 

Proof In this case O< Gi(s ) < ½cis 2. Let 

M = inf~ {½(I VuI 2 + U 2) _~ GI (u)}dx = in fA°(u) 

subject to the conditions 

u e H  2 , u radial, ~#(u) = j" Gz(u)dx = 1 . 

By (8), G2(s)>0 for s>0.  So for any 7>0, there exists uoeC~, u o radial, with 
J~(Uo) =% Thus M is finite. Choose any minimizing sequence: u~eH 2, u~ radial, 
Jd(u~) = 1, ~ ( u ~ ) ~ M .  Then {u~} is bounded in H 2 and {G2(uv) } is bounded in D.  By 
Sobolev's inequality, {u~ } is also bounded in L z + 2, where l + 1 = 2n / (n -  2) and n > 3. 
By compactness on bounded subsets of R", there is a subsequence, which we still 
denote by {u~}, converging to a limit u weakly in t/2 and almost everywhere. Hence 
Gi(u~)~Gi(u ) a.e. (i= 1,2). We shall apply the Compactness Lemma with uN=u ~, 
PN=G2, and QN(S)=[SII+I+GI(B)-I-s2. Hypothesis i) is satisfied because 
[Sll+ 1 ~_ 61(S ) ~ c a 2 ( s )  =:~ Is] bounded ~ G2(s ) bounded. 
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Hypothesis v) is satisfied because of  the Radial Lemma. Thus ~gd(u,.)~(u).  Hence 
J/(u)  = 1 and also u is radial. 

By Fatou's Lemma and weak convergence, we have Y(u)<  iimY(u~)< M. By 
definition of M, 5~(u)= M. Thus u attains the minimum. Now, because F 1 and F 2 

are sublinear and continuous, it is easy to check that £g and ~g{ are C 1 functionals on 
H ¢ = { w e H  1 :w is radial}. Their Frechet derivatives are Jg'(w)v = S Fz(w)vdx and 
~ ' (w)  v = ~ { Vw. Vv + wv + F1 (w) v} dx. Thus there exists )~ e R, u ~ H 1 such that 5e'(u) v 
= 2 ~ ' ( u ) v  for all vEH¢. Let h =  - A u + u + F l ( u ) - 2 F z ( u ) .  Then h is radial and is 
orthogonal to all radial test functions. Hence h = 0. 

Remark. If the space H ¢ ~ L  p were used, the preceding method could be made to 
work for functions F i of polynomial growth at infinity; the Fi could have faster 
growth ifOrlicz spaces were used. Instead, in the following argument we allow more 
general conditions on F~ by using an extra passage to the limit. 

Lemma 4. Let Fi(s) be as in Theorem 2 (zero for s <O). Then 

G2(s)=o(st+ I +GI(s)) as s-~oe . (30) 

For N > 0 define the truncated functions 

FiN(S)=IFi(s) for s < N  
[Fi(N) for s > N 

and let GiN(s) be their indefinite integrals. Then 

sFzN(s ) = O(j+ 1 + G1N(s) ) as s ~  oo uniformly in N .  (3t) 

For any c>0 ,  there exists y(e)>o such that 

s t + 1 + G1N(s) < cG2N(s ) ~ G2N(S) < 7(c). (32) 

For any a > 0 ,  let c ,=supFi ( s ) ;  then 
s<=cy 

1 
F1N(s)<c,+~sF1N(s  ) for N > a ,  s s R .  (33) 

Proof To prove (33), we let a < N  and consider 3 cases. For s<a,  we have FIN(S) 
= F l(S ) < c,. For a < s < N, we have F1N(s ) < sFl(s)/a = sF1N(s)/a. For N < s, we have 
F 1 N(s) = F I (N) < sF I ( N ) / °  = sF 1N(S)/~7" 

We also prove (31) in 3 cases. For  s < N, (31) is identical with (11). For  s > N, we 
have 

s 

Gm(s ) = j" Fiu= Gi(N ) + ( s -  N)Fi(N) . (34) 
0 

For N < s < 2 N ,  we have from (11) and (34) 

Fz(N ) = O(N l + Ga(N)/N) = O(sl + 2GI(N)/s) = O(sl + G1N(s)/s) . 

For s > 2N, we have from (10) and (34), 

F2(N)=o(Nt  + F,(N)) =o (sZ + 2 s-s N F I ( N ) ) =  O(sZ + G,u(s)/s) . 
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To prove (30), let e>0.  By (10) there exists T =  T(e) so large that 

F z ( t ) < ~ ( t t + F l ( t ) )  for t>=T. (35) 

For  s=> T, we integrate (35) over the interval [T,s] to get 

{ fl + l ) T l+ 1 
G2(S) ~ ~ \ ~ i -  -I- al(S)_ + G2(T)-- ea1(T)  - ~ l+ 1 " 

Thus (30) holds. That  is, there exists T ' =  T'(e)> T so that 

G2(t)<e( f l+l  +Gl ( t ) )  for t>=T ' . (36) 

To prove (32), let c>0 .  Let e = 1/(2c). Let s satisfy the inequality 

fl + 1 + G1N(s) < CG 2N(S) . (37) 

Case 1 : s < N.  Then GzN(s ) = Gi(s), so that (36) and (37) imply that s < T', Hence 
<~ G2N(s ) = G2(T  ) = 7(c). 

Case 2" s > N.  By (34), (37) takes the form 

s t + a + G I (N)  + (s - N ) F  I (N)  < c{Gz(N)  + (s - N)Fz(N)} . (37') 

In this case, we will show that N <  T ' =  T'(1/(2c)). Thus N runs through a finite 
number of integers. By (37), s is also bounded by a function ofc. Hence so is GzN(S ). 
It remains to prove a contradiction if we suppose that N > T'. In that case, we may 
choose t = N  in both (35) and (36). Then we add ( s - N )  times (35) to (36) to obtain 

Gz(N ) + ( s -  N)F2(N ) < 2c {N/+ 1 + (S-- N ) N t  + GI (N)  + ( s -  N ) F I ( N ) }  . 

This indeed contradicts (37'). 

P r o o f  o f  Theorem 2. For fixed N, we apply Lemma 3. There exists u N e H  I, u N radial, 
u, minimizes 

SN(v) = j" ½(I gvl ~ + v ~) + G~N(v)} dx 

subject to the constraints that v ~ H  ~, v is radial and G2N(V)dx= t. Furthermore, 

- A u N + u N + F1N(ux) =)oNFzN(UN). 

Multiplying (38) by u N and integrating, we find 

11VUNI 2 + u2 + uNF~N(UN)}dx = 2N ~ uNF2x(UN)dX " 

Now choose u o as in the proof  of Lemma 

(38) 

(39) 

3. Let N>supluo(x)[ .  Then 
GiN(uo) = G~(uo). By the minimization property of u N, we have 

~(uN)_-< S~(uo) = ~(uo)  < o r .  

Thus {uN} is bounded in H i and S G1N(uN) dx  is bounded. By Sobotev's inequality, 
{uN} is bounded in L l÷ t. By (31), ~uNF2N(uN)dx is also bounded. 

By compactness, there is a subsequence, still denoted by {uN}, such that u N 
converges to some limit u weakly in H 1 and a.e. Hence Gm(uN)-*Gi(u) and 
F m ( u N ) ~ F i ( u  ) a.e. We now apply the Compactness Lemma 2b) with 

PN(S)=G2N(s) and QN(S)=lSIt+ I +G~N(S)+ S 2 . 
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Assumption i) of Lemma 2 is identical with (32), while Assumption v) follows from 
the Radial Lemma 1. Therefore S G2(u)dx = 1. 

Lemma 5. {2:,~} is a bounded sequence of positive numbers. 

Assuming the validity of Lemma 5, the right side of  (39) is bounded, whence 
ur~F1N(uN)dx is also bounded. By the Compactness Lemma 2a) with Pn =FiN and 

Q.N(s)=sFiN(s), we deduce that FiN(uN)~Fi(u) in L~o o for i=1,2.  Taking a sub- 
sequence 2 N~2, we see that each term in (38) converges in the sense o f distributions. 
We conclude that 

- Au+u+Fl(u)=2fz(u) .  

To show u is non-negative, let u-  (x) = rain (u(x), 0) and let A = {x : u(x) < 0}. Since 
us  H a, it follows that u-  E H a and O(u-)/~Vxj = (~?u/~xj)-. Multiplying the differential 
equation by u- ,  we obtain 

0 =  S {Vu. Vu- +uu +F(u)u }dx 

= S {Ivul~+lul2} dx .  
A 

Hence u = 0  on A so that u>0.  (Another proof  could be based on the method of  
Theorem 3.) Finally, by the proof  of Theorem 3, u is a C 2 function for x ~ 0 which 
decays exponentially as r ~  oo. We also note that from the differential equation we 
have 

I {]Vu]Z+u2+uFl(u)} dx=)c I uF2(u)dx, 

from which it follows that 2>0.  If 2=0 ,  then u = 0  and ~G2(u)dx=O, which is a 
contradiction. 

Proof of Lemma 5. It follows from (39) that 2u>0.  Now fix reCkS. By (38), 

~,N(F2N(UN), V)=(ffUN, VV) + (UN, V) q- (FIN(UN), V). 

By (33), 

"tNI(FzN(UN), V)I < [IUN ItU~ II VlI~,~ + C~ILvlIL~ + o-- a !IvlLL~(u N, GN(u~)) 

<k(1 + G + a -  12N) 

with k independent of  cr and N, where we have used (39) and the known bounds. 
Given e > 0, choose N > a = k/e. Then 

I(F2N(UN), V)] <~ )~N 1 k(1 + G) + e .  

If {2N} were unbounded, then a subsequence would satisfy 2N-,oo and so 
(FzN(UN) , V)---~O. On the other hand, by the Compactness Lemma 2a)just as above, 
(F2N(UN) , V)-+(F2(U), V). Thus (f2(u), v) = 0  for all test functions ve C[.  Hence 
Fz(u ) =0. By (8), Gz(U ) =0. This contradicts ~ G2(u)dx = 1 and completes the proof  
of Lemma 5 and Theorem 2. 

Remark. If  the dimension n = 1 or 2, Theorem 2 is valid under weaker conditions. If 
n=2 ,  we replace (n+2)/(n-2) by an arbitrary positive number. Since H ~ is 
contained in a certain exponential Orlicz space L ~, we actually need only replace 
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s z + 1 by q~(s). The proof is unchanged. If  n = 1, strongly convergent sequences in H 1 
converge uniformly; hence the direct method of Lemma 3 works. Theorem 2 is 
valid without any growth conditions (10), (11). 

Remark. Our proof shows that, for each ? >0, there is a solution with ~ G2(u)dx =7. 

Remark. There exists a non-positive as well as a non-negative solution if F~ are 
continuous real functions satisfying 

sF~(s) >_ O, sFz(s) > 0 (8*) 

and (9), (10), (11) with s t replaced by jsl l, and oo by _ o9. 

4. Existence of Many Solutions 

Theorem 4. Let L = I - A .  Let F 1 = O. Let F 2 be a continuous real function such that 

sF2(s)>O for s + 0 ,  (41) 

F2(s)=O(N p) as Isl--'~ where p < ( n + 2 ) / ( n - 2 ) = l ,  (42) 

F 2 is odd and F2(0)=0.  (43) 

For any 7 > 0, there exists an infinite sequence of distinct pairs of radial solutions of 
(12), 

()~k, ++- Uk) k = O, 1, 2 , . . . ,  

with (Lug, u~) = 2;. 

Proof We apply Theorem 2.10 of Rabinowitz [10], which is based on the minimax 
characterization of the higher eigenvalues. We use the space E=H ¢  (the radial 
functions in H 1) and the functional f (u )=  5 Gz(u)dx. We need only verify the 
hypothesis of Lemma 2.11 of [10]. Let u ~ u  weakly in H i,  hence in L z+ 1. By the 
Compactness and Radial Lemmas and (42), we have F2(uN)-*Fa(u) strongly in L p', 
where (p')-1 + p - 1 =  1, and hence strongly in (Hi)*. 

A special case of Theorem 4 can be found in Berger [2]. The following theorem 
is based on a variational method without constraints. 

Theorem 5. Let F be a real continuous function which satisfies (42), as well as 

F(s)/s-~ - co as s ~  + oo , (44) 

sF(s)>~G(s) for some ~ > 2 ,  (45) 

F(s)=o(s) as s ~ O .  (46) 

Then the equation Lu + F(u) = 0 possesses at least one non-trivial solution. I f  F is odd, 
there is an infinite number of distinct pairs of solutions, +u k (k=0, 1,2 .... ). 

Proof We apply Theorems 3.9 and 3.37 of [101. We use L = I - A ,  E=H~ and 

f(u) = 5 {½(f Vu[2 + u 2) + G(u)} d x .  
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The only novel feature is the verification of condition (PS) + of [10]. Let {uN} be a 
sequence satisfying 

f ( u N ) < d  , 

h N = - d u t ~ + u ~ + F ( u n ) ~ O  in H -1 

Just as in [10], p. 172, these conditions imply that {uN} is bounded in H i. As in the 
proof  of  Theorem 4, F ( u N ) - ~ F ( u )  strongly in L p' and hN-*0 strongly in H - 1 ,  for a 
subsequence which converges weakly to some u in H ~ and a.e. Hence 

II UN -- U I121 = - (F(uN)  - F(u) ,  u N - u) + (h N, u N - u) ~ 0  . 

This proves (PS) + and Theorem 5. 

E x a m p l e  1. - A u + u -  lul q -  ~u = 0, where 1 < q < (n + 2) / (n-  2). Both Theorems 4 
and 5 imply the existence o f an in finite sequence o f radial solutions u 0, u 1, u2 . . . . .  (I f 
we apply Theorem 4, the eigenvalue 2 k has to be scaled out.) The solution u a has 
exactly k nodes as a function of r. For some computer-generated solutions, see [1]. 
E x a m p l e  2. - A u + u + l u t P - l u - 2 1 u q - l u = O ,  where 1 < p < q < ( n + 2 ) / ( n - 2 ) .  

Theorem 5 is applicable for every 2 >0.  The case of  larger p and q is open. 

References 

1. Anderson,D, Derrick, G.: Stability of time-dependent particlelike solutions in nonlinear field 
theories. J. Math. Phys. 11, 1336--1346 (1970); 12, 945--952 (1971) 

2. Berger, M.S. : On the existence and structure of stationary states for a nonlinear Klein-Gordon 
equation. J. Funct. Anal. 9, 2 4 9 4 6 1  (1972) 

3. C16ment, P. : Positive eigenfunctions for a class of second-order elliptic equations with strong 
nonlinearity (preprint) 

4. Dancer, E.N.: Boundary value problems for ordinary differential equations in infinite intervals. 
Proc. London Math. Soc. 30, 76 94 (1975) 

5. Kato,T. : Growth properties of solutions of the reduced wave equation with a variable coefficient. 
Comm. Pure Appl. Math. 12, 403--425 (1959) 

6. Nehari, Z. : On a nonlinear differential equation arising in nuclear physics. Proc. Roy. Irish Acad. 62, 
117 135 (1963) 

7. Pohozaev, S.I.: Eigenfunctions of the equation Au+2f(u)=O. Soy. Math. Doklady 5, 1408 1411 
(1965) 

8. Polya, G., Szeg6,G. : Isoperimetric inequalities in mathematical physics. Princeton : University Press 
1951 

9. Rabinowitz, P.H. : Some aspects of nonlinear eigenvalue problems. Rocky Mtn. J. Math. 3, 161 202 
(1973) 

10. Rabinowitz, P.H. : Variational methods for nonlinear eigenvalue problems. In : Eigenvalues of non- 
linear problems. Rome: C.I.M.E, Edizioni Cremonese 1974 

11. Rabinowitz, P. H. : Variational methods for nonlinear elliptic eigenvalue problems. Indiana U. Math. 
J. 23, 729 754 (1974) 

12. Strauss,W.A. : On weak solutions of semi-linear hyperbolic equations. Anais Acad. BrasiL Ciencias 
42, 645--651 (1970) 

13. Stuart, C.A.: Battelle Inst. math. report No. 75, 1973 
14. Synge, J.L. : On a certain non-linear differential equation. Proc. Roy. Irish Acad. 62, 17 41 (t961) 
15. Weinberger, H. : Variational methods for eigenvalue approximation. Philadelphia:SIAM 1974 

Communicated by A. Jaffe 

Received February 2, 1977; in revised form April 4, 1977 


