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Abstract. This paper describes a technique for regularizing quadratic path 
integrals on a curved background spacetime. One forms a generalized zeta 
function from the eigenvalues of the differential operator that appears in the 
action integral. The zeta function is a meromorphic function and its gradient at 
the origin is defined to be the determinant of the operator. This technique agrees 
with dimensional regularization where one generalises to n dimensions by 
adding extra fiat dimensions. The generalized zeta function can be expressed as 
a Mellin transform of the kernel of the heat equation which describes diffusion 
over the four dimensional spacetime manifold in a fith dimension of parameter 
time. Using the asymptotic expansion for the heat kernel, one can deduce the 
behaviour of the path integral under scale transformations of  the background 
metric. This suggests that there may be a natural cut off in the integral over all 
black hole background metrics. By functionally differentiating the path integral 
one obtains an energy momentum tensor which is finite even on the horizon of a 
black hole. This energy momentum tensor has an anomalous trace. 

1. Introduction 

The purpose of  this paper is to describe a technique for obtaining finite values to 
path integrals for fields (including the gravitational field) on a curved spacetime 
background or, equivalently, for evaluating the determinants of differential 
operators such as the four-dimensional Laplacian or D'Alembertian. One forms a 
gemeralised zeta function from the eigenvalues 2, of the operator 

= s . ( 1 . 1 )  

n 

In four dimensions this converges for Re(s) > 2 and can be analytically extended to a 
meromorphic function with poles only at s = 2 and s = 1. It is regular at s = 0. The 
derivative at s = 0  is formally equal to - ~ l o g 2 , ,  Thus one can define the 

n 

determinant of the operator to be exp(-d~/ds)[s= o. 
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In situations in which one knows the eigenvalues explicitly one can calculate the 
zeta function directly. This will be done in Section 3, for the examples of  thermal 
radiation or the Casimir effect in flat spacetime. In more complicated situations one 
can use the fact that the zeta function is related by an inverse Mellin transform to 
the trace o f the kernel o f the heat equation, the equation that describes the diffusion 
of  heat (or ink) over the four dimensional spacetime manifold in a fifth dimension of  
parameter time t. Asymptotic expansions for the heat kernel in terms of invariants 
of the metric have been given by a number of  authors [ t -4] .  

In the language of perturbation theory the determinant of an operator is 
expressed as a single closed loop graph. The most commonly used method for 
obtaining a finite value for such a graph in flat spacetime is dimensional 
regularization in which one evaluates the graph in n spacetime dimensions, treats n 
as a complex variable and subtracts out the pole that occurs when n tends to four. 
However it is not clear how one should apply this procedure to closed loops in a 
curved spacetime. For  instance, if one was dealing with the four sphere, the 
Euclidean version of  de Sitter space, it would be natural to generalize that S ~ to S" 
[5, 6]. On the other hand if one was dealing with the Schwarzschild solution, which 
has topology R 2 x S 2, one might generalize to R 2 x S"-2. Alternatively one might 
add on extra dimensions to the R 2. These additional dimensions might be either flat 
or curved. The value that one would obtain for a closed loop graph, would be 
different in these different extensions to n dimensions so that dimensional 
regularization is ambiguous in curved spacetime. In fact it will be shown in Section 
5 that the answer given by the zeta function technique agrees up to a multiple of the 
undetermined renormalization parameter with that given by dimensional re- 
gnlarization where the generalization to n dimensions is given by adding on extra 
fiat dimensions. 

The zeta function technique can be applied to calculate the partition functions 
for thermal gravitons and matter quanta on black hole and de Sitter backgrounds. 
It gives finite values for these despite the infinite blueshift of  the local temperature 
on the event horizons. Using the asymptotic expansion for the heat kernel, one can 
relate the behaviour of  the partition function under changes of  scale of  the 
background spacetime to an integral of a quadratic expression in the curvature 
tensor. In the case of de Sitter space this completely determines the partition 
function up to a multiple of the renormalization parameter while in the 
Schwarzschild solution it determines the partition function up to a function o f rUM 
where r 0 is the radius of the box containing a black hole of mass M in equilibrium 
with thermal radiation. The scaling behaviour of  the partition function suggests 
that there may be a natural cut off  at small masses when one integrates over all 
masses of the black hole background. 

By functional differentiating the partition function with respect to the 
background metric one obtains the energy momentum tensor of  the thermal 
radiation. This can be expressed in terms of  derivatives of  the heat kernel and is 
finite even on the event horizon o f a black hole background. The trace of  the energy 
momentum is related to the behaviour of  the partition function under scale 
transformations. It is given by a quadratic expression in the curvature and is non 
zero even for conformally invariant fields [7-12].  
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The effect of the higher order terms in the path integrals is discussed in Section 9. 
They are shewn to make an insignificant contribution to the partition function for 
thermal radiation in a black hole background that is significantly bigger than the 
Planck mass. Generalised zeta functions have also been used by Dowker and 
Critchley [11] to regularize one-loop graphs. Their approach is rather different 
from that which will be given here. 

2. Path Integrals 

In the Feynmann sum over histories approach to quantum theory one considers 
expressions of the form 

Z = ~ d[g]d[4]  exp {iI[g, (hi}, (2.1) 

where d[g] is a measure on the space of metrics g, d[~b] is a measure on the space of 
matter fields ~b and I[9, ~b] is the action. The integral is taken over all fields g and q5 
that satisfy certain boundary or periodicity conditions. A situation which is of 
particular interest is that in which the fields are periodic in imaginary time on some 
boundary at large distance with period fl [ 13]. In this case Z is the partition function 

1 
for a canonical ensemble at the temperature T = - 

fi" 
The dominant contribution to the path integral (2.1) will come from fields that 

are near background fields go and ~b o which satisfy the boundary or periodicity 
conditions and which extremise the action i.e. they satisfy the classical field 
equations. One can expand the action in a Taylor series about the background 
fields: 

I [g, ~b] = I [g0, ~bo]+ I2 [g] + Iz  [q~] + higher order terms, (2.2) 

where 

9 = 9 0 + 0 ,  ~b=~b0+q~ 

and 1210] and I2[q~ ] are quadratic in the fluctuations 0 and ~. Substituting (2.2) 
into (2.1) and neglecting the higher order terms one has 

log Z = iI [go, d? o] + log ~ d [0] exp iI 2 [0] 

+ log ~ d[q~] exp iI 2 [q~]. (2.3) 

The background metric go will depend on the situation under consideration but 
in general it will not be a real Lorentz metric. For example in de Sitter space one 
complexities the spacetime and goes to a section (the Euclidean section) on which 
the metric is the real positive definite metric on a four sphere. Because the imaginary 
time coordinate is periodic on this four sphere, Z will be the partition function for a 
canonical ensemble. The action I[go, qS0] of the background de Sitter metric gives 
the contribution of the background metric to the partition function while the 
second and third terms in Equation (2.3) give the contributions o f thermal gravitons 
and matter quanta respectively on this background. In the case of the canonical 
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ensemble for a spherical box with perfectly reflecting walls the background metric 
can either be that of a Euclidean space or it can be that of a section (the Euclidean 
section) of the complexified Schwarzschitd solution on which the metric is real 
positive definite. Again the action of the background metric gives the contribution 
of the background metric to the partition function. This corresponds to an entropy 
equal to one quarter of the area of the event horizon in units in which G = c = h  
= k =  1. The second and third terms in Equation (2.3) give the contributions of 
thermal gravitons and matter quanta on a Schwarzschild background. In the case of 
the grand canonical ensemble for a box with temperature T =  fi- 1 and angular 
velocity f~ one considers fields which, on the walls of the box, have the same value at 
the point (t, r, 0, qS) and at the point (t + ifl, r, O, 4~ + ifif2). This boundary cannot be 
filled in with any real metric but it can be filled in with a complex flat metric or with 
a complex section (the quasi Euclidean section [13]) of the Kerr solution. In both 
cases the metric is strongly elliptic (I am grateful to Dr. Y. Manor for this point) [14] 
if the rotational velocity of the boundary is less than that of light. A metric g is said 
to be strongly elliptic if there is a function f such that Re(Jg) is positive definite. It 
seems necessary to use such strongly elliptic background metrics to make the path 
integrals well defined. One could take this to be one of the basic postulates of 
quantum gravity. 

The quadratic term 12 [~J will have the form 

I z [~] = - ~ ½ ~ A ~ ( -  go ) l /2d '~x ,  (2.4) 

where A is a second order differential operator constructed out of the background 
fields g0, ~bo. (In the case of the fermion fields the operator A is first order. For 
simplicity I shall deal only with boson fields but the results can easily be extended to 
fermions.) The quadratic term I2[g] in the metric fluctuations can be expressed 
similarly. Here however, the second order differential operator is degenerate i.e. it 
does not have an inverse. This is because of the gauge freedom to make coordinate 
transformations. One deals with this by taking the path integral only over metrics 
that satisfy some gauge condition which picks out one metric from each equivalence 
class under coordinate transformations. The Jacobian from the space of all metrics 
to the space o f those satisfying the gauge condition can be regarded in perturbation 
theory as introducing fictitious particles known as Feynmann-de Witt [15, 16] or 
Fadeev-Popov ghosts [171. The path integral over the gravitational fluctuations 
will be treated in another paper by methods similar to those used here for matter 
fields without gauge degrees of freedom. 

In the case when the background metric go is Euclidean i.e. real and positive 
definite the operator A in the quadratic term 12 [q~] will be real, elliptic and self- 
adjoint. This means that it will have a complete spectrum of eigenvectors q~, with 
real eigenvalues 2,: 

Aq~,, =2.4"  . (2.5) 

The eigenvectors can be normalized so that 

~ . ~ , . ( g o ) l / 2 d 4 x  = 6.m . (2.6) 
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Note that the volume element which appears in the (2.6) is (90) 1/2 because go is 
positive definite. On the other hand the volume element that appears in the action I 
is ( - 9 )  1/2 = - i (9 )  1/z where the minus sign corresponds to a choice of  the direction 
of  Wick rotation of  the time axis into the complex plane. 

If  the background metric 9o is not Euclidean, the operator A will not be self- 
adjoint. However I shall assume that the eigen functions ~b, are still complete. If  this 
is so, one can express the fluctuation q$ in terms of the eigen functions. 

q$ = Z a,~b,. (2,7) 

The measure d[q~] on the space of all fields 6 can then be expressed in terms of the 
coefficients a," 

d [4)] = I-[ #da, ,  (2.8) 
n 

where/~ is some normalization constant with dimensions of mass or inverse length. 
From (2.5)-(2.8) it follows that 

Z [6]  = ~ d [~b] exp iI 2 [6]  

= H S½#da, e x p ( -  2,a,  2) 
n 

= ~½s~Tc~12;~ 2 ~i2 
n 

= (det (4/~- 2n- 1A))- 1/2 . (2.9) 

3. The Zeta Function 

The determinant of the operator A clearly diverges because the eigenvalues 2, 
increase without bound. One therefore has to adopt some regularization procedure. 
The technique that will be used in this paper will be called the zeta function method. 
One forms a generalized zeta function from the eigenvalues of the operator A : 

((s) = ~ 2~ -~ . (3.1) 
n 

In four dimensions this will converge for Re(s) > 2, It can be analytically extended to 
a merophorphic function ofs  with poles only at s = 2  and s = 1 [18]. In particular it 

is regular at s =0.  The gradient of zeta at s = 0  is formally equal t o - ~  log2 n. One 
n 

can therefore define detA to be exp(-d(/dsl~= o) [19]. Thus the partition function 

logZ[6] = ½('(0)+ ½1og(¼~a2)¢(0). (3.2) 

In situations in which the eigenvatues are known, the zeta function can be 
computed explicitly. To illustrate the method, I shall treat the case of a zero rest 
mass scalar field ~b contained in a box of volume V in fiat spacetime at the 
temperature T = fl-  1. The partition function will be defined by a path integral over 
all fields q5 on the Euclidean space obtained by putting z = it which are zero on the 
walls of  the box and which are periodic in z with period ft. The operator A in the 
action is the negative of  the four dimensional Laplacian on the Euclidean space. If  
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the dimensions of  the box are large compared to the characteristic wavelength fl, 
one can approximate the spatial dependence of the eigenfunctions by plane waves 
with periodic boundary conditions. The eigenvalues are then 

)~,, = ( 2 n i l -  l n ) 2  + k 2 (3 .3 )  

and the density of eigenvalues in the continuum limit is 

2V .d3 k 
(2~-3 J (3.4) 

when n > 0 and half that when n = O. The zeta function is therefore 

~(s) = ~4rcV l jr. dkk2- 2s + 2 ~ 1  ~ dkk2(47c2 fl- 2n2_l_k2)-s} . ( 3 . 5 )  

The second term can be integrated by parts to give 

8~zV ~ S dk(4rcz fi_ Zn2 + kz)_s+ a(2_ 2s)_ l . 
(2~z) 3 ,, = 1 

Put k=2rcnfi-* sinhy. This gives 

(3.6) 

o~ 

8n V ,,~1 S dy(2nfi-, n)- 28 + 3 (2 - 2s)- 1 (cosh y)- 2, + 3 
(2re)  3 = 

8~V 
- (2rc)3 (2rq3-1)3- 2~ x ~R(2s- 3) 

1 F(1/2)F(s-3/2) 
• ( 2 -  2 s ) -  1 x - , (3 .7 )  

2 F(s-- 1) 

where ~R is the usual Riemann zeta function ~, n -~. The first term in (3.5) seems to 
n 

diverge at k = 0  when s is large and positive. This infra red divergence can be 
removed if one assumes that the box containing the radiation is large but finite. In 
this case the k integration has a lower cut o f fa t  some small value e. I fs  is large, the k 
integration then gives a term proportional to ~3 - 2s When analytically continued to 
s=0 ,  this can be neglected in the limit e~0 ,  corresponding to a large box. 

The gamma function F(s-1) has a pole at s = 0  with residue - 1 .  Thus the 
generalised zeta function is zero at s = 0 and 

¢'(0) = 2re V/~- 3 ~ ( _  3)F(1/e)F(- 3/2) (3.8 

7Z 2 
= - -  VT 3 

45 

thus the partition function for scalar thermal radiation at temperature T in a box of 
volume V is given by 

7r,2VT 3 
l o g Z =  9 ~  --0~ (3.9) 
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Note that because ~(0)=0, the partition function does not depend on the 
undetermined normalization parameter #. However, this will not in general be the 
case in a curved space background. 

From the partition function one can calculate the energy, entropy and pressure 
of the radiation. 

E = - logZ = 3-0 VT4 '  (3.10) 

S = fiE + log Z = ~ V T  a , (3.11) 

d 7z2 T 4 (3.12) 
p = fl-  1 ~/V logZ = 90 - " 

One can calculate the partition functions for other fields in flat space in a similar 
manner. For  a charged scalar field there are twice the number of eigenfunctions so 
that logZ is twice the value given by Equation (3.9). In the case of  the 
electromagnetic field the operator A in the action integral is degenerate because of  
the freedom to make electromagnetic gauge transformations. One therefore has, as 
in the gravitational case, to take the path integral only over fields which satisfy some 
gauge condition and to take into account the Jacobian from the space of all fields 
satisfying the gauge condition. When this is done one again obtains a value logZ 
which is twice that of  Equation (3.9). This corresponds to the fact that the electro- 
magnetic field has two polarization states. 

One can also use the zeta function technique to calculate the Casimir effect 
between two parallel reflecting planes. In this case instead of summing over all field 
configurations which are periodic in imaginary time, one sums over fields which are 
zero on the plates. Defining Z to be the path integral over all such fields over an 
interval of  imaginary time v one has 

rc2Azb- 3 
l o g Z -  , (3.13) 

720 

where b is the separation and A the area of the plates. Thus the force between the 
plates is 

F =  _ 1 d rcZAb - 4  (3.14) 
)-~logZ = 240 

4. The Heat Equation 

In situations in which one does not know the eigenvalues of the operator A, one 
can obtain some information about the generalized zeta function by studying the 
heat equation. 

d 
d t F ( x ,  y, t )+  A F ( x ,  y, t ) = 0  (4.1) 

here x and y represent points in the four dimensional spacetime manifold, t is a fifth 
dimension of parameter time and the operator A is taken to act on the first 
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argument of  F. With the initial conditions 

F(x,  y, O) = 6(x, y) (4.2) 

the heat kernel F represents the diffusion over the spacetime manifold in parameter  
time t of  a unit quantity of  heat (or ink) placed at the point y at t = 0. One can express 
F in terms of  the eigenvalues and eigenfunctions of  A : 

F(x,  y, t) = ~ exp( - ~,n t) C~,(X)(O,(y). (4.3) 
n 

In the case of  a field ~b with tensor or spinor indices, the eigenfunctions will carry a 
set of  indices at the point x and a set at the point y, I f  one puts x = y, contracts over 
the indices at x and y and integrates over all the manifold one obtains 

Y(t) = .[ TrF(x, x, t)(go)l/2d4x = ~ e x p ( -  2 , 0 .  (4.4) 
n 

The generalized zeta function is related to Y(t) by a Meltin transform: 

~(s)= Z '  22s 1 7 = ~ i  a t ' -*  Y{t)dt .  (4.5) 
n 0 

A number of  authors e.g. [1-4] have obtained asymptotic expansions for F and 
Y valid as t-+0 +. In the case that the operator A is a second order Laplacian type 
operator on a four dimensional compact  manifold. 

Y(t) ~ ~, B . t " -  2 ,  (4.6) 
n 

where the coefficients B, are integrals over the manifold of scalar polynomials in the 
metric, the curvature tensor and its covariant derivatives, which are of  order 2n in 
the derivatives of  the metric 

i.e. B, = ~ b,(go)l/ZdCx . (4.7) 

DeWitt  [1, 2] has calculated the b, for the operator - [] + {R acting on scalars, 

b 0 = (4=)- z 

b 1 = (4~z)- z(~_ 0 R  

b2 = (2880rcz)- 1 

• L*'r~abcaR*'abcd - -  R a b R a b  -t- 30(1 - -  6 4 )  2 R 2 q- (6 - 300IN R] . (4.8) 

Note that b 1 is zero when ~ = ~ which corresponds to a conformally invariant scalar 
field. 

In the case of  a non-compact  spacetime manifold one has to impose boundary 
conditions on the heat equation and on the eigenfunctions of  the operator A. This 
can be done by adding a boundary to the manifold and requiring the field or its 
normal  derivative to be zero on the boundary. An example is the case of  a black hole 
metric such as the Euclidean section of  the Schwarzschild solution in which one 
adds a boundary" at some radius r = r o. This boundary represents the walls of  a 
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perfectly reflecting box enclosing the black hole. For a manifold with boundary the 
asymptotic expansion for Y takes the form [20]. 

Y(t) = ~ (B, + C,) t"-  z ,  (4.9) 

where, as before, B, has the form (4.7) and 

C n = ~ c n ( h ) l / 2 d 3 x ,  

where c, is a scalar polynomial in the metric, the normal to the boundary and the 
curvature and their covariant derivatives of order 2 n - 1  in the derivatives of the 
metric and h is the induced metric on the boundary. The first coefficient c o is zero 
because their is no polynomial of  order - 1. McKean and Singer [3] showed that 

- 1  
c a - 48zcgK when ~ =0  where K is the trace of the second fundamental form of the 

boundary. In the case of a Schwarzschild black hole in a spherical box of radius 
ro, c 2 must be zero in the limit of large r o because all polynomials of degree 3 in the 
derivatives of  the metric go down faster than r o 2. 

In a compact manifold with or without boundary with a strongly elliptical 
metric 9o the eigenvalues o f a Laplacian type operator A will be discrete. If there are 
any zero eigenvatues they have to be omitted from the definition of the generalized 
zeta function and dealt with separately. This can be done by defining a new operator 

= A - P where P denotes projection on the zero eigenfunctions. Zero eigenvalues 
have important physical effects such as the anomaly in the axial vector current 
conservation [21, 22]. Let e > 0  be the lowest eigenvalue of  A (from now on I shall 
simply use A and assume that any zero eigenfunctions have been projected out). 
Then 

~(s)= F ~  t~  l Y(t)dt + f ts- l . (4.10) 

As t ~  o% Y ~ e  -~. Thus the second integral in Equation (4.10) converges for all s. In 
the first integral one can use the asymptotic expression (4.9). This gives 

B.+C. (4.11) 
~ n + s - 2  " 

Thus ~ has a pole at s = 2 with residue B o and a pole at s = 1 with residue B~ + C 1. 
There would be a pole at s=O but it is cancelled out by the pole in F(s). Thus 
~(0)= B 2 + C2. Similarly the values of ~ at negative integer values of s are given by 
(4.11) and (4.10). 

5. Other Methods of Regularization 

A commonly used method to evaluate the determinant of the operator A is to start 
with the integrated heat kernel 

Y(0 = ~ e x p ( -  2 . 0 .  (5.1) 
n 
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Multiply by e x p ( - m Z t )  and integrate from t = 0  to t =  oo 

Y(t) e x p ( -  m2t )& = ~ '  (2, + m2) -1 (5.2) 
0 n 

then integrate o v e r  m 2 f r o m  m 2 = 0  to  m 2 = o o  and interchange the orders of 
integration to obtain 

00 

One then throws away the value of the righthand side of(5.3) at the upper limit and 
claims that 

log detA = ~ log2, 

= - ~ t -  a Y ( t ) & .  (5.4) 
0 

This is obviously a very dubious procedure. One can obtain the same result from the 
zeta function method in the following way. One has 

log detA = - ~'(0) 

- dsd [ l~0s t s_ ly ( t )d t J  " (5.5) 

Near s = 0 

1 
= s + ~;s 2 + O(s 3) , (5.6) 

r(s) 

where y is Euler's constant. 
Thus 

log de tA= - Lira [(1 + 2ys) ts-  l y( t)  dt 
s-~o L o 

+ (s + ys 2) ~ t s-  1 logt Y( t )d t .  (5.7) 
o 

If  one ignores the fact that the two integrals in Equation (5.7) diverged when s =0, 
one would obtain Equation (5.4). Using the asymptotic expansion for Y, one sees 
that the integral in Equation (5.4) has a t-  2, t-  1, and a logt divergence at the lower 
limit with coefficients ~-Bz o, B1, and B 2 respectively. The first of these is often 
subtraced out by adding an infinite cosmological constant to the action while the 
second is cancelled by adding an infinite multiple of the scalar curvature which is 
interpreted as a ren ormalization o f the gravitational constant. The logarithmic term 
requires an infinite counter term o f a new type which is quadratic in the curvature. 

To obtain a finite answer from Equation (5.4) dimensional regularization is 
often used. One generalizes the heat equation from 4+  1 dimensions to 26o+ 1 
dimensions and then subtracts out the pole that occurs in (5.4) at 2e)=4. As 
mentioned in the introduction, this is ambiguous because there are many ways that 
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one could generalize a curved spacetime to 26o dimensions. The simplest generali- 
zation would be to take the product of the four dimensional spacetime manifold 
with 26o-4 fiat dimensions. In this case the integrated heat kernel Y would be 
multiplied by (4~t) z-c°. Then (5.4) would become 

log detA = - ~ t 1 - ° ~ ( 4 ~ ) 2 - ~ y ( t ) d t .  (5.8) 
o 

This has a pole at 20) = 4 with residue ~(0) and finite part - ~'(0) + (27 + log47c) x ~(0). 
Thus, the value of the log Z derived by the dimensional regularization using flat 
dimensions agrees with the value obtained by the zeta function method up to a 
multiple of ~(0) which can be absorbed in the normalization constant. However, 
if one extended to 26o+ 1 dimensions in some more general way than merely 
adding fiat dimensions, the integrated heat kernel would have the form 

Y(to6o ) = ~ B,(6o)t "-'° , (5.9) 
n 

where the coefficients B,(6o) depend on the dimensions 26o. The finite part at 60=2 
would then acquire an extra term B~(2). This could not be absorbed in the 
normalization constant #. One therefore sees that the zeta function method has the 
conceptual advantages that it avoids the dubious procedures used to obtain 
Equation (5.4), it does not require the subtraction of any pole term or the addition of 
infinite counter terms, and it is unambiguous unlike dimensional regularization 
which depends on how one generalizes to 2o) dimensions. 

6. Scaling 

In this Section I shall consider the behaviour of the partition function Z under a 
constant scale transformation of the metric 

Oab=kgab . (6.1) 

IfA is a Laplacian type operator for a zero rest mass field, the eigenvalues transform 
as 

2, = k-  12,. (6.2) 

Thus the new generalized zeta function is 

((s) = kS~(s) (6.3) 

and 

log detA = log d e t A -  logk~(0). (6.4) 

Thus 

logZ = logZ + ½ logk~(0) 

+ (log/~- log#)~(0). (6.5) 
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If  one assumed that the normalization constant # remained unchanged under a 
scale transformation, the last term would vanish. This assumption is equivalent to 
assuming that the measure in the path integral over all con figurations o f the field q5 
is defined not on a scalar field but on a scalar density of weight ½. This is because the 
eigenfunctions of the operator A would have to transform according to 

~n=k-lq~. (6.6) 

in order to maintain the normalization condition (2.6). The coefficients a n of  the 
expansion of a given scalar field q5 would therefore transform according to 

~n=ka. (6.7) 

and the normalization constant # would transform according to 

= k -  1~ (6.8) 

if the measure is defined on the scalar field itself, i.e. if 

d[q~] =nxd4(x). (6.9) 

However if the measure is defined on densities of  weight ½, i.e. 

d[~b] = IIx(g(x))1/4d~(x) (6.10) 

then the normalization parameter ~ is unchanged. 

The weight of the measure can be deduced from considerations of  unitarity. In 
the case of a scalar field one can use the manifestly unitary formalism of summing 
over all particle paths. This gives the conformally invariant scalar wave equation if 
the fields are taken to be densities of  weight ½ [-23]. By contrast, the "minimally 
coupled" wave equation [Zq5 = 0 will be obtained if the weight is 1. In the case of a 
gravitational field itself one can use the unitary Hamiltonian formalism. From this 
Fadeev and Popov [17] deduce that the measure is defined on densities of weight ½ 
and is scale invariant. Similar procedures could be used to find the weight of  the 
measure for other fields. One would expect it to be ½ for massless fields. 

These scaling arguments give one certain amounts of  information about the 
partition function. In De Sitter space they determine it up to the arbitrariness o f the 
normalization parameter # because DeSitter space is completely determined by the 
scale. Thus 

logZ = B  2 logr/ro, (6.11) 

where r is the radius of the space and r o is related to #. In the case ofa  Schwarzschild 
black hole of mass M in a large spherical box of  radius ro, 

logZ = B 2 logM/M o +f(roM- 1), (6.12) 

where again M 0 is related to/~. If  the radius of the box is large compared to M, one 
would expect that the partition function should approach that for thermal radiation 
at temperature T =  (8riM)-1 in flat space. Thus one would expect 

f -  r3 t-0 { r~ ) (6.13) 
34560M 3 kM 2 ] " 
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It should be possible to verify this and to calculate the lower order terms by 
developing suitable approximations to the eigenvalues of the radial equation in the 
Schwarzschild solution. In particular f and logZ will be finite. This contrasts with 
the result that one would obtain if one naively assumed that the thermal radiation 
could be described as a fluid with a density of logZ equal t o  Tg2/90 ~3 where 
7"= T(1 - 2Mr-  1)- 1/2 is the local temperature. Near the horizon T would get very 
large because of a blueshift effect and so logZ would diverge. 

For  a conformally invariant scalar field B 2 = - 2 for DeSitter space and 4~ for 
the Schwarzschild solution. The fact that B 2 is positive in the latter case may 
provide a natural cut off in the path integral when one integrates over background 
metrics will all masses M. If the measure on the space of gravitational fields is scale 
invariant then the action of  the background fields will give an integral of  the form 

~ e x p ( - 4 ~ M 2 ) M  - ldM.  (6.1,4) 
0 

This converges nicely at large M but has a logarithmic divergence at M = 0 .  
However if one includes a contribution of  the thermal radiation the integral is 
modified to 

~exp(-47cMZ)M - +~2dM. (6,15) 1 

0 

This converges ifB 2 is positive. Such a cut offcan however be regarded as suggestive 
only because it ignores the contributions of high order terms which will be 
important near M = 0. One might hope that these terms might in turn be represented 
by further black hole background metrics. 

7. Energy-Momentum Tensor 

By functionally differentiating the partition function one obtains the energy 
momentum tensor of  the thermal radiation 

T~ b = _ 2(go)- 1/2 6 logZ 
5g~bob (7.1) 

The energy momentum tensor will be finite even on the event horizon of a black hole 
background metric despite the fact that the btueshifted temperature T diverges 
there. This shows that the energy momentum tensor cannot be that of a perfect fluid 
with pressure equal to one third the energy density. 

One can express the energy momentum tensor in terms of derivatives of the heat 
kernel F:  

6 log Z = ½~5~'(0)-#- 1@~(0)- ½ log(¼~#2)6~(0), (7.2) 

The second term on the right of (7.2) will vanish if one assumes that # does not 
change under variations o f the metric. This will be the case if the measure is de fined 
on densities of weight ~. The third term can be expressed as the variation of an 
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integral quadratic in the curvature tensor and can be evaluated directly. To 
calculate the first term one writes 

Therefore 

c5~'(0)= ds ~ S t~- l~[F(x,x , t ) (9o)  1/2d4x& • (7.4) 
0 s=0 

To calculate 6F one uses the varied heat equation 

A + ~ 6F(x, y, t) + bAr (x ,  y, t) = 0 (7.5) 

with O[(9o(y))l/ZF(x, y, 0)] =0.  The solution is 

6[(9o(Y)l/ZV(x, y, t)] = - S i F(x, z, t -  t')c~AF(z, y, t')9o(Y)9o(z)l/2d4zdt ' . (7.6) 
0 

Therefore 

C~ S F(x,  x, t )(9o)l /2d4x = - t ~ 6 AF(z, z, t)(go)l/Zd4z. (7.7) 

Where the operator  c~A acts on the first argument of  F. 

The operator cSA involves 69 ab and its covariant derivatives in the background 
metric. Integrating by parts, one obtains an expression for T ab in terms of F and its 
covariant derivatives. For  a conformally invariant scalar field. 

- ggabc F - Tab = d s  r ( S )  o t (xaFb ½Fab 

+  gabF  + +RabV-  ga Rr)dt] 

1 2 6Bz 1/2 - l o g ( ¼ ~  ) ~ (go) . (7.8) 

Where indices placed before or after F indicates differentiation with respect to the 
first or second arguments respectively and the two arguments are taken at the point 
x at which the energy momentum tensor is to be evaluated. In an empty spacetime 
the quantity B 2 is the integral of  a pure divergence so B 2 vanishes. 

8. The  T r a c e  A n o m a l y  

Naively one would expect 7~, the trace of the energy momentum tensor, would be 
zero for a zero rest mass field. However this is not the case as can be seen either 
directly from (7.8) or by the following simple argument. Consider a scale 
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transformation in which the metric is multiplied by a factor k = l + a  Then 
~Gb =eGb and 

d logZ 

= B2(1 + ½#-1 d~/dk) 

= B 2 (8.1) 

if the measure is defined on densities of weight ½. Thus for the case of  a con formally 
invariant scalar field 

1 
7 ~ -  2880~2 [ RabcdR abed- RabR"b -I - DR] . (8.2) 

The trace anomalies for other zero rest mass fields can be calculated in a similar 
manner. 

These results for the trace anomaly agree with those of  a number of other 
authors [7-12]. However, they disagree with some calculations by the point 
separation method [24] which do not obtain any anomaly. The trace anomaly for 
DeSitter completely determines the energy momentum because it must be a 
multiple of  the metric by the symmetry. In a two dimensional black hole in a box the 
trace anomaly also determines the energy momentum tensor and in the four 
dimensional case it determines it up to one function of position [25]. 

9. Higher Order Terms 

The path integral over the terms in the action which are quadratic in the 
fluctuations about the background fields are usually represented in perturbation 
theory by a single closed loop without any vertices. Functionally differentiating 
with respect to the background metric to obtain the energy momentum tensor 
corresponds to introducing a vertex coupling the field to the gravitational field. If 
one then feeds this energy momentum tensor as a perturbation back into the 
Einstein equations for the background field, the change in the logZ would be 
described by a diagram containing two closed loops each with a gravitational vertex 
and with the two vertices joined by a gravitational propagator. Under a scale 
transtbrmation in which the metric was multiplied by a constant factor k, such a 
diagram would be multiplied by k-  2 Another diagram which would have the same 
scaling behaviour could be obtained by functionally differentiating logZ with 
respect to the background metric at two different points and then connecting these 
points by a gravitational propagator. In fact all the higher order terms have scaling 
behaviour k -n where n__>2. Thus one would expect to make a negligible 
contribution to the partition function for black holes of significantly more than the 
Planck mass. The higher order ~erms will however be important near the Planck 
mass and will cause the scaling argument in Section 6 to break down. One might 
nevertheless hope that just as a black hole background metric corresponds to an 
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inf in i te  s equence  o f  h ighe r  o r d e r  t e rms  in a p e r t u r b a t i o n  e x p a n s i o n  a r o u n d  flat 

space,  so the  h ighe r  o r d e r  t e rms  in e x p a n s i o n  a b o u t  a b l ack  ho le  b a c k g r o u n d  m i g h t  

in t u r n  be  r ep re sen ted  by  m o r e  b l ack  holes.  
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